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Abstract

We show how compiler technology can generate fast and efficient
yet human-readable data-parallel simulation code for solving certain
partial differential equation (PDE) based problems. We present a
code parser and generator based on an ANTLR grammar and tree
walking approach that transforms a mathematical formulation of an
equation such as the Cahn-Hilliard family into simulation software in
C++ or in NVIDIA’s Compute Unified Device Architecture (CUDA)
language for programming Graphical Processing Units (GPUS). We
present software architectural ideas, generated specimen code and
detailed performance data on modern GPUs. We discuss how code
generation techniques can be used to speed up code development
and computational run time for related complex system simulation
problems.

Keywords: automatic code generation; compiler; grammar;
partial differential equation; finite difference, stencil; GPU.

1 Introduction

Many problems in computational science and engineering can be formulated
in terms of partial differential equations (PDEs). A common simulation
pattern involves the time-integration of an initial value model where the

*email: k.a.hawick@massey.ac.nz, Computer Science, Massey University Albany,
North Shore 102-904, Auckland, New Zealand
femail: d.p.playne@massey.ac.nz



Automatic PDE Simulation Code Generation on GPUs 2

system is defined on a spatial mesh with spatial calculus operators in the
equation. Although the mathematical and numerical methods for solving
such problems are well known, it is still a tedious and error-prone task to
write correct and efficient software for a new problem. The effort required
to code software for a new hardware architecture such as multi-core CPUs
and highly-data parallel accelerator devices such as Graphical Processing
Units (GPUs) is even greater.

Although a great deal of techniques [1] are known for building opti-
mising compilers [2, 3, 4] the goal of automatic parallelising compilation
remains elusive. Some important progress was made for some data-parallel
constructs[5, 6] and relatively recently for some regular data problems using
GPUs[7]. However it seems likely that there are some general problems that
compiler generators will probably never be able to do completely, without
programmer assistance[8]. More optimistically however it is feasible to look
at some specific classes of application domain problems and use compiler
ideas to address them.

Figure 1: Two-dimensional segments of field solutions of the Cahn-Hilliard
equation - time integrated for over 20,000 steps with a 50/50 concentration
mix on the left and a 25/75 mix on the right.

In this paper we report on how modern compiler technology can be
used to make a software generator tool that can create fast and readable
data-parallel software for solving some PDE based problems. We focus on
the Cahn-Hilliard equation for materials phase separation modelling which
is first-order in the time derivative but fourth order in spatial calculus
operators - an illustrative example of which is shown in Figure 1. We
explain how a plain ASCII expression of the mathematical equation can be
parsed and used to generate either CPU software in a language like C or
C++, but also how we can generate GPU code written in a language like
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NVIDIA’s Compute Unified Device Architecture (CUDA)[9]. We discuss
how different numerical techniques such as the time integration method
or the finite differencing spatial stencil operators can be packaged in a
library separate from the main code generator. We show how some extra
configuration information can be specified by the user as part of the overall
“simulation tree” to control the methods and parameters used in solving a
particular PDE problem.

In addition to the considerable parallel performance our generated code
can achieve compared to hand-generated software, we show also how a rel-
atively minor change to the mathematical specification of the equation
allows a whole new code to be generated relatively trivially. These ap-
proaches combined in saving on: programmer time; correctness testing
effort; and production run time through data parallelism, support investi-
gation of whole families of problems that would hitherto have taken a lot
longer to tackle.

A number of software systems and algebraic problem solving environ-
ments allow users to automatically generate solver source code in stan-
dard programming languages such as Fortran[10, 11, 12]. A number of
systems also address the problem of generating parallel code[13]. Research
projects[14, 15] and commercial problem solving systems such as Matlab[16]
or Mathematica[17] also support code generation from a mathematical for-
mulation of equations. We are interested however in addressing both issues
and therefore in generating highly performance optimised parallel programs
that can be run on current generation processors and on accelerators such
as Graphical Processing Units and other platforms. It is generally a hard
problem to automatically parallelise serial programs written in traditional
languages, but an advantage of starting from the underpinning mathemat-
ics is that more information on the structure of the calculation and its
potential parallelisation is actually exposed and available for a code gener-
ation tool to exploit.

However, a more direct parallel code generation approach is now possi-
ble due to the advent of portable parallel languages such as OpenCL and
the general revitalisation of data-parallel computing that has been stim-
ulated by cheap GPUs and other accelerators. Generally exposure to the
original mathematics of a PDE along with knowledge of the numerical dis-
cretisation scheme desired, gives a software generation tool more power to
identify the parallelisation potential of the problem and specifically target a
high performance implementation. The roles and emphasis of performance
and portability are then reversed in this approach and portability may be
achieved through implementations of the OpenCL target code.

In fact using our approach we believe it is possible to construct a num-
ber of inherent templates that will support generation of several target
languages including CUDA, OpenMP or OpenCL. There appears to be
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considerable scope for automatic generation of stencil source code that
makes use of heuristics and other practical experience to achieve optimised
implementations on present and emerging multicore processing devices[18].

