
Procedia Computer Science 00 (2010) 1–9

Procedia Computer
Science

International Conference on Computational Science, ICCS 2010

Automated and Parallel Code Generation for Finite-Differencing Stencils with
Arbitrary Data Types

K.A. Hawick1, D.P. Playne

Computer Science, Massey University, Albany, North Shore 102-904, Auckland, New Zealand

Abstract

Finite-Differencing and other regular and direct approaches to solving partial differential equations (PDEs) are
methods that fit well on data-parallel computer systems. These problems continue to arise in many application areas
of computational science and engineering but still offer some programming challenges as they are not readily incor-
porated into a general standard software library that could cover all possible PDEs. Achieving high performance on
numerical solutions to PDEs generally requires exposure of the field data structures and application of knowledge of
how best to map them to the memory and processing architecture of a particular parallel computer system. Stencil
methods for solving PDEs are however readily implemented as semi-automatically generated skeletal frameworks. We
have implemented semi-automated stencil source code generators for a number of target programming languages in-
cluding data-parallel languages such as CUDA for graphics processing units (GPUs). We report on some performance
evaluations for our generated PDE simulations on GPUs and other platforms. In this article we focus on (diffusive)
PDEs with a non-trivial data type requirement such as having vector or complex field variables. We discuss the issues
and compromises involved implementing equation solvers with fields comprising arbitrary data types on GPUs and
other current compute devices.

Keywords: partial differential equation, stencil, parallel code generation, GPU, CUDA

1. Introduction

Many science and engineering problems are formulated as partial differential equations (PDEs). While there are
many excellent software tools from linear algebra and so forth that can and have been incorporated into software
libraries, it is not so simple to construct an arbitrary library of PDEs. One very common group of PDEs are diffusive
equations of the general form:

∂u(r)
∂t

= F (u(r), r) (1)

where all the time dependence is expressed in the time derivative (left-hand side) and the general functional F is
typically an additive combination of spatial operators applied to powers of the field variable u. Some well-known

Email addresses: k.a.hawick@massey.ac.nz (K.A. Hawick), d.p.playne@massey.ac.nz (D.P. Playne)
1Corresponding author

K.A. Hawick and D.P. Playne / Procedia Computer Science 00 (2010) 1–9 2

PDE problems that fit this pattern are: the Cahn-Hilliard equation[1] which is expressed in terms of a scalar field φ:

∂φ

∂t
= m∇2

(
−bφ + uφ3 − K∇2φ

)
(2)

and the Time-Dependent Ginzburg Landau equation [2] in terms of a complex scalar field u:

∂u
∂t

= −
p
i
∂2u
∂x2 −

q
i
|u|2 u + γu (3)

Typically many of the common and interesting spatial operators such as ∂
∂x ·,

∂
∂y ·,...,

∂2

∂x2 ·, ∂2

∂y2 ·, ∇2·, and (∇2)2·,... can
be implemented as finite difference stencil operators with a well-defined mapping that can be applied to regular data
structures such as meshes in 1-, 2-, 3-D or higher dimensions.

We have implemented a software prototype tool that can generate efficient and readily parallelisable source code
for several PDEs of this type[3] and for which an in-built data type of the target programming language and its
associated run-time libraries is available. We have successfully used this approach to solve PDEs such as the Cahn-
Hilliard equation[1, 4], where our solvers were second- or fourth-order accurate in time and second order accurate in
space with spatial operators up to the bi-harmonic operator (∇4·).

In this present paper we discuss the additional problems in generating source code for target platforms such as
NVIDIA’s Compute Unified Device Architecture (CUDA) programming language or the vendor consortium’s Open
Computing Language (OpenCL) specification, which for reasons of implementation may not have the requisite in-
built type at all or may only support a slow implementation. Specific cases at the time of writing concern support
for double-precision floating point calculations, but more generally these limitations apply to PDEs formulated in
terms of complex numbers, and also vector field variables (or for that matter tensors). We have experimented with
the Time-Dependent Ginzburg-Landau equation (TDGL)[5] which is formulated in the standard form of Equation 1
but with a complex field variable, and we are also interested in complex fluid equations[6] which can be formulated
in terms of vectors of complex numbers. Other useful systems of equations that are formulated in terms of systems
(vectors) of coupled equations are ecological and population models[7] such as the spatial Lotka-Volterra system[8].

