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Abstract. We study the linear stability of partitioned Runge–Kutta (PRK) methods applied
to linear separable Hamiltonian ODEs and to the semidiscretization of certain Hamiltonian PDEs.
We extend the work of Jay and Petzold [Highly Oscillatory Systems and Periodic Stability, Preprint
95-015, Army High Performance Computing Research Center, Stanford, CA, 1995] by presenting
simplified expressions of the trace of the stability matrix, trMs, for the Lobatto IIIA–IIIB family of
symplectic PRK methods. By making the connection to Padé approximants and continued fractions,
we study the asymptotic behavior of trMs(ω) as a function of the frequency ω and stage number s.
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1. Introduction. Partitioned Runge–Kutta (PRK) methods have a checkered
history. They were first introduced in the 1970s for the integration of certain stiff
differential equations. This area did not develop, partly because of a lack of naturally
partitioned stiff systems. There was renewed interest in the 1990s with the advent
of symplectic integration of Hamiltonian systems, with their natural partitioning into
position (q) and momentum (p) variables. In 1993, Sanz-Serna and Abia [27] and Sun
[28] found conditions on the parameters for the s-stage PRK method

(1.1)

Qi = q0 + h

s∑
j=1

aijf(Qj, Pj),

Pi = p0 + h

s∑
j=1

âijg(Qj , Pj),

q1 = q0 + h

s∑
j=1

bjf(Qj, Pj),

p1 = p0 + h

s∑
j=1

b̂jg(Qj, Pj)
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to be symplectic when applied to the canonical Hamiltonian system

(1.2)

q̇ = f(q, p) =
∂H

∂p
,

ṗ = g(q, p) = −∂H

∂q
,

where q ∈ Rn, p ∈ Rn, and the Hamiltonian H : R2n → R. Unlike symplectic Runge–
Kutta (RK) methods, PRK methods can be explicit, but only when the Hamiltonian is
separable, i.e., H = T (p)+V (q), and in this case they reduce to composition methods.
The study of these methods from the PRK and composition points of view proceeded
in parallel. In 1995, Sun [29] constructed some families of implicit symplectic PRK
methods, in particular, the family of most concern in the present paper, namely the
Lobatto IIIA–IIIB family of methods based on Lobatto quadrature. In this family,
the (aij , bj) coefficients are those of the Lobatto IIIA RK method and the (âij , b̂j)
coefficients are those of the Lobatto IIIB RK method, methods introduced in 1969 by
Ehle [8]. (There is also a partnered family of symplectic PRK methods, with A and B
coefficients swapped.) For brevity we will call the Lobatto IIIA–IIIB methods Lobatto
PRK methods. The method with s ≥ 2 stages has order 2s − 2. Its first (s = 2)
member is known as the generalized leapfrog method and can be written in the form

(1.3)

P = p0 +
1

2
hg(q0, P ),

q1 = q0 +
1

2
h (f(q0, P ) + f(q1, P )) ,

p1 = P +
1

2
hg(q1, P ).

(When H is separable, this reduces to the explicit, symplectic leapfrog method.)
This is sometimes used for symplectic integration of nonseparable systems [15], often
together with a composition to increase the order, because it requires solving one
system of n algebraic equations rather than the 2n equations required by the midpoint
rule. For some H the n equations may be particularly easy to solve. However, for high
order symplectic integration of nonseparable systems, Gauss RK tends to be preferred
over Lobatto PRK because of its optimal order (2s), A-stability, and very small error
constants; when the system is not stiff, the nonlinear equations can be solved fairly
easily and quickly [19].

In 1996 Jay [13] discovered that Lobatto PRK was suitable for the symplectic inte-
gration of Hamiltonian systems subject to holonomic constraints of the form G(q) = 0.
Gauss RK suffers an order reduction (from 2s to s) because the constraints are not
enforced at the endpoints, while Lobatto PRK is still superconvergent of order 2s−2.
In addition, the presence of the constraint usually forces one to use an implicit method
anyway. However, in 2007 Jay [14] modified Gauss RK so that order 2s was retained
for constrained systems, thus removing the apparent advantage of PRK methods here.

In 2003, Grimm and Scherer [9] generalized the W -transformation of Hairer,
Nørsett, and Wanner [10] to PRK methods, obtaining, amongst other things, a con-
struction of all high order symplectic PRK methods.

