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Abstract
We present an alternative to the ETAS model. The continuous time two-node 
network stress release/transfer Markov model has one node  (denoted by A) 
loaded by external tectonic forces at a constant rate, with `events' (mainshocks) 
occurring at random instances with risk given by a function of the `stress level' 
at the node. Each event adds (or removes) a proportional amount of stress to 
the second node (B), which experiences `events' in a similar way, but with 
another risk function (of the stress level at that node only). When that risk 
function satisfies certain simple conditions (it may, in particular, be 
exponential), the frequency of jumps (aftershocks) at node B, in the absence of 
any new events at node A, follows Omori's law for aftershock sequences. 
When node B is allowed tectonic input, which may be negative, i.e., aseismic 
slip, the frequency of events takes on a decay form that parallels the 
constitutive law derived by Dieterich (1994). This fits very well to the 
modified Omori law, with a wide possible variation in the p-value. We 
illustrate the model by fitting it to aftershock data from the Valparaiso 
earthquake of March 3 1985, and showing how it can be used in place of 
conventional `stacking’ procedures to determine regional p-values.
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Variation in Aftershock Decay
The modified Omori aftershock formula is 

n(t) = K(c+t)-p

where 0.9 < p < 1.8, differing from sequence to 
sequence.

Stochastic seismicity models have to cater for this 
variation in p, e.g., the ETAS model (Ogata, 
1988). We construct an alternative model which 
also allows for more general background sequence 
behaviour.
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Linked Stress Release Model (LSRM)
(Liu et al., 1999; Bebbington and Harte, 2003).

Based on a stochastic version of elastic rebound.

Space is divided into  ‘regions’, with the stress 
(Benioff strain) in region i evolving as

Xi(t) = Xi(0) + ρit – ΣjθijS(j)(t)

where S(j) is the cumulative stress release in 
region j, θij can be positive (damping) or 
negative (excitatory), and ρi is tectonic input.
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Point Process Intensity
Using a hazard function Ψ(X) = exp(µ+νX), we 
get a point process conditional intensity

λi(t) = exp[αi+νi(ρit – ΣjθijS(j)(t))]
which can be fitted by maximizing 

logL = Σi ( Σklogλi(tk) - ∫ λi(t)dt )
where events occur at times tk.

We will use a 2-region model, where region A 
represents mainshocks, and region B aftershocks.
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Derivation of the Decay Formula
Let XA(t), XB(t) be the stress levels of the nodes. 

As θAB= 0 (no transfer from B to A), XA(t) is just a 
simple SRM, with known behaviour (Zheng, 1991; 
Borovkov and Vere-Jones, 2000)

XB(t) is also a simple SRM, except for occasional 
random increases due to transfer from A. Events 
following these can be interpreted as aftershocks.
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Analysis of Node B
Let Z(t) be the stress level at node B in the 
absence of further transfers from A. Then the 
‘typical behaviour’ of the hazard Ψ(Z(t)) will be 
the frequency law for aftershocks.

If ρ = ρB, Ψ = ΨB, Z(t) has generator

Ah(z) = lim∆→0∆−1( E( h(Z(t+∆))|Z(t)=z ) – h(z) )     
= ρh’(z) + Ψ(z) ( E h(z - ξ) – h(z) )

acting on the function h, where ξ is a random 
variable for the jump down (a/s size) at node B
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Test Functions
For any ‘test function’ φ(z), Eφ(X(t)) = Eφ(Y(t)) iff X(t) 
has the same distribution as Y(t).

If the ‘typical value’ of X(t) is a deterministic function 
m(t), then Eφ(X(t)) ≈ φ(m(t)), defining the ‘typical 
behaviour’ of X(t).

Choosing φ(z) = zk, z > 0, k = …-1,0,1,…, with 
h(z) = φ(Ψ(z)), and defining fk(t) = EΨk(Z(t)), the 
generator yields

fk’(t) = kνρ fk(t) + (q(kν) – 1) fk+1(t),   k ≠ 0

where q(y) = Ee-yξ
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Omori Law
Hence f-1’(t) = -νρ f-1(t) + (q(-ν) – 1) for the mean 
reciprocal hazard f-1, yielding the ‘typical behaviour 
function’ 

where ψ = Ψ(Ζ(0)), a = q(-ν)-1 = Eeνξ – 1 > 0, s = νρ.