The concept of automatically generating source code in this manner[9, 10] for domain specific applications
problems [11] such as stencil-like problems is not a new one[12, 13] with some notable successes achieved at
Lawrence Livermore by Cook and co-workers on generating Fortran source code from symbolic algebra equation
specifications[14, 15, 16, 17]. Some modern problems solving environments such as Maple[18] and Mathematica[19]
and Matlab[20] also offer source code generation capabilities – usually to generate either Fortran code or a proprietary
scripting language. In many science and engineering applications communities Fortran and its variants are still very
important target languages for this sort of simulation and projects such as FortPort have achieved success in generating
Fortran source automatically[21, 22]. Up to a point such Fortran source can subsequently be optimised or have its
data structures laid out appropriately in memory using standard parallel programming techniques such as compiler
directives[23, 24]. However we believe that incorporating the parallel and appropriate memory layout formulation at
an earlier stage of the code generation process allows a higher degree of potential performance.

It is generally a hard problem to automatically parallelise serial programs written in traditional languages, but an
advantage of starting from the underpinning mathematics is that more information on the structure of the calculation
and its potential parallelisation is exposed and available for a code generation tool to exploit. We are particularly
interested in the potential of producing highly performance optimised programs that can be run on current generation
many-core processors[25] and accelerators such as Graphical Processing Units and other data-parallel platforms.
Other programming languages such as dynamic and scripting languages such as Python[26] can also be attractive
targets for automatic code generation of complex problems but for the sort of application we discuss here, performance
is still paramount and therefore CUDA and OpenCL seem better replacements for Fortran.

Many interesting PDEs use data fields that comprise a single scalar value at each spatial point, however many
are also expressed in terms of vectors. While a vector variable such as velocity for example, could be expressed
separately as in 3-dimensions as a system of 3 separate but coupled equations, this unnecessarily complicates the
problem formulation and indeed can hide some potential optimisation information. Specifically, in solving a vector
field equation typically each vector element is worked on at once but the separate x, y and z components might all be
needed in memory at once to take care of cross-terms in the calculation. This will affect the optimal way to lay the
field variables out in memory – in terms of v[x][y][z]; or v[z][y][x] or separately as vx[], vy[], and vz[].

K.A. Hawick and D.P. Playne / Procedia Computer Science 00 (2010) 1–9 3

Similarly for some purposes even a scalar field may be modelled as a complex number with separate real and
imaginary parts. In some target languages there may be a complex data type but quite commonly in the C syntax
related family of programming languages, the concept of a complex data type has to be implemented separately using
separate real and imaginary floating point variables. In relativity the D’Alembertian operator is a generalisation of the
Laplacian in four dimensions and is sometimes written as:

2 ≡
∂2u(x, y, z,w)

∂x2 +
∂2u(x, y, z,w)

∂y2 +
∂2u(x, y, z,w)

∂z2 − i
∂2u(x, y, z,w)

∂w2 (4)

In this case the operator itself involves both a real and an imaginary component and is truly complex. For some
equations the imaginary i pre-factor can be factored out leaving a wholly real stencil.

This issue of complex numbers is related to the other main limitation of present generation technology. It is by no
means the case that a definite precision and fundamental floating point data type is ideal for all PDEs that a stencil
generating apparatus might address. Furthermore it is still the case that many available devices do not have all the
desired available floating point resolutions that might be desired - and in many cases even if they are all available in
principle, the performance that is attainable varies drastically. At the time of writing almost all mainstream CPUs
available offer optimum performance on 64 bit double precision. This is not the case for many accelerator devices
such as GPUs which may be capable of double precision only as a “special operation” and which are only optimal for
32-bit floating point. Many GPUs share double precision units amongst a group of cores rather than having duplicated
FPU hardware on each core. While this issue may resolve partially in time, it may be the case in time that 64-bit FPU
is standard and some devices offer 128-bit FPU as a special but sub-optimal option.