In 1995, Jay and Petzold in an unpublished report [12] studied the linear stability
of Lobatto PRK and proved that none of this family of methods are P-stable—roughly,
that they are not unconditionally stable when applied to the harmonic oscillator. They
concluded that they were not suitable for highly oscillatory systems. For nonstiff sys-
tems, the significance of this result is not so clear. Consider comparing the midpoint
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234 R. I. MCLACHLAN, Y. SUN, AND P. S. P. TSE

rule and the generalized leapfrog method (1.3). The former is P-stable, but as the high
frequencies and their interactions with the low frequencies are not captured correctly
anyway [2], the non-P-stability of (1.3) is not as bad as thought.

In 2000, Reich [23] suggested the use of Gauss RK methods for the spatial dis-
cretization of Hamiltonian PDEs, i.e., wave equations. Combined with symplectic
time integration, a conservation law that is formally a discrete analogue of the multi-
symplectic conservation law of the PDE can be obtained. Furthermore, its behavior on
linear systems has some interesting features: for example, the midpoint (box) method
can qualitatively preserve the dispersion relation of any system of Hamiltonian PDEs
for all time and space steps. Unfortunately, it leads to fully implicit systems of equa-
tions that may not have a solution. To avoid this, Ryland, McLachlan, and Frank
[25] considered the use of partitioned symplectic PRK methods for spatial discretiza-
tion, finding conditions on the PDE under which the Lobatto PRK methods lead to
explicit spatial discretizations, central differences of second-order spatial derivatives
being the lowest-order member, and the spatial analogue of the leapfrog method. In
this application, we know of no alternative to the use of partitioned methods.

Both Gauss and Lobatto methods are variational and hence can be derived in
the context of Galerkin finite element schemes with quadrature [18]; see also the
discussion of the relationship between (especially Gauss) RK methods and Galerkin
finite element methods in [5].

In the application to spatial semidiscretization, it is vital that the PRK method
has a certain stability property that is different from that arising in time integration.
However, we will show below that the response of the method on the harmonic oscil-
lator contains all the information required to understand its stability and dispersion
when used in spatial semidiscretization. Thus, a complete understanding of the linear
stability of PRK methods, and Lobatto PRK methods, in particular, is required.

An outline of the paper is as follows. In section 2, we show that the linear stability
analysis of partitioned methods is substantially harder than that of nonpartitioned
methods, because no normal form allows one to reduce to low-dimensional systems.
We focus on separable Hamiltonian systems, for which the harmonic oscillator is a
normal form, but show that nonseparability can influence linear stability. Section 3
gives a general treatment of PRK methods applied to the harmonic oscillator and
introduces the central object of our study, the stability function trM(ω) and the sta-
bility region {ω ∈ R : | trM(ω)| ≤ 2}. In section 4 we prove that the (compositional)
inverse of the stability function also determines the stability of PRK when used as a
spatial discretization of certain Hamiltonian PDEs such as the nonlinear wave equa-
tion. In section 5 we calculate and discuss the stability function of Lobatto IIIA–IIIB
for two to six stages; certain obvious patterns observed in these cases become conjec-
tures that are proved later in the paper. Section 6 reviews an unpublished work of
Jay and Petzold [12] that is used in section 7 to establish our key results, a complete
description of the stability region for Lobatto IIIA–IIIB for any number of stages and
an explicit expression for the stability function as a rational function of two explicit
continued fractions. These continued fractions are related to the diagonal Padé ap-
proximants to the exponential function which allows us in section 8 to describe the
asymptotic behavior of the stability function in various regimes.

2. Normal forms of partitioned linear systems. The stability analysis of
linear methods like RK methods centers on the response y0 �→ y1 = R(hλ)y0 of
the method to the Dahlquist test equation ẏ = λy, λ, y ∈ C. R : C → C contains
all the information about the behavior of the method on linear problems. This is
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because, when applied to the linear system ẋ = Ax, x ∈ Rn, the RK method yields
x0 �→ x1 = R(hA)x0. The matrix A can be put in its Jordan normal form, and,
applied to a Jordan block J with eigenvalue λ, R(J) is the Toeplitz matrix

(2.1)

⎛⎜⎜⎝
R(λ) λR′(λ) 1

2!λ
2R′′(λ) . . .