Although there are a number of mathematical and numerical approaches
such as finite-elements that can be expressed using this approach to code
generation, we focus in this paper on regular mesh problems that can be
solved using finite-difference methods. We do discuss different and employ
numerical time integration techniques but we focus on stencil operators for
the spatial calculus. Many problems in computational science and engineer-
ing can be formulated as stencils whereby a regular pattern of neighbouring
data values are used to iteratively update a central value. A range of nu-
merical methods for iteratively solving PDEs can be expressed in terms of
stencil operators for spatial derivatives, the Laplacian operator, gradient,
curl and other higher order operators.

The idea of generating PDE solver software is not new. As long ago
as 1970, Cardenas and Karplus experimented with manually written pro-
grams that combine both translation and generation in a single ad hoc
stage [19] partial differential equation language (PDEL) based on PL/1
syntax. Some important work is being done by Logg and collaborators
on the semi-automatic generation of Finite Element algorithms. The
FENICS[20] and DOLFIN|21] projects take a somewhat different approach
to the one we do, making more heavy use of linear algebraic methods and
the associated separately-optimised software for solving linear algebra and
matrix-oriented problems such as BLAS[22], BLACS[23], LAPACK][24] and
ScaLAPACK][25]. While it is also possible to formulate the Finite Differ-
ence methods that we employ using full matrix methods too, we focus (for
the present at least) on direct methods and formulations for regular meshes
that do not need full matrices and that make use of explicit sparse data
storage methods. This allows us the luxury of worrying less about storage
space for the spatial calculus and thus being able to experiment more read-
ily with higher-order time-integration methods which themselves require
multiple copies of the field data for intermediate fractional time steps. It is
also of course a challenge to accommodate as large as possible model sizes
within GPU memory for reasons discussed below in Section 4.

Stencil operators have been in use for parallel program optimisation
for some years[26, 27]. In the case of image operators where a particu-
lar stencil might be well known with specific name it is straightforward
to develop an optimised software library of optimised operator routines.
For solving PDEs it is however harder to develop a general purpose library
and automated code generation for a particular PDE with particular ini-
tial/boundary conditions and solver algorithm is more attractive[28]. Datta
and collaborators discuss stencil generation using Lisp-parsing of Fortran-
like expressions for the mathematics of the equation under consideration
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and a system that generates the stencil in C or Fortran code[29]. Tt is
then possible to apply the standard apparatus and systems of parallel pro-
gramming such as message passing, parallel compiler macros or supercom-
puter vendor proprietary optimisation tools to obtain a working parallel
implementation that can target modern multicore devices amongst other
platforms[30].

In this article we discuss the general form of applicable partial differen-
tial field equation problems in Section 2. In Section 3 we focus in on the
Cahn-Hilliard equation and discuss how it gives rise to a family of PDEs
that would be tedious and error-prone to code for separately. Since GPUs
form our principle platform target for the work reported in this paper, we
give a brief summary of the salient architectural issues for GPUs in Sec-
tion 4. The structure and operation of our parser and code generator is
given in Section 5. We present some generated code examples and associ-
ated run-time performance data in Section 6 and discuss associated issues
in Section 7 including numerical methods (Section 7.1) and floating point
data types (Section 7.2). We offer some conclusions in and ideas for future
work in Section 8.

2 Solving Partial Differential Field Equations

Many interesting problems in physics and other science areas can be for-
mulated in terms of partial differential field equations that evolve in time.
These problems fall into the general pattern:

WD) Fur) 1)
where the time dependence is first order and the spatial dependence in
the right hand side is often in terms of partial spatial derivatives such as
Vi, Vy, V., V2 V2. V2
Some well known problems that fit this pattern are:
The Cahn-Hilliard equation[31, 32] which is expressed in terms of a
scalar field u:

0
57? — mV? (—bu + Uu® — KV?u) (2)
where it is usual to truncate the series in the free energy[33] at the u*
term, although some work has used up to the u® term [34]. Since we use
the Cahn-Hilliard equation as our primary illustrative example for this
paper, we give more details of its derivation in Section 3 below.

The Time-Dependent Ginzburg Landau equation [35] in terms of
a complex scalar field w:
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The field variable can also be a vector, such as the population variables
in a spatially dependent Lotka-Volterra system of equations[36, 37].
dP

o = F(P) (4

where P might be vector of several population variables for predator and
prey species and F might incorporate a matrix of cross-coupling terms and
spatial calculus operators such as a Laplacian, in whatever dimensions (eg
2 or 3) the problem is posed.

In some cases the full details of the right-hand sides of these sort of
equations are known and immutable parts of the field model. In other
cases a family of equations can be generated by using different expansions
or approximates. A good example is the Cahn-Hilliard equation where the
free-energy term is usually approximated by a polynomial with second and
fourth order terms, but alternatives such as including higher order terms
make sense but are hard (tedious and error-prone) to implement.