In summary therefore, a flexible and portable software apparatus cannot ignore this issue and must support some
selection of data types and associated compromise decision-making by the user. A solution is to structure the type
information in a way that the user can specify details to the auto-generating tool. In particular this must consist of
specifying how to initialise, as well as how to store the chosen individual data type for a particular PDE problem. To
an extent some of these limitations can be addressed through additional support code and run-time libraries invoked
by our automatically generated skeletal stencil source code.

We describe the general approach our generator tool has taken so far in section 2 below and report on some specific
computational performance figures on Graphical Processing Units (GPUS) in section 3. We discuss how these ideas
for automatically generated source code for applications specific areas could be generalised to suit other problem
domains and other target languages such as OpenCL, and also offer some concluding remarks and areas for further
development in section 4.

2. Implementing Stencils

In this section we describe our initial prototype for a stencil generator for PDEs with simple data-types. As these
stencils are part of a code-generator as opposed to an actual simulation, their purpose is not to perform any calculation
but rather to generate the code that will perform this computation. However, the stencils should have the ability to
have operations performed on them prior to code generation. This allows stencils to be applied to each other to create
new stencils.

� �� �

�

�

�� �� ��

��

��

� �

�

� �

�

��

Figure 1: Two-dimensional stencils for the Laplacian operator (left) and Bi-harmonic operator (right) which are multiplied by 1
∆2 and are second-

order accurate.

K.A. Hawick and D.P. Playne / Procedia Computer Science 00 (2010) 1–9 4

Our initial stencil definition limited stencils to simple numerical data types (int, float, double). This allows these
stencil operations to be performed numerically to produce a value for each cell in the resultant stencil. These numerical
stencils are defined by a series of integers defining the dimensionality and size of the stencil and a series of numerical
values defining the actual values of the stencil. For example the two-dimensional Laplacian operator (see Figure 1)
can be defined by: dim = [3, 3] data = [0, 1, 0, 1, -4, 1, 0, 1, 0] .

There are a number of operations that can be performed on these stencils to manipulate them to create new stencils.
We describe the following important operations: “+”, “−”, “∗”, “/”, “expand” and “apply”. The stencil arithmetic
operations for “+”, “−”, “∗”, “/” simply involve applying the numerical operation to corresponding values in the
two stencils. The centres of the stencils are aligned and for cells that are present in both stencils have the numerical
operation applied to them. Any cell that is present in only one stencil is included in the result but the value is left
unchanged.

Rather than having to define a different stencil each time the simulation dimensionality is changed, the stencil
manipulator has the ability to expand a one-dimensional stencil into a higher dimension. This process overlays the
one-dimensional stencil rotated in each dimension on top of itself. Figure 2 shows a one-dimensional Laplacian stencil
expanding to two-, three- and four-dimensions.

�

� �� �

� �� �

�

� �

� ��

�

�

� �

�

� ��

�

�

�

� �

Figure 2: A one-dimensional Laplacian stencil (top) is applied to itself to create two-, three- and four-dimensional stencils.

This process of expanding stencils may not be suitable for all one-dimensional stencils. In such cases the users
must define the stencil for each dimension, the code-generator will simply ignore the stencils that are not of the
desired dimension. One useful operation that the stencil manipulator provides is the ability to composite or apply
one stencil to another. This process is performed by convolving the first stencil with the second. For each cell in one
stencil, the other stencil is multiplied by the cell’s value and added onto the result centred around the cell’s position.
This operation is only supported for two stencils with the same dimensionality. Examples of this process in two- and
three-dimensions can be seen in Figure 3.

�

�

�

�

�

�

� �� �

�

� �

� ��

�

�

�

� �� �

�

�

�� �� ��

��

��

�

�

� ��

�

�

� �

� �

� �� ���

� �

�

� �

�

��

� ��� �

�

�

�

� ��� �

�

�

Figure 3: An example of two stencils being applied to each other in two- and three-dimensions.

The stencils are used in conjunction with the code-generator to turn an equation into simulation source code.
The stencils are used to generate not only the actual calculation code but also used to determine which neighbouring
cell values must be fetched from memory. To do this all the stencils in the equation are analysed to determine which
neighbours they use and the code to fetch these values is generated. Listing 1 shows an example of code generated for

K.A. Hawick and D.P. Playne / Procedia Computer Science 00 (2010) 1–9 5

Equation 5 in two-dimensions using the Euler integration method.