0 R(λ) λR′(λ)
. . .

...
. . .

. . .
. . .

⎞⎟⎟⎠
from which information on stability and linear contractivity can be derived from
R(z) [11]. The crucial point that allows this approach to succeed is that the linear
change of variables that puts A in its normal form commutes with the Runge–Kutta
discretization, that is, RK is linearly covariant [20].

The situation is different with PRK methods because they are not covariant with
respect to nonseparable linear transformations. The behavior of the method does not
depend only on the eigenvalues (or Jordan normal form) of the system.

Example 2.1. The Hamiltonians H1 = 1
2 (p

2 − q2) and H2 = pq both generate
two-dimensional linear systems with eigenvalues ±1. The generalized leapfrog method
(1.3) leads to symplectic linear maps y0 �→ y1 = Mi(h)y0 with

(2.2)

M1(h) =

⎛⎝1 + h2

2 h

h+ h3

4 1 + h2

2

⎞⎠ , λ =
1

2
(2 + h2 ±

√
4 + h2);

M2(h) =

(2+h
2−h 0

0 2−h
2+h

)
, λ =

2± h

2∓ h
.

On H1, the method reduces to the leapfrog method and has the same stability prop-
erties as the differential equation (namely 0 < λ1 < 1 < λ2, λ1 → 0, λ2 → ∞ as
h → ∞) for all h. On H2, the method reduces to the midpoint rule and only has the
correct stability properties for 0 < h < 2. For h = 2 the method is undefined, and for
h > 2 the eigenvalues have the wrong sign and the wrong limits as h → ∞.

Theorem 2.1. Under invertible partitioned linear maps

(2.3) q �→ X1q, p �→ X2p,

partitioned ODEs

(2.4)

(
q̇
ṗ

)
=

(
A B
C D

)(
q
p

)
cannot in general be (i) diagonalized, (ii) block diagonalized with 2×2 blocks, (iii) block
diagonalized in the Hamiltonian case by partitioned symplectic maps, or (iv) block
diagonalized in the Hamiltonian case by arbitrary partitioned linear maps.

Proof. Cases (i)–(iii) are subsumed by case (iv), but it is instructive to consider
them first. The transformed system is

(2.5)

(
q̇
ṗ

)
=

(
X−1

1 AX1 X−1
1 BX2

X−1
2 CX1 X−1

2 DX2

)(
q
p

)
.

For (i), diagonalization requiresX−1
1 BX2 = 0 ⇒ B = 0. For (ii), A and D can generi-

cally be diagonalized; doing so determines X1 and X2 up to scalings and permutations
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of the eigenvectors. This freedom is not enough to (generically) diagonalize B and C.
For (iii), if the system is Hamiltonian, then B = B�, C = C�, and D = −A�; if the
transformation is symplectic, then X2 = X−�

1 . We can still diagonalize A and D but
not the symmetric matrices B and C. For (iv), allowing arbitrary invertible X1, X2

does not help, as the additional (scaling and permutation only) symmetry still does
not help diagonalize B or C.

In the two-dimensional case, the transformed system is

(2.6)

(
q̇
ṗ

)
=

(
a bx2

x1

cx1

x2
d

)(
q
p

)
so that we have the normal forms

(2.7)

(
a b
b d

)
,

(
a b
−b d

)
,

(
a 0
1 d

)
in the cases bc > 0, bc < 0, and b = 0, respectively. In the case that the system is
Hamiltonian, we also have d = −a, giving 2-parameter normal forms with eigenvalues
±√

a2 + b2, ±√
a2 − b2, and ±a, respectively.

Example 2.2. Consider the two-dimensional Hamiltonian system

(2.8)

(
q̇
ṗ

)
=

(
μ ω
−ω −μ

)(
q
p

)
with eigenvalues ±i

√
ω2 − μ2. It is stable when |μ| ≤ |ω|. The generalized leapfrog

method (1.3) generates the map (q0, p0)
� �→ M(hω, hμ)(q0, p0)

� with

(2.9) M(ω, μ) =
1

4− μ2

(
4 + μ2 − 2ω2 + 4μ 4ω
ω(−4− μ2 + ω2) 4 + μ2 − 2ω2 − 4μ

)
and is stable (i.e., | trM | ≤ 2; see below) when |hω| ≤ 2 and |μ| ≤ |ω|. Thus, the
nonseparability (μ) does not influence the numerical stability.