A powerful idea to address implementation difficulties is therefore a
software tool that can help generate lines of code in a standard program-
ming language like C, C++, D, Java, Fortran, that implements one of the
standard numerical approaches to solving the equation in question. There
are some well known lines of approach to solving the numerical integra-
tion in time - storing the state of the entire model field that expresses the
right hand side and applying second order methods such as the midpoint
method (aka second-order Runge-Kutta) or higher-order methods such as
the well-known Runge-Kutta Fourth order method as appropriate. We dis-
cuss how to tackle time integration aspects in Section 5.2. The spatial
terms included in the right hand side can also be tackled with well known
finite-difference stencil operators for operators such as the Laplacian and
other spatial derivatives and we discuss how these can be incorporated into
a code generator in Section 5.3.

Problem solving environments do allow some attempts at automatic
numerical solution of equations such as these, but they do not necessarily
produce speed-optimal or indeed maintainable lines of code. It is important
that like terms be gathered together for efficient computation but there
are also numerical stability considerations that affect the best safe way
to combine numerical terms. We discuss these issues and how the code
generator can combine stencil operators to produce good software solutions
in Section 5.3

3 Cahn-Hilliard Equations

We provide a brief derivation of the Cahn-Hilliard example as a worked
example. We show how some assumptions about the free energy that differ
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from those normally made in the literature give rise to a family of equa-
tions. It is normally quite a lot of error-prone work to generate a new
simulation program for each modified equation. Using our code generation
tool however it is relatively trivial and we can rapidly experiment with
additional terms and model assumptions.

The Cahn-Hilliard equation is usually derived from the notion that in
a real material alloy the number of atoms of a given species is conserved
and hence the concentration field must also be. This is expressed by:

1
= /V (e, t)dr = ca (5)

where V is the system volume, and c4 the concentration of atomic species
A. This conservation law implies that the local concentration field obeys a
continuity equation of the form:

du(r,t)

V() =0 (6)

which defines a concentration current j(r,t), assumed to be proportional to
the gradient of the local chemical potential difference p(r,t) with constant
of proportionality m, the mobility.

j(ra t) = _mvlu(ra t) (7)
The chemical potential difference is, by definition:

) = ) )

where F is the Landau functional. Differentiating this functional with
respect to v and assuming a scalar mobility yields the chemical potential
difference as:

R2
— —kTV?u(r, t) (9)
s d

_9f

plr, ) = ou

which when substituted into the continuity equation 6 gives the Cahn-
Hilliard equation[31] for the concentration field.

ot

Ou(r,t) I (8f (u(r,t))
ou

- KV2%u(r, t)) (10)

where the parameter K is defined as:
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R2
K = Fka (11)
Expanding equation 10 we obtain finally:
0
55 = mV? (<bu + e’ — KV?u) (12)

Writing the equation in a form more amenable to managing multiple
numerical parameters we then have:

ou

E = mvz (Alu + A3u3 + A2n+1u2n+1 — KVQU) (13)
Where numerically: A; = —b = —1,43 = U = +1,45 = —1,4; =
+1,..., and Ay, =0,n =0,1,2,3,...,Vn, for as many terms as we care to

make use of in the free energy approximation polynomial. Our equation
parser allows us to change n relatively trivially and generate efficient, cor-
rect and yet readable code to address different members of the resulting
family of equations.

4 GPU Architectural Feature Summary

Since data-parallel GPUs form a key target for the generated code we
report on in this paper, we provide a brief outline summary of the key
architectural features of typical GPUs. GPUs can be used for many paral-
lel applications in addition to their originally intended purpose of graphics
processing algorithms. Relatively recent innovations in high-level program-
ming language support and accessibility have caused the wider applications
programming community to consider using GPUs in this way. The term
general-purpose GPU programming (GPGPU) [38] has been adopted to
describe this rapidly growing applications level use of GPU hardware.

GPUs contain many, low power, SIMT (Single Instruction Multiple
Thread [39]) processor cores. GPUs can manage many millions of threads in
hardware and schedule them for execution on the processor cores. The dis-
advantage of this architecture is that memory access performance is highly
dependent on access patterns. GPUs contain several types of memory that
must be explicitly used by the programmer. However, the new NVIDIA
FERMI architecture GPUs have automatic caching on the main memory,
easing restrictions on memory use.

Figure 2 shows the essential software architecture of a GPU program
written in NVIDIA’s Compute Unified Device Architecture (CUDA) lan-
guage. The CPU code (written in plain ordinary “C”) treats the GPU
(CUDA) code as special purpose subroutines or “GPU kernels” which are
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Figure 2: CPU/GPU Programming Architecture

run on the GPU and report back to the calling host CPU program. Any
data that is used by the kernels must be copied into the GPU global mem-
ory. In previous work [40, 41] we have discussed the performance improve-
ments that can be gained by using the optimised GPU memory types.

5 Parser and Generator Structure

In this section we describe the various components of our parser-generator
software prototype - known as “Simulation Targeted Automatic Reconfig-
urable Generator of Abstract Tree Equations (STARGATES).” Our sys-
tem creates simulation code from a mathematical description of a partial-
differential field equation. It will parse an ASCII representation of the
equation in a mathematical form. A tree representing the equation can
be created from this parsed textual representation. This tree is combined
with information about integration methods and stencils to create an ab-
stract “simulation tree” that represents all the vital information about the
simulation. This tree can be traversed to generate code that performs
the simulation in any desired output programming language. Some addi-
tional configuration information about the simulation must also be supplied
to define properties of the simulation such as system size, dimensionality
etc. The architectural structure of the STARGATES software prototype is
shown in Figure 3.