∂u(r)
∂t

= ∇2u (5)

The first-order Euler formulation is of course rarely used due to its limited numerical accuracy and range of stability,
but it nevertheless often provides the most intuitive exposition of the data structure for the numerical formulation. Our
generator can readily deploy higher-order (in time) numerical methods, the most commonly useful being second- or
fourth-order Runge-Kutta schemes[27]. It is straightforward to add support for other time schemes to our system the
only real cost being potential use of more memory if multiple-step schemes require it.

Listing 1: Generated code for accessing the required values and applying a simple scalar stencil.

i n t ym1x = i n p u t [ym1∗X + x] ;
i n t yxm1 = i n p u t [y ∗X + xm1] ;
i n t yx = i n p u t [y ∗X + x] ;
i n t yxp1 = i n p u t [y ∗X + xp1] ;
i n t yp1x = i n p u t [yp1∗X + x] ;

o u t p u t [y∗X + x] = yx + ((1∗ym1x) +

(1∗yxm1) + (−4∗ yx) + (1∗ yxp1)
+ (1∗ yp1x)) ∗ d t ;

This code assumes that the indexes of the neighbouring cells (ym1, yp1, xm1, xp1) have been calculated. The
required neighbour indexes required are also found by analysing the stencils in the equation however the code to find
them is not shown as the code depends on the boundary conditions of the simulation.

2.1. Stencils with Arbitrary Data Types
The simple numerical data type stencils we have currently described are sufficient for many simulations; however,

simulations that use user-defined data types often require stencils of this same type. In this case defining stencils as
templates is not suitable as it requires the data type to be defined at the code-generator compile time. Instead the
values of the stencil are simply stored as strings allowing the user to use any data type with the assumption that it will
be defined for the simulation code compile time.

To support this functionality we change the definition of the stencil data. A stencil is now defined by a string
naming the data type of the stencil, a series of integers is still used to define the dimensionality and size of the stencil
and a list of string is now used to define the values of the stencil. For example, a one dimensional stencil of type
“complex” can be defined as:
type = “complex”
dim = [3]
data = [“complex(1,1)”, “complex(-2,-2)”, “complex(1,1)”]

As these values are now no longer numerical values, the stencil operations cannot compute numerical values for
the resultant stencil. Instead the values are output as the calculation string that will result in the correct value. Listing 2
is an example of the previously described stencil being extended into two dimensions.

Listing 2: Generated code for accessing and applying a stencil with a user-defined type (complex).

complex ym1x = i n p u t [ym1∗X + x] ;
complex yxm1 = i n p u t [y ∗X + xm1] ;
complex yx = i n p u t [y ∗X + x] ;
complex yxp1 = i n p u t [y ∗X + xp1] ;
complex yp1x = i n p u t [yp1∗X + x] ;

o u t p u t [y∗X + x] = yx + ((complex (1 , 1)∗ym1x) +

(complex (1 , 1) ∗ yxm1) + ((complex (−2 ,−2)+ complex (−2 , −2))∗ yx)+ (complex (1 , 1) ∗ yxp1)
+(complex (1 , 1)∗ yp1x)) ∗ d t ;

This manner of outputting the calculation string rather than the final value may have some detrimental effects on
the performance of the final simulation. Most modern compilers will evaluate the calculation string to a single value,

K.A. Hawick and D.P. Playne / Procedia Computer Science 00 (2010) 1–9 6

however as this cannot be guaranteed the generator performs this functionality where possible. If the data type of the
stencil is “int”, “float” or “double” the stencil values will be converted to numerical types, the computation will be
performed numerically and the resultant values will be converted back to strings for the final result. This effectively
performs the stencil operations numerically where possible and will only use the calculation string output method
when the data type is not recognised by the code-generator.

This method of generating stencils using calculation strings is far from optimal but is a suitable temporary solution.
We are currently investigating methods of incorporating compiler technologies into the stencil manipulation to perform
the calculations for user-defined types. This will make the generated code cleaner and in some circumstances will
provide performance benefits for the generated simulations.

As finite-differencing field equation simulations are fundamentally numerical it is a requirement that any user-
defined data type used to describe the stencils or field must support basic arithmetic operators (“+”, “−”, “∗” and
“/”). As this code-generator creates C code it is required that the defined types be C classes with overloaded operators.
Any other operators or methods used within the equation must also be defined by the user if they wish to use the data
type.