However, a longer calculation (not shown) for the 3-stage, fourth-order Lobatto

PRK method gives that it is stable when |hω| ≤ √
24, |ω| ≤ |μ|, and h2ω2

12+h2μ2 /∈ (23 , 1).
Thus in this case the nonseparability does influence the numerical stability.

We do not know of a simple normal form for the general or Hamiltonian 2n-
dimensional case. However, in the separable Hamiltonian case (A = D = 0, B and
C symmetric), taking X1 = BX2 gives I in the upper right corner and X−1

2 CBX2 in
the lower right corner of the matrix in (2.6); if B is invertible, then CB is similar to
the symmetric matrix B1/2CB1/2, hence diagonalizable, giving the normal form

(2.10)

(
q̇
ṗ

)
=

(
0 I
Λ 0

)(
q
p

)
,

where Λ is diagonal and real. This gives a block-diagonalization into n two-dimensional
systems q̇ = p, ṗ = λq, each a harmonic oscillator (if λ < 0), Hamiltonian saddle (if
λ > 0), or degenerate (if λ = 0). In this case we can therefore determine the be-
havior of the PRK method on the 2n-dimensional linear system by considering only
two-dimensional test problems.

We will henceforth restrict our attention to the harmonic oscillator case, taking
the test equation in the form

(2.11)

(
q̇
ṗ

)
=

(
0 ω
−ω 0

)(
q
p

)
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with q, p ∈ R. While this is, in fact, the standard test equation for symplectic integra-
tors, we wish to emphasize that this test equation is not sufficient for understanding
the linear response of an integrator even in the two-dimensional case, as Examples 2.1
and 2.2 show. Getting any kind of result in the general case, i.e., for (2.4), looks
difficult.

3. Stability functions and stability regions for PRK methods. Applying
a PRK method to (2.11) gives a two-dimensional linear map y0 �→ y1 := M(hω)y0.
The eigenvalues ofM are 1

2 trM±((12 trM)2−detM)1/2. If the method is symplectic,
then detM = 1, and the eigenvalues lie on the unit circle iff | trM | ≤ 2. This
is the stability criterion for two-dimensional symplectic maps. If | trM | ≤ 2, the
eigenvalues are e±iθ, where cos θ = 1

2 trM ; thus, as trM decreases from 2 to −2, say,
the eigenvalues move around the unit circle from 1 to −1.

Definition 3.1. The stability function of a symplectic PRK method (for the test
problem (2.11)) is trM(ω). The stability region of a symplectic PRK method is

(3.1) {ω ∈ R : | trM(ω)| ≤ 2}.
The method is P-stable if its stability region is R.1

In case the PRK method is an RK method with stability function R(z), we have
trM(hω) = 2ReR(ihω), so we can use trM in place of R for RK methods. Symplectic
RK methods always have R(z)R(−z) = 1; hence they have |R(iω)| = 1 and are P-
stable.

The exact solution of (2.11) is(
q(t)
p(t)

)
= Mexact(ωt)

(
q0
p0

)
,

where

(3.2) Mexact(ωt) =

(
cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

)
.

Therefore

tr(Mexact(ω)) = 2 cos(ω).

Let Is be the s× s identity matrix, let 1s be the vector (1, . . . , 1)� ∈ R
n, let A,

Â be the matrices of the PRK coefficients, and let b, b̂ be the vectors of the PRK
weights. The application of a PRK method to (2.11) yields the linear system

(3.3)

(
Is −ωA

ωÂ Is

)(
Q
P

)
=

(
1sq0
1sp0

)
,

(3.4)

(
q1
p1

)
=

(
q0
p0

)
+ hω

(
0 b�

−b̂� 0

)(
Q
P

)
.

Hence we get

(3.5)

(
q1
p1

)
= M(hω)

(
q0
p0

)
1If trM(ω) = ±2, then the map has a double eigenvalue at ±1 and may be algebraically unstable

with solutions that are O(t), whereas the solutions of the ODE may be either O(1) or O(t). We still
call the method stable in this case.
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with

(3.6) M(ω) = I2 + ω

(
0 b�

−b̂� 0

)(
Is −ωA

ωÂ Is

)−1(
1s 0
0 1s

)
.