The equation file containing a mathematical description of the equation
is given as the first input to the system. The Equation Parser will read
this file and construct a tree which represents the equation. This equation
tree is transformed into a simulation tree by combining it with a selected
integration tree supplied by the Integration Library and with Stencils from
the Stencil Library. This simulation tree can be inspected and traversed
by an Output Generator which (using the config file for the specific sim-
ulation parameters) will generate output simulation code. We thus have
a mechanism to manage and separate code generation information from
run-management information.
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Figure 3: The diagram showing the structure and logical flow of STAR-
GATES. The system takes an equation description and a configuration file
as input and the output generator produces an output file.

The advantage of this structure is that the output generators are depen-
dent only on the Simulation Tree. This means that it is a relatively simple
process to create a new target language generator as the output depends
purely on the way the output generator interprets the information in the
simulation tree. In this present paper we focus on the generation of CPU
serial C/C++ code and data-parallel GPU CUDA code.

5.1 Equation Parser

STARGATES allows the user to write the equation in ASCII in a math-
ematical form, and the Equation Parser component reads this ASCII
representation and constructs a tree representing the equation. This equa-
tion tree will contain all the fundamental problem information required by
the rest of the system to generate output code to perform that simulation.
Parsing mathematical equations is potentially an open ended problem but
as indicated we are able - for our prototype tool - to restrict the equation
forms we are addressing to some specific patterns, and make the problem
tractable.

To write the Equation Parser, we have made use of the compiler
generator technology ANTLR [42]. ANTLR is a relatively modern tool
building upon historical developments[43] including the well known lex-
ing/parsing tools: lex/yacc[44] and flex/bison[45, 46]. ANTLR allows us
to specify a relatively simple grammar from which ANTLR will automat-
ically generate a Lexer and a Parser. The grammar shown here supports
the declaration of parameters and fields and equations with simple mathe-
matical operators +, —, , / as well as parameters and stencils. A simplified
version of our Grammar is shown in Listing 1.
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Listing 1: Simple equation ANTLR grammar.

DIGIT 707,079
CHAR . ’a’4.7z"’A7..’Z"7,7;
1D : CHAR (CHAR|DIGIT ) ;
NUM : (DIGIT)+ (.’ (DIGIT)+ )7;
DERIVATIVE

:od/dt
file : (statement)+ EOF!;
statement

(declaration | equation);

declaration

. ID )[7 7] ’ ID 7; ’

| ID ID 5’

equation
: DERIVATIVE ID ’'=’ additive ’;’ ;
additive
multiplicative ((’+7 ° —2 ") multiplicative)x;
multiplicative

‘ 1

: unary ((’x> ° | /7 ") unary)x;
unary

¢ atom

| MINUS atom;
atom : NUM

| ID

| "(’ additive °)’
| ID ’{’> additive ’}’ ;

This grammar is sufficient to parse equations of the form:

float M;

float B;

float U;

float K;

float[] u;

d/dt u = M * Laplacian{(-B*u + U*(uxu*u) - K+Laplacian{ul})};

where the “equation” start-point defines a first order time-differential
equation, whose right hand side has a number of spatial calculus operators
as well as algebraic combinations of the fundamental field and parameters.

After the initial equation is parsed, the tokens are converted into a
tree which can then be parsed by a ANTLR tree parser. This tree parser
constructs a tree representing the equation out of objects that are each
equivalent to a component of the equation (parameters, operators, stencils
etc). Given the example of the Cahn-Hilliard equation (See equation 2),
when this equation is parsed, the ANTLR tree parser generates the tree
shown in Figure 4.

This tree contains all of the information about the Cahn-Hilliard equa-
tion needed by STARGATES. The tree will be given to the generator which
will traverse through the tree to gather the information required to gener-
ate the language specific code to calculate the equation. However, this tree
does not contain information about how the equation is to be integrated
as integration methods are independent of specific equations. Information
about integration methods is stored in Integration Trees.
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[ 1
| Mesh | | Parameters |

Figure 4: The tree that is created by the ANTLR tree parser for the Cahn-
Hilliard equation.

5.2 Integration Library

The Integration Library is responsible for supplying STARGATES with
necessary information about selected integration methods. This informa-
tion is in the form of integration trees which are very similar to the equation
trees discussed in the previous section. Each integration tree contains all
the information required about a specific integration method including the
required meshes, parameters and of course the equations that define the
method itself. In the current prototype version of STARGATES, the inte-
gration trees are created by a hard-coded functions within the Integration
Library. However, it is intended that in the future a parser and lexer will be
incorporated into the Integration Library that will allow these integration
trees to be constructed from intermediate ASCII representations.

The simplest numerical integration method available is the (first order)
Euler method. This integration method can be expressed as:

Ynth = Yn + f(Yn) X h (14)

Although in almost all cases this method is unstable or only works with
very small time steps (h), it is still useful as an illustrative example to see
how the time-integration code generation and libraries work.

The tree structure that represents this simple integration method is
constructed by the simulation generator and results in the tree shown in
Figure 5.