When there is no tectonic input at node B, ρ = s = 0, 
and this reduces to

which is the Omori law with p = 1. 
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Variance of f(t)
f-2’(t) = (q(-2ν) - 1)(ψ−1 + at/2)t +  ψ−2 , so

where b = q(-2ν) – 1 - 2a = E(e-νξ- 1)2. 

This is small when the initial risk ψ is large and a is 
small (i.e., νξ is usually small), indicating that our 
`typical behaviour’ function is close to the observed rate 
of events on node B.
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Dieterich’s Formula
The two node model produces a decay formula

(1)

Dieterich (1994) derived the formula

(2)

By setting

(1) and (2) are equivalent.
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Parameter equivalencies
νρ = s = 1/ta, 

relating relaxation time and sensitivity/tectonic input 
rate

Ψ(Ζ(0)) = exp(µ + νX(0)) = r exp(∆τ/Aσ), or
µ = ln r  (reference seismicity rates), and
νX(0) = ∆τ/Aσ, 

where X(0) is the initial stress transfer from the 
mainshock

which gives the expected aftershock size

-µ
r rEξ  a/ν = ρe τ /τ = ρτ /rτ≈



14

Variation in p
The 2-node formula

(1)

gives the Omori law for t < 1/s = ta, if s > 0 (D94).

However, ρ (and hence s ) can be negative, representing 
aseismic stress decrease. In this case, there is no 
background rate, as there is no steady state stress level, 
and ta < 0 (actually undefined).

Numerically fitting (1) to the modified Omori law 
produces 0.5 < p < 1 (s > 0) and 1 < p < 1.5 (s < 0) for 
reasonable values of s, ψ and a.

-st -st

ψf(t) = 
e +(1-e )aψ/s
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The Valparaiso Earthquake, 3.3.85

Aftershock sequence has 88 events of M ≥ 5 in 802 
days, with modified Omori formula p = 1.038.
Fitting the 2-node model, we find that 

ψ = ψ(0) = eα = e4.9677 = 143.7
s = νρ = 0.0248 × (-0.0069) = -0.000172
a = E(eνξ – 1) 

= Σkexp(0.0248×100.75(Mk-5.0))/88 – 1 = 0.153
Numerically matching the 2-node decay equation to the 
modified Omori formula then gives p = 1.046
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Solid = 2node formula

Dotted = Mod. Omori

(days)
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Aftershock Stacking
Felzer et al. (2003) estimate the p-value for California by scaling and 
then stacking aftershock sequences. The main sequences considered 
were

67.416.10.99Hector Mine
116.817.1.94Northridge
297.628.6.92Landers
3  (66 days only)6.323.4.92Joshua Tree
87.118.10.89Loma Prieta
05.813.7.86Oceanside
06.18.7.86N. Palm Springs
06.224.2.84Morgan Hill
116.72.5.83Coalinga

# M≥4.8 aftershocks in (0.02,180) daysMag.
(PDE)

DateEarthquake
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p-value for California
Fitting the two node (7 param.) model, we get a ∆AIC of 
1.85 over the full (8 param.) model, with estimates

Now

and  s = -0.027× 0.089 = -0.0024.

This gives p = 1.074, compared to p = 1.08 from Felzer et 
al. Kisslinger and Jones (1991) estimate p = 1.11 for 
Southern California.

6.25 0.016 0.041 1 0
, , ,

4.27 0.089 0.027 0.983 1
α ν ρ

−       
= = = Θ =       − − −       

( )( )0.75(Mag  4.8)
a/sa = ave. exp 0.089 10 1 0.619−× − =

( )( )0.75(Mag  4.8)
m/s = ave. exp 0.089 0.983 10 7216.4−Ψ × × =
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Summary
• If there is no aseismic stress decrease, the 2-node 

model can reproduce Dieterich’s formula, and thus 
Omori’s law.
– This gives a range of p-values ≤ 1.

• If there is aseismic stress decrease, the 2-node model 
fits well to the modified Omori law with p > 1.
– Fitting the SRM to an aftershock sequence confirms that 

the model decays correctly.
• The 2-node model provides a regional-scale model 

for both main sequence and aftershock events.
• The 2-node model provides an alternative to existing 

methods of `stacking’ aftershocks for regional 
analyses.
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Solid = 2node formula

Dotted = Mod. Omori