This already allows the stability functions to be calculated for any specific PRK
method.

4. Stability function determines dispersion relation in multisymplectic
integration. We have given one interpretation of the stability function trM(hω);
namely, in the time integration of (2.11), a PRK method is

(4.1)
| trM(ω)| ≤ 2 : stable, with eigenvalues e±iθ, cos θ =

1

2
trM,

| trM(ω)| > 2 : unstable.

Some examples of trM(ω) are given in Figure 5.1 for Lobatto PRK. In this interpre-
tation, the practical stability limit of the method is

(4.2) ω∗ := inf{ω : | trM(ω)| > 2}.

In other words, where the stability region consists of several intervals, only the smallest
one is relevant.

We now give another interpretation of the stability function in which all of the
intervals are relevant.

Multisymplecticity is the extension of symplecticity to Hamiltonian PDEs. We
consider here PDEs that can be written in the multi-Hamiltonian form [6]

(4.3) Kzt + Lzx = ∇zS(z),

where z(t, x) ∈ Rn, K and L are skew-symmetric matrices, and S(z) is a smooth func-
tion. Along solutions z(t, x) to a PDE of this form, the multisymplectic conservation
law (Kdz∧dz)t+(Ldz∧dz)x = 0 holds, where Kdzt+Ldzx = DzzS(z)dz. By analogy
with Hamiltonian ODEs, multisymplectic integrators are those for which a discrete
analogue of the multisymplectic conservation law holds [6]. (In contrast to the case of
symplectic integrators, in multisymplectic integrators, the discrete conservation law
depends on the method.)

If RK methods (or PRK methods with suitable partitionings) are applied to the
time and space derivatives in (4.3), one obtains a system of discrete equations that
formally satisfies a discrete multisymplectic conservation law [26]. An example is
the box scheme that arises from applying the midpoint rule in both space and time.
In [3] it was demonstrated that the box scheme gave very smooth solutions to the
Korteweg–de Vries equation at large time and space steps, and this was linked to
the fact that the box scheme preserves (in a certain sense) the dispersion relation
of any multi-Hamiltonian PDE for all time and space steps. Specifically, the linear
multi-Hamiltonian PDE

(4.4) Kzt + Lzx = Sz

has a periodic solution z = eikx+iωty if the dispersion relation

(4.5) det(iωK+ ikL− S) = 0
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holds. The box scheme with z(t, x) ≈ Z(nΔt,mΔx) has a periodic solution Z =
eiKmΔx+iΩnΔtY iff (4.5) holds with

(4.6) eiKΔx = R(ikΔx), eiΩΔt = R(iωΔt),

where R is the stability function of the midpoint rule. In this way the frequency space
R

2 of the PDE is mapped diffeomorphically into the discrete frequency space (−π, π)2

via the phase of R on the imaginary axis, i.e., by the response of the midpoint rule
to the harmonic oscillator. It is in this sense that the entire dispersion relation is
qualitatively preserved, including the number of branches and the sign of the group
velocity.

Let zm be the node (grid point) variables, and let Zm,1, . . . , Zm,s be the stage
variables at grid point m of a (P)RK method. Applying the method as a spatial
semidiscretization yields a differential algebraic equation (DAE) in (zm, Zmj). If the
zm variables can be locally algebraically eliminated to determine ∂

∂tZmj as explicit
local functions of Z, then we call the semidiscretization explicit. An advantage is
that well-defined ODEs are then obtained regardless of boundary conditions; implicit
discretizations (like the box scheme) may not yield well-defined ODEs. Theorem 4.1
of [26] gives sufficient conditions on K, L, S(z), and the partitioning for a PRK method
that satisfies

(4.7) a1j = 0, arj = bj , âjr = 0, âj1 = b1, 1 ≤ j ≤ s

and

(4.8) detC �= 0, Ci−1,j−1 =
∑
k,l

aik(bl − δkl)âlj , 2 ≤ i, j ≤ s− 1

to generate explicit semidiscretizations. (Lobatto IIIA–IIIB satisfies (4.7),(4.8).) An
example is the nonlinear wave equation utt = uxx − V ′(u), for which 2-stage Lobatto
yields the explicit ODEs