Automatic PDE Simulation Code Generation on GPUs 13

Euler

| o ]
|Meshes| |Parameters| I Steps I

Figure 5: The tree constructed by the Integration Library that represents
the Euler integration method.

Practically, standard higher order methods such as the Runge-Kutta
methods are preferred for most problems, and an advantage of our simula-
tion generator approach is that different methods can readily be tried out
on a problem without recourse to much tedious and error prone recoding by
hand. In the modern literature The Runge-Kutta method often refers to the
4*" order or RK4 method; however, Runge-Kutta really refers to a whole
family of integration methods of various orders. For the Cahn-Hilliard ex-
ample we discuss in this paper second-order time is quite sufficient. The
simulation generator has a function to build the integration tree for the
274 order Runge-Kutta method (sometimes called the midpoint method).
This two-part integration method is given in equation 15.

1
Yntlh = Yn + f(yn) ih
Yn+h = Yn + f(yn-&-%h) x h (15)

The Integration Library component constructs the integration tree shown
in Figure 6 to represent the Runge-Kutta 2"¢ order method.

These integration trees are constructed and then combined with the
equation tree that is being integrated by the method. The equation trees
are inserted into the integration tree at the f(_) nodes. The target field
identified by integration method is then substituted into the equation tree.
These trees then contain all of the information about the equation and
integration method that is needed to generate the simulations.
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Runge-Kutta
2" Order

[ 1 ]
|Meshes| |Parameters| | Steps |

Figure 6: The tree that represents the Runge-Kutta 2" order integration
method. It required three meshes n, m, nh to store the field and intermedi-
ate information and a single parameter h for the time-step of the method.

5.3 Stencil Library

The Stencil Library is responsible for generating and manipulating the
stencils in the equation. An advantage of the generator approach is that
the problem can be specified independently of whether it is to be solved
on a two-, three- or higher-dimensional mesh. Some PDE problems that
arise in other areas of physics can be in higher dimensions and it is use-
ful to be able to separate the dimension from other problem details and
thus generate software for arbitrary dimensions. We have discussed hyper-
dimensionality library support apparatus in [47], and the code generator
can use this. The library must provide stencils of the correct dimensionality
as defined by the equation configuration. Currently the Stencil Library has
functions to generate a specific set of stencils with various dimensionalities.
We have already published in [41] a method in which user-defined stencils
with arbitrary data-types can be used within this simulation generator.
For the purposes of this present paper we demonstrate the generator with
straightforward two-dimensional mesh problems.

One of the most important functionalities the Simulation Generator has
is to apply stencils to each other. This operation allows the Stencil Library
to rearrange the equation to expand all of the stencils with the expression
such that there are no stencils within other stencil expressions. This allows
the simulation update to be performed in a single step rather than having
to generate intermediate expressions. It also allows complex, higher-order
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stencils to be automatically constructed from simple user-defined stencils.

For example, the Equation tree shown in Figure 4 will be rearranged
by the Stencil Library to the following tree (Figure 7). Note how the V2
within the other V2 node has been converted to a V* node.

Figure 7: Tree representing the Cahn-Hilliard equation after it has been re-
factored by the Stencil Library. No stencil node sub-tree contains another
stencil node.

To convert the two V2 stencils into a V* stencil, the stencils are applied
to each other. This can be performed numerically by summing a copy one
stencil for each cell in the other stencil with each copy being multiplied by
the corresponding cell in the other stencil. An example of this process in
two- and three-dimension for applying two V? stencils to each other can
be seen in Figure 8.

1] 1
[ 1] 2[8]2 1 17 2
[1]-4]1]e]1]-4]1|=]1]-8]20]-8] 1] 61 42[12] 1
[ 1] 1] 2]-8]2 alE
[1] ET

Figure 8: Two V?2 stencils being applied to each other to create on V4
stencil. Shown in two- and three-dimensions.

The stencils produced by Stencil Library are not tied to any indexing
scheme, rather they just contain the information about the stencil size,
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dimensionality and actual values. Indexing schemes and access methods
are defined purely in the output generator and thus the stencils remain
independent of the target language.

5.4 Output Generator

The output generator is responsible for traversing the Simulation Tree and
creating the language-specific output code. These generators glean the in-
formation they need from these trees to generate their language-specific
implementation of the simulation. Different generators can be created that
use the same target language but create simulations with a different struc-
ture, for example two generators could both use CUDA but one gener-
ates single-GPU simulations while the other creates simulations that use
multiple-GPUs.

These two simulations could come from the same generator and simply
have a parameter (that comes from the simulation configuration file) that
says whether the simulation should use a single- or multi-GPU structure.
This choice is specific to the generators and does not affect the rest of the
simulation generator.

The advantage of this approach is that the front-end parsing and sim-
ulation tree construction for the simulations remains the same regardless
of the output generator used. When a new architecture or language is
released, a new generator can be written that will allow all of a users sim-
ulations to be migrated to make use of that new architecture or language.

This makes it much easier to adopt a new language or architecture
without the need to rewrite the entire simulation base. This is a far easier
and more extensible programming model than maintaining separate code
versions for each simulation and architecture.