The code-generator can generate code for a variety of architectures with the current restriction that they have a C
style code interface. This includes single-core CPUs (C, OpenCL), multi-core CPUs (pThreads, Threading Building
Blocks, OpenCL) and GPUs (CUDA, OpenCL). For specialist architectures such as GPUs, standard overloaded op-
erators cannot be used within device calls. The standard method that overloaded operators in a user header file define
host code which cannot be called from a GPU thread. Additional sets of operators must be defined that can be called
from the device, in the case of CUDA this requires the operators to be defined as device . An example user-defined
type with operators for C and CUDA can be seen in Listing 3.

Listing 3: Complex type with the “+” and “-” operators defined for both C and CUDA.

c l a s s complex {

p u b l i c :
f l o a t r e ;
f l o a t im ;

} ;
i f d e f CUDA

d e v i c e complex operator +(c o n s t complex &a , c o n s t complex &b) {
re turn complex (a . r e + b . re , a . im + b . im) ;

}

d e v i c e complex operator −(c o n s t complex &a , c o n s t complex &b) {
re turn complex (a . r e − b . re , a . im − b . im) ;

}

e l s e
s t a t i c complex operator +(c o n s t complex &a , c o n s t complex &b) {

re turn complex (a . r e + b . re , a . im + b . im) ;
}

s t a t i c complex operator −(c o n s t complex &a , c o n s t complex &b) {
re turn complex (a . r e − b . re , a . im − b . im) ;

}

e n d i f

This only defines operators for simple C and CUDA, for the data type to be used for other architectures the
appropriate method of overloading the operators must be used. Another restriction for user-defined types used in
simulations on specialist architectures is that pointers to data may be inaccessible. Devices such as GPUs cannot
access data in host memory and thus types that use this storage mechanism must be re-designed to work correctly on
devices such as GPUs.

2.2. Floating Point Precision and Type Availability
Some specialist architectures such as some GPUs are not designed to work with double precision floating point

values. Architectures such as NVIDIA GPUs with compute capability 1.3 or higher do support them, they often have
a significant impact on performance, being shared across streaming processors. In some applications single-precision
floating point variables are sufficient for the accuracy of the simulation/integration method while in others double
precision may be required. These restrictions should be very carefully considered when defining the simulation or
when deploying user-defined types.

K.A. Hawick and D.P. Playne / Procedia Computer Science 00 (2010) 1–9 7

3. Example Performance Results

To test the usefulness of the arbitrary data-type stencil manipulator in conjunction with the code-generator, we
compare the performance of a generated simulation vs a hand-written, optimised version. The simulation uses a user-
defined complex type for the stencils and mesh with the appropriate overloaded operators. The simulation has been
generated and hand-written for both a single-core C implementation and a GPU CUDA implementation. Performance
data on typical mesh sizes comparing the two implementations is shown in Figure 4.

These implementations have been executed on a platform running Ubuntu 9.10 64-bit. The processor is an
Intel R© CoreTM2 Quad CPU running at 2.66GHz with 8GB of DDR2-800 memory. The GPU simulations are exe-
cuted by this machine on an NVIDIA R© GeForce R© GTX 295 which contains two GPUs each access to 896MB of
memory. Although this card contains two GPUs, only one is used as utilising both requires multiple CPU threads and
explicit communication.

Figure 4: Performance results comparing the Generated and Custom written simulations. Single-core CPU results are on the left and GPU CUDA
results are on the right. Note the difference in scale of the two graphs with approximately two orders of magnitude performance improvement
attained on the GPU over a typical CPU. Ln-ln scale plots are inset showing the expected power-law scaling with lattice length for 2D, 3D and 4D.

The performance results for the single-core C implementation of the simulation show a difference in performance
between the Generated simulation and the hand-written Custom implementation. This performance difference is not
unexpected and considering the difference in development time we consider this an acceptable performance loss. One
interesting point to note is the that there is almost no difference in performance between the GPU implementations of
the simulation.