(4.9)
∂2

∂t2
Um,1 = (Δx)−2(Um−1,1 − 2Um,1 + Um+1,1)− V ′(Um,1)

and Um,2 = Um+1,1, while 3-stage Lobatto yields the explicit ODEs

(4.10)

∂2

∂t2
Um,1 = (Δx)−2(−Um−1,1 + 8Um−1,2 − 14Um,1 + 8Um,2 − Um+1,1)− V ′(Um,1),

∂2

∂t2
Um,2 = (Δx)−2(4Um,1 − 8Um,2 + 4Um+1,1)− V ′(Um,2),

and Um,3 = Um+1,1. In general, because of (4.7), s-stage Lobatto leads to s − 1
independent ODEs per grid point.

Thus, the question arises as to the dispersion relation of PDEs that are (semi-)dis-
cretized in this way. Of course, we cannot expect unconditional preservation as
achieved by the box scheme via (4.6). However, we do have the following result,
that the dispersion relation, stability, and stiffness of the discretization is completely
determined by trM(ω) and, in particular, by (all of) its stability intervals.

Theorem 4.1. Consider a linear multi-Hamiltonian PDE (4.4) satisfying the
conditions of Theorem 4.1 of [26] such that all solutions with periodic initial data are
periodic, i.e., all solutions of the dispersion relation (4.5) are real for any fixed real
value of the spatial wavenumber k.
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(i) The explicit ODEs obtained from an s-stage PRK method satisfying (4.7),
(4.8) have periodic solutions of the form Z = eiKmΔx+iωtY iff the continuous
dispersion relation (4.5) holds together with the mapping of continuous to
discrete frequencies given by

(4.11) cos(KΔx) =
1

2
trM(kΔx).

(ii) The linear ODEs have purely imaginary eigenvalues—and hence the semidis-
cretization is stable—iff the stability function satisfies the condition that

(4.12)
1

2
trM(kΔx) = a

has precisely s − 1 solutions, counting multiplicity, for each value of a in
[−1, 1].

(iii) (Only) the part of the continuous dispersion relation corresponding to values
of k in the stability region is captured by the semidiscretization. Gaps in the
stability region lead to spurious jumps and critical points in the dispersion
relation. If, in the continuous dispersion relation, ω → ∞ as k → ∞, then
for sufficiently small Δx the largest eigenvalue of the ODEs (that is, the
stiffness) is determined by k∗Δx, where

(4.13) k∗Δx := sup{kΔx : | trM(kΔx)| ≤ 2}.
Proof.
(i) For such a PDE, the first-order space derivatives may be eliminated to write

the PDE as second order in space, i.e., uxx = f(u, ut), where f is linear.
The time-dependence of u is assumed to be periodic, i.e., u = eiωtũ, giving
ũxx = F̃ (ω)ũ, which has periodic solutions proportional to eikx for each (k, ω)
satisfying (4.5). That is, the equation now takes the form of the harmonic
oscillator test equation with wavenumber k. This ODE with independent
variable x and parameter ω is now discretized by the PRK method with step
size Δx. If kΔx is in the stability region, the response is periodic and at
grid point xm is proportional to eiKmΔx, where (4.11) holds. Y is given by
the values of the stage variables. If kΔx is not in the stability region, the
semidiscretization does not have a periodic solution.

(ii) The analogy in (i) with time integration yields the solution at the grid points.
However, the dependent variables in the semidiscretization are the stage val-
ues Um,j, of which (when (4.7) holds) there are s− 1 independent values per
grid point. To be stable, the solution of the ODEs must be periodic for any
initial values of the Um,j. Grouping the stage values in each cell into a vec-
tor in Rs−1 and taking a Cs−1-valued Fourier transform with respect to m,
for each wavenumber in the discrete frequency domain, KΔx ∈ [−π, π], the
ODEs must support s − 1 periodic solutions. Substituting this range of K
values into (4.11) gives the result.

(iii) This is mostly a corollary of (i). For the spurious critical points, write the
continuous dispersion relation as P (ω, k) = 0 so that the discrete dispersion
relation is P (ω, k(K)) = 0. Differentiating with respect to K gives

(4.14)
∂P

∂ω

∂ω

∂K
+

∂P

∂k

∂k

∂K
= 0.