6 Results

We have currently implemented two code generator stages, one for single-
threaded C++ and one for CUDA using global memory. In the following
section we present some code that these generators have produced and
compare the performance of the code to hand-written versions.

6.1 Example Code Output

Here we present the code generated by two output generators for the Cahn-
Hilliard equation (see Equation 2). One of the generators builds a single-
threaded C++ program and the other generates a simple CUDA simulation
using global memory. We have only shown fragments of the code to show
how the two generators produce code specific to their target languages.
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Listing 2 shows the main function and integration method for the Cahn-
Hilliard equation using the Runge-Kutta 2"¢ order integration method.
The generator creates and intialises the main mesh of the equation u. It
also creates the three meshes required by the RK2 method un, wm and unh.
Also shown in the Listing is the function to perform the integration steps,
in this code both of the RK2 steps are performed in one C++ function.

Listing 2: The code generated by the C++ generator for the Cahn-Hilliard
equation using RK2 integration method.

int main() {
float x*u = new float[Y *x X];
for(int iy = 0; iy <Y; iy++) {
for (int ix = 0; ix < X; ix++) {
2.

u[iy*X + ix] = (uniform () = 0) — 1.0;

float xun new float[Y % X];

float xum new float [Y * X];

float xunh = new float[Y * X];

float h = 0.01;

memcpy (un, u, Y x X x sizeof(float))
memcpy (um, u, Y % X % sizeof(float))
memcpy (unh, u, Y % X % sizeof(float)

;
;
)5

for(int t = 0; t < 1024; t++) {
rk2 (un, um, unh, h);
swap (un, unh);

memcpy (u, un, Y % X *x sizeof(float));

}

void rk2(float =un,float sxum, float xunh,float h) {
for (int iy = 0; iy <Y; iy++) {
for (int ix = 0; ix < X; ix++) {

}

for (int iy = 0; iy <Y; iy++) {
for (int ix = 0; ix < X; ix++) {

}
}
}

The code produced by the CUDA generator has several important dif-
ferences that reflect the difference between the CPU and GPU architecture.
First of all, the meshes used by the integration method are allocated on
the device and the main mesh is copied to it by a Host-Device copy. The
second major difference is the integration functions, as these functions are
executed in parallel (note the difference syntax for configuring the function
calls) the two RK2 steps must be performed as separate functions to avoid
race conditions.

Listing 3: The main function and integration methods generated by the
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CUDA generator for the Cahn-Hilliard equation.

int main() {
float *u = new float[Y *x X];
for(int iy = 0; iy <Y; iy++) {
for (int ix = 0; ix < X; ix++) {
2.

uliy*X + ix] = (uniform () = 0) — 1.0;

float =xun;
cudaMalloc ((void#*x*)&un, Y % X % sizeof(float));
float *um;
cudaMalloc ((void**)&um, Y x X % sizeof(float));
float =xunh;
cudaMalloc ((void*x)&unh, Y x X * sizeof(float));
float h = 0.01;
cudaMemcpy (un, u, Y % X % sizeof(float), cudaHostToDevice);
cudaMemcepy (um, u, Y * X % sizeof(float), cudaHostToDevice);
cudaMemcpy (unh, u, Y x X % sizeof(float), cudaHostToDevice);
dim3 block (BLOCK X, BLOCK.Y);
dim3 grid (X/block.x, Y/block.y);
for(int t = 0; t < 1024; t++) {
rk2_a<<<grid , block>>>(un, um, unh, h);
rk2_b<<<grid , block>>>(un, um, unh, h);
swap (un, unh);

memcpy (u, un, Y % X *x sizeof(float));

__global__ void rk2_a(float xun,float sxum, float xunh,float h) {
int k =
(threadIdx .z (gridDim.y*blockDim.yxgridDim.x*blockDim.x)) +
(((blockIdx .y#*blockDim.y)+threadldx.y)*(gridDim.x*blockDim.x)) +
(blockIdx .xxblockDim.x)+threadldx .x;
int ix = k % X;
int iy = (k/X) % Y;

}

__global__ void rk2_b(float xun,float sxum, float xunh,float h) {
int k =
(threadldx.zx(gridDim.y#*blockDim.yxgridDim.x*blockDim.x)) +
(((blockIdx .y#*blockDim.y)+threadldx.y)*(gridDim.x*blockDim.x)) +
(blockIdx .xxblockDim.x)+threadldx .x;
int ix = k % X;
int iy = (k/X) % Y;

Since both the C++ and CUDA generator stages use C-like syntax, the
code to perform the actual equation is the same for both the C++ and
CUDA generators. This code (with whitespace formatted to be easier to
read) is shown in Listing 4. This code calculates the change in one spatial
cell for the Cahn-Hilliard equation. We have tried to make the variable
names and code layout closer to human readable choices than some code
generators do since the programmer may decide to adopt the generated code
and include it in a code package that is subsequently human-maintained
rather than regenerated without being ever subsequently viewed by a pro-
grammer.
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Listing 4: The same equation calculation code generated by both the C++
and CUDA generators.