4. Discussion and Conclusions

We have reviewed some successful past projects in automatic source code generation, which predominantly have
targeted Fortran as their output language. There is scope for additional heuristics to be incorporated into such au-
tomatic code generators for application domains in addition to any subsequent parallelism that can be applied to
generated source code in the usual ways. We believe tightly coupled data parallel languages are perhaps easier targets
for some well-defined application problems like stencil applications. We have presented results using PDEs and finite
differencing although many stencil ideas also apply to image processing and other problems on regular data arrays.

We have shown here that our code-generator for field-equation simulations can generate C and CUDA source code
that then runs with performance similar to that of hand-written simulations. In particular this paper has shown how this
can be achieved for simulations that use arbitrary, user-defined data types. This code-generator can be easily extended
to operate with a number of architectures and output targets. One such output target is OpenCL. As OpenCL allows
parallel programs to be written for a variety of parallel architectures, generating OpenCL code is an attractive idea.

K.A. Hawick and D.P. Playne / Procedia Computer Science 00 (2010) 1–9 8

Generating OpenCL code moves the architecture independence from the code-generator to the generated simulation
code. This would allow simulations to be generated that could easily be run on whatever resources are available on the
machine. However we note that even with this platform independent simulation code, care must be taken to consider
the implications that executing code on accelerator architectures can cause. This includes restrictions on user-defined
types, operator overloading requirements and so forth.

We have shown that our tool can generate source code in CUDA that can perform quite well immediately on GPU
platforms but that is sufficiently readable in format so that a user can subsequently hand adjust it for the vagaries
of a particular platform. This seems a major design issue still to be resolved – will a user use an automatic code
generator once-off and subsequently maintain the generated source code in the usual way - perhaps modifying it and
hand optimising it further? Or does the tool need some sort of transitive closure and the ability to re-load its own
output code to be used as a development base? We believe the former case is more tractable and useful for parallel
programmers but the latter is obviously more desirable for application-domain programmers.

We believe there is great scope for interesting further automatic code generation work in: generating OpenCL
target code; incorporating more heuristics into the code generator; adding support for tensor equations and other very
complex systems that would be too difficult to write by hand; incorporating a symbolic algebra generator at the front
end stage so we can avoid using our own markup language representations. Finally, we note that Parnas’s criticism of
the field of automatic programming[28] as just “a euphemism for programming in a higher level language than was
available to the programmer” – while still true, can be successfully built upon by looking at application domain areas
where the problem is better defined and more tractable.

5. References

[1] D. Playne, K. Hawick, Data Parallel Three-Dimensional Cahn-Hilliard Field Equation Simulation on GPUs with CUDA, in: Proc. 2009
International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’09) Las Vegas, USA., no. CSTN-073,
2009.

[2] M.A.Carpenter, E.Salje, Time dependent Landau theory for order / disorder processes in minerals, Mineralogical Magazine 53 (1989) 483–
504.

[3] K. A. Hawick, D. P. Playne, Turning partial differential equations into scalable software, Tech. rep., Computer Science, Massey University
(2009).

[4] K. A. Hawick, D. P. Playne, Modelling, Simulating and Visualizing the Cahn-Hilliard-Cook Field Equation, International Journal of Computer
Aided Engineering and Technology (IJCAET) 2 (CSTN-075) (2010) 78–93.

[5] D. Playne, K. Hawick, Visualising vector field model simulations, in: Proc. 2009 International Conference on Modeling, Simulation and
Visualization Methods (MSV’09) Las Vegas, USA., no. CSTN-074, 2009.

[6] T. Witten, P. Pincus, Structured Fluids: Polymers, Colloids, Surfactants, no. ISBN 0198526881, Oxford Univ. Press, 2004.
[7] K. Hawick, C. Scogings, Emergent spatial agent segregation, in: Proc 2008 IEEE/WIC/ACM International Conference on Intelligent Agent

Technology, Sydney, 2008, pp. 34–40.
[8] A. J. Lotka, Elements of Physical Biology, Williams & Williams, Baltimore, 1925.
[9] T. Benson, P. Milligan, R. McConnell, A. Rea, A knowledge based approach to the development of parallel programs, in:

Parallel and Distributed Processing, 1993. Proceedings. Euromicro Workshop on, 1993, pp. 457–463, iSBN 0-8186-3610-6.
doi:10.1109/EMPDP.1993.336366.