On the other hand, differentiating (4.11) with respect to K gives

(4.15) − sin(KΔx) =
1

2
(trM)′(kΔx)

∂k

∂K
.
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Fig. 4.1. The stability function 1
2
trM3(kΔx) for 3-stage Lobatto IIIA–IIIB (left), drawn as

a solid line in the stability region [0, 2
√
2] ∪ [2

√
3, 2

√
6], and the effective frequency kΔx appearing

in the discrete dispersion relation (4.5), (4.12) (right). Endpoints of the stability region generate
spurious jumps and critical points in the discrete dispersion relation.

Therefore, at a value of k such that | trM(kΔx)| = 2, we get | cos(KΔx)| = 1
and sin(KΔx) = 0. Therefore, if (trM)′(kΔx) �= 0 and ∂P

∂ω �= 0 (violating the

latter would lead to a genuine critical point in k(ω)), then ∂k
∂K = 0 and hence

∂ω
∂K = 0, a spurious critical point in the dispersion relation for ω(K).

One can summarize Theorem 4.1 by saying that the behavior of PRK methods is
determined in time integration by the stability function and in space integration by
its (compositional) inverse.

Note that if the PDE does not satisfy the required separability assumptions to
lead to a PDE that is second order in space, then PRK may still be applied, but it will
not lead to separable ODEs, and the stability function associated with the separable
test problem (2.11) will not determine the stability or dispersion of the discretization.

Some of the assumptions of the theorem can be relaxed. For general PRK methods
that do not satisfy (4.7), the condition in Theorem 4.1 is modified to require s (instead
of s − 1) solutions. For RK methods, one also needs s solutions in general, but the
condition on separability of the PDE can be dropped [25]. This condition is in fact
quite stringent. Gauss RK satisfies it, and hence is stable in this sense, and we
shall see that Lobatto PRK satisfies it (Corollary 7.5). From Table 5.2 one can
check this for 2 ≤ s ≤ 6. Most other symplectic integrators that we have checked
do not satisfy it and hence are not useful in multisymplectic integration (see the
examples in Figure 4.2). (Such compositions were proposed in [7]. They are in fact
unstable and cannot be used. Also, the order of a composition method when used
in time discretization is not, as claimed in [7], the same as the order it achieves
in space discretization, because the stage values and not the node values carry the
information. At best the stage order can be attained.) In particular, we make the
following conjecture.

Conjecture 4.1. No composition method of order higher than 2, where the base
method is either the midpoint rule or the leapfrog method, leads to stable semidis-
cretizations in the sense of Theorem 4.1.

Because of the known problems with Gauss RK, this conjecture further focuses
attention on PRK methods satisfying (4.7) and Lobatto PRK in particular.

The 1–1 correspondence between discrete and continuous frequencies established
by (4.11) indicates that the s−2 high-frequency solutions (e.g., the right-hand side of
Figure 4.1) do correspond to physical waves and are not numerical artifacts. To make a
more precise statement requires comparing continuous and discrete eigenfunctions, not
just eigenvalues; only in the simplest case (s = 2, which reduces to central differences
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Leapfrog stages
Midpoint stages
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(ω
)

 

 

Leapfrog stages
Midpoint stages

Fig. 4.2. Response of three different compositions of leapfrog and the midpoint rule to the
harmonic oscillator. Top: step sizes (α, 1 − 2α, α) for α = 1/(2 − 21/3), a 3-stage, fourth-order
composition; middle: step sizes (β, β, 1 − 4β, β, β) for β = 1/(4 − 41/3), a much more accurate
5-stage, fourth-order composition; bottom: step sizes (0.2, 0.6, 0.2), a 3-stage, second-order compo-
sition. When used as spatial semidiscretizations, the fourth-order methods are unstable and the
second-order method is stable (see Theorem 4.1).

on a uniform grid) does the restriction of the continuous eigenfunctions to the grid
coincide with the discrete eigenfunctions. A start in this direction is made in [24], in
which it is shown that the highest-frequency (k → ∞) eigenvector for Gauss RK is
a sawtooth on the nonuniform Gauss points. We plan a more detailed study of the
eigenvectors in the future.