unh[iy*X 4+ ix] = un[iy*X 4+ ix] + Msx(
(—=B) = ( (unymlx) +
(unyxml) + (—4*unyx) + (unyxpl) +
(unyplx))+
Usx ( (unymlxsunymlxsunymlx) -+
(unyxmlsunyxmlsunyxml)+(—4*unyx*unyx*unyx)+(unyxpl+*unyxplsunyxpl) +
(unyplx*unyplx*unyplx))—
Ko ( (unym?2x) +
(2%unymlxml) + (—8%unymlx) + (2xunymlxpl) +
(unyxm2) + (—8kunyxml) + (20xunyx) + (—8xunyxpl) + (unyxp2) +
(2*%unyplxml) + (—8%unyplx) + (2%unyplxpl) +
(unyp2x)))«h;

The code that the generator produces obviously does not contain every
possible optimisation as humans are usually much better at identifying
which optimisations are applicable for particular simulations. However,
if the pattern of possible optimisation is identified, it could subsequently
be incorporated into the output generator. These optimisations belong
in the generator as optimisations are specific to the target language. We
anticipate that our architecture will give us a strong platform for further
experiments in advanced optimisation of this sort.

6.2 Performance Comparison
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Figure 9: A performance comparison between hand-written and generated
simulation codes. Results are shown for C++ of the left and CUDA on the
right, In-In plots are shown inset.

One of our major requirements for STARGATES is that it should gen-
erate fast, efficient simulation code. To test how well this requirement has
been fulfilled, we have compared the performance of the generated simu-
lations to our existing, hand-written versions. The results we present here
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are for two-dimensional simulations with field-lengths of N={1024, 2048,
3072, 4096, 5120, 6144, 7168, 8192}. These performance results can be
seen in Figure 9.

It can be seen that all the simulations both hand-written and generated
scale with the expected O(N?). Also as expected, the hand-written versions
perform slightly faster than the generated version. This is due to the
specific optimisations that the programmer can identify are applicable to
the simulation. The relative performance of the generated versus hand-
written simulations for both target languages can be seen in Figure 10.
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Figure 10: Relative performance of the generated simulations compared
to the hand-written versions. The results are in the range of 0.85-1.0,
showing that the generated simulations can perform between 85-100% of
the computation performed by the hand-written versions in the same time
period.

It should be noted here that the optimisations that allow the hand-
written simulations to perform faster could be incorporated into the output
generator and are not fundamental changes to the model. It is possible to
build optimisations into the output generators that are either always ap-
plied or applied to some simulations based on input from the configuration
file. Even so, these simple output generators still produce code that per-
forms efficiently and have performance comparable to hand-written code.

7 Discussion

The STARGATES design allows language-specific optimisations to be in-
corporated into the system with ease. Because the output generators are
purely responsible for traversing the simulation tree and generating output
code, optimisations can be added without change to any other part of the
system. This means that if a method of identifying when an optimisation
is applicable (or an option is added to the configuration file) then it can be
included into the generated code.
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In general our design philosophy is to defer decisions that the program-
mer might want to make about details for a particular “run” as far down
the simulation tree as possible, and associated with this, to separate as far
as possible the different specifications. So the equation parsing language
should be separable from the particular equation parameters, and the code
generation options and optimisation choices are also separated as much as
possible. We have been through various early stage software prototypes
where a monolithic architecture was used and as we have learned more
about the processes involved we have managed to aim at a cleaner more
separable set of components for STARGATES.

We learned about ANTLR relatively late in our conceptualisation pro-
cess, but it has helped considerably in providing a higher level parser gener-
ator apparatus. In particular the concept of separating out the tree walker
generation stages is much easier using ANTLR.

7.1 Higher Order Stencils

A great deal of practical experience is often needed to decide on the right
choice of numerical method to employ with a particular PDE. Sometimes it
is possible to determine analytically from the equation what methods will
be required for numerical stability but sometimes this issue can only be ad-
dressed empirically through numerical experimentation. Although we have
simplified some of the numerical methods discussion for this paper, which
focuses more on the overall architecture of STARGATES, it is of course a
goal that we can incorporate a scalable library of numerical methods. We
have implemented the simple Euler, mid-point and third- and fourth-order
Runge-Kutta methods and are presently working on the more modern fifth
order Dormand and Prince methods[48]. There is a range of mathemati-
cal and numerical “lore” available in the literature and a good framework
would support the possibilities of greater numerical experimentation with
state-of-the-art methods.

There is also a good body of work reported in the literature on higher or-
der spatial calculus operators[49]. We have employed second order stencils
for the Laplacians in the example we report, but for some PDE problems
involving higher order field terms a higher order stencil is also warranted.
Our generator is capable of supporting stencils for fourth or sixth order
Laplacians in principle.

We have not discussed boundary conditions in this present paper and
this is obviously a very important issue for specifying many PDE problems
and generating solver codes. The work we report here made use of simple
periodic boundaries but we have done some work with the Cahn-Hilliard
equation with a mix of fixed and periodic boundaries. This is particularly
important for flow problems or where some global field such as gravity or
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some other preferred direction is present. We are still working on how
boundary condition information can be incorporated into the simulation
tree without compromising the principle of data separation.