[10] P. Milligan, R. McConnell, T. Benson, The Mathematician’s Devil: An Experiment In Automating The Production Of Parallel Linear Algebra
Software, in: Parallel and Distributed Processing, 1994. Proceedings. Second Euromicro Workshop on, 1994, pp. 385–391, ISBN: 0-8186-
5370-1.

[11] T. Rus, Domain-oriented component-based automatic program generation, in: Proc. Forum on Interdisciplinary Computing, Montenegro,
2003.

[12] H. A. James, C. J. Patten, K. A. Hawick, Stencil methods on distributed high performance computers, Tech. Rep. DHPC-010, Advanced
Computational Systems CRC, Department of Computer Science, University of Adelaide (June 1997).

[13] D. A. Reed, L. M. Adams, M. L. Patrick, Stencils and problem partitionings: Their influence on the performance of multiple processor
systems, IEEE Transactions on Computers C 36 (7) (1987) 845–858.

[14] G. O. Cook, Code Generation in ALPAL Using Symbolic Techniques, in: Int. Conf. on Symbolic and Algebraic Computation,
ACM/SIGSAM, Berkeley, CA, USA., 1992, pp. 27–35, ISBN:0-89791-489-9.

[15] G. O. Cook, J. F. Painter, S. A. Brown, How symbolic computation boosts productivity in the simulation of partial differential equations,
Journal of Scientific Computing 6 (2) (1991) 193–209, ISSN: 0885-7474.

[16] S. Kamil, C. Chan, S. Williams, L. Oliker, J. Shalf, M. Howison, E. W. Bethel, Prabhat, A generalized framework for auto-tuning stencil
computations, in: Proc. Cray User Group (CUG) Atlanta, Georgia,, 2009, pp. 1–11.
URL http://escholarship.org/uc/item/23p6g5nj

[17] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, K. Yelick, Optimization and performance modeling of stencil computations on modern
microprocessors, SIAM Review 51 (1) (2009) 129–159.

[18] K. Geddes, G. Gonnet, Maple, http://www.maplesoft.com/ (2009).

K.A. Hawick and D.P. Playne / Procedia Computer Science 00 (2010) 1–9 9

[19] Wolfram Research, Mathematica. available at http://www.wolfram.com (2007).
URL Availableathttp://www.wolfram.com

[20] The MathWorks, Matlab. available at http://www.mathworks.com (2007).
URL Availableathttp://www.mathworks.com

[21] R. McConnell, P. Sage, S. Rea, P. McMullan, Hot spot analysis within the FortPort migration tool for parallel platforms, Microprocessing &
Microprogramming 37 (1-5) (1993) 141–144. doi:10.1016/0165-6074(93)90034-I.

[22] B. McCollum, P. H. Corr, P. Milligan, A meta-heuristic approach to parallel code generation, in: High Performance Computing for Compu-
tational Science VECPAR 2002, Vol. 2565 of LNCS, Springer, 2002, pp. 215–232. doi:10.1007/3-540-36569-9.

[23] B. Chapman, G. Jost, R. van der Pas, Using OpenMP - Portable Shared Memory Parallel Programming, no. ISBN 978-0-262-53302-7, MIT
Press, 2008.

[24] H. Zima, Automatic vectorization and parallelization for supercomputers, in: R. Perrott (Ed.), Software for Parallel Computers, Chapman
and Hall, 1991, Ch. 8, pp. 107–120.

[25] K. Datta, M. Murphy, V. V. amd S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf, K. Yelick, Stencil computation optimization and
auto-tuning on state-of-the-art multicore architectures, in: Proc. ACM/IEEE Conf. on Supercomputing (SC’08’), 2008.

[26] J. E. Guyer, D. Wheeler, J. A. Warren, FiPy: Partial Differential Equations with Python, Computing in Science and Engineering 11 (3) (2009)
6–15.

[27] L. F. Shampine, Some practical Runge-Kutta Formulas, Mathematics of Computation 46 (173) (1986) 135–150, ISSN: 0025-5718.
[28] D. L. Parnas, Software aspects of strategic defense systems, Comm. ACM 28 (12) (1985) 1326–1335.