7.2 Data Types

Another important aspect of numerical experimentation is to determine
what precision is necessary. As discussed in Section 4, GPUs come with
different levels of floating point support. Generally speaking present gen-
eration devices perform a 32-bit floating point precision considerably more
cheaply than 64-bit double precision calculations. A simplistic approach
to generating numerical solver code is to take all equations as working on
simple scalar floating point field variables of a particular precision such as
32-bit floats or 64-bit doubles. There are two obvious limitations to this
philosophy.

Firstly many PDEs are expressed in terms of vectors fields and not
scalars and while a vector variable such as velocity for example could be
expressed separately as in 3-dimensions as a system of 3 separate but cou-
pled equations, this unnecessarily complicates the problem formulation and
indeed can hide some potential optimisation information. Specifically, in
solving a vector field equation typically each vector element is worked on
at once but the separate x, y and z components might all be needed in
memory at once to take care of cross-terms in the calculation. This will
affect the optimal way to lay the field variables out in memory — in terms
of v[z][y][z]; or v[z][y][x] or separately as vz][], vy[], and vz|].

Similarly for some purposes even a scalar field may be modelled as a
complex number with separate real and imaginary parts. In some target
languages there may be a complex data type but quite commonly in the
C syntax related family of programming languages, the concept of a com-
plex data type has to be implemented separately using separate real and
imaginary floating point variables.

This is related to the other main limitation. It is by no means the
case that a definite precision and fundamental floating point data type
is ideal for all PDEs that a stencil generating apparatus might address.
Furthermore it is still the case that many available devices do not have all
the desired available floating point resolutions that might be desired - and in
many cases even if they are all available in principle, the performance that is
attainable varies drastically. At the time of writing almost all mainstream
CPUs available offer optimum performance on 64 bit double precision. This
is not the case for many accelerator devices such as GPUs which may be
capable of double precision only as a “special operation” and which are only
optimal for 32-bit floating point. Many GPUs share double precision units
amongst a group of cores rather than having duplicated FPU hardware on
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each core. While this issue may resolve partially in time, it may be the
case in time that 64-bit FPU is standard and some devices offer 128-bit
FPU as a special but sub optimal option.

In summary therefore, a flexible and portable software apparatus can-
not ignore this issue and must support some selection of data types and
associated compromise decision-making by the user. One solution is to
structure the type information in a way that the user can specify details to
the auto-generating tool. In particular this must consist of specifying how
to initialise, as well as how to store the chosen individual data type for a
particular PDE problem. At present we incorporate this as type specifi-
cation information at the equation grammar level. The work we report in
this present paper uses single precision (float) data which is adequate for
the Cahn-Hilliard work.

8 Conclusions and Future Work

In summary, we have described how a staged parser and tree-walking code
generator can produce data-parallel software fro modern accelerator devices
such as GPUs that is both speed optimized as well as human-readable and
maintainable. This is possible as we have focused on a very specific form
of application domain problem - that of solving regular partial differential
equations using finite difference equations. We have shown that the speed
performance of the generated code is very close to that attainable by expert
programmer hand-generated software.

One important outcome of this work for us is the ability to investi-
gate whole families of problems rather than having to focus on just one
hand-coded one. Problems like the Cahn-Hilliard equation or the Time-
Dependent Ginzburg-Landau equation have a number of choices embedded
in them that, while compactly expressible in mathematics, lead to quite
different software formulations. A tool like STARGATES opens up a num-
ber of feasible investigations in computational physics that would otherwise
be quite time consuming - and in the past have consumed a whole PhD
each in terms of coding, testing and general research effort.

A more general outcome of this work however is the software architec-
ture for scientific problem domain specific languages that can be parsed and
can have output code generated in a number of different target languages
and associated platforms. We particularly note the promise of modern
compiler generator tools such as ANTLR and the benefits of using them
rather than attempting a monolithic single stage parser-generator tool.

GPUs work quite well for this problem (of course) which is why we
are writing about them. A great deal of effort has been expended by
programmers over recent years in coming to terms with the features of



Automatic PDE Simulation Code Generation on GPUs 24

new and emerging multi core processors and accelerator devices. Up to a
point compiler optimisation technology has coped quite well with the use
of complex and many register optimisations. It would seem a fair comment
that compiler developers are still addressing the issues of multi core CPUs.
Languages like NVIDIA’s CUDA do expose the workings of GPUs to the
programmer and likewise open language standards such as OpenCL[50]
do allow data-parallelism to be exploited. Nevertheless it is by no means
something that can be left to an automatic parallelising compiler. Our
approach of breaking the application problem down with an extra layer of
a domain specific language is likely to be important and necessary for many
problem areas for some time. We hope that our approach will allow more
agile deployment on the next emerging generation of accelerators and data
parallel devices with rather less intense programmer effort required.

We also intend to experiment with code generator stages that produce
message passing code harnesses; with conventional threads libraries such as
pThreads[51] and Intel’s Thread Building Blocks[52] that can both support
multi-core CPUs; but also with some of the more parallel specific language
extensions and ideas such as OpenMP code directives. We hope to be
able to release a STARGATES version that can support all these multiple
target generator stages as well as support experimentation with hybrid
approaches.
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