5. Stability regions for Lobatto PRK methods of fixed order. The pa-
rameters for s-stage Lobatto IIIA–IIIB methods are determined by [11]

(5.1)

B(r) :

s∑
i=1

bic
k−1
i =

1

k
, 1 ≤ k ≤ r,

C(r) :

s∑
j=1

aijc
k−1
j =

1

k
cki , 1 ≤ i ≤ s, 1 ≤ k ≤ r,

D(r) :

s∑
i=1

bic
k−1
i âij =

1

k
bj(1− ckj ), 1 ≤ j ≤ s, 1 ≤ k ≤ r,

and the ci are the zeros of

(5.2)
ds−2

dxs−2

(
xs−1(x− 1)s−1

)
.

Plugging into (3.6) allows one to calculate trMs(ω) for any specific value of s in
terms of 2s× 2s determinants (although calculating the ci requires solving cubics for
8 ≤ s ≤ 11 and quintics or higher for s ≥ 12). In Table 5.1 we give a list of the first
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Table 5.1

The trace of the stability matrix Ms for the Lobatto IIIA–IIIB method applied to the separable
Hamiltonian ODE (2.11). The stage values are s = 2, 3, 4, 5, 6.

s trMs(ω)

2 2− ω2

3
48− 22ω2 + ω4

24 + ω2

4
3600− 1680ω2 + 92ω4 − ω6

1800 + 60ω2 + ω4

5
564480 − 267120ω2 + 16176ω4 − 260ω6 + ω8

282240 + 7560ω2 + 108ω4 + ω6

6
152409600 − 72817920ω2 + 2698280ω4 − 90384ω6 + 590ω8 − ω10

76204800 + 1693440ω2 + 20160ω4 + 168ω6 + ω8

Table 5.2

The numerical stability intervals (i.e., {ω : | trMs(ω)| ≤ 2}) for the Lobatto IIIA–IIIB method
when applied to the separable Hamiltonian ODE (2.11). The stage values are s = 2, 3, 4, 5, 6.

s Numerical stability intervals
2 [0, 2]

3 [0, 2.82842], [3.4641, 4.89897]

4 [0, 3.11272], [3.16228, 5.47723], [7.74597, 8.62038]

5 [0, 3.14045], [3.14247, 6.05405], [6.48074, 8.25455], [13.04319, 13.54062]

6 [0, 3.14156], [3.14162, 6.25301], [6.30594, 8.84147], [10.10600, 11.35341],
[19.49962, 19.79795]

five rational functions trMs(ω), and Table 5.2 displays the numerically calculated
stability regions. We also plot trMs (see Figure 5.1).

From these finite-s results, we make the following observations that one can check
directly to be true for 2 ≤ s ≤ 5 and that we will later show to be true for all s ≥ 2.

• trMs(ω) is an even rational function of degree 2s− 2 over 2s− 4.
• The 2s− 2 zeros of trMs(ω) are all real.
• None of the 2s− 4 poles of trMs(ω) are real.
• The function trMs(ω) crosses the boundaries of the stability region ±2 ex-
actly 2s− 2 times, with precisely one critical point in each unstable region.

Furthermore, based on Figure 5.2 we conjecture (and later prove) that

trMs(ω) → 2 cos(ω) as s → ∞ for all fixed ω ∈ R,

which is exactly what we expected since 2 cos(ω) is precisely the trace of the stabil-
ity matrix Mexact(ω) from the exact solution (3.2) of the linear Hamiltonian ODE.
Figure 5.2 also suggests the stronger conjecture, that there exists an α∗ such that

(5.3) trMs(αs) → 2 cos(αs) as s → ∞ for all fixed α satisfying |α| < α∗.

Beyond the evidence from small values of s, another motivation comes from what
is known about the stability of Gauss RK. For these, R(z) is the [s/s] Padé approxi-
mant to ez. These functions have been studied very intensively since they were intro-
duced by Hermite in 1873 and developed in Padé’s thesis of 1892 (they are implicit in
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Fig. 5.1. Plots of trMs(ω) against ω for the Lobatto IIIA–IIIB method with stage values
s = 2, 3, 4, 5 when applied to the separable Hamiltonian ODE (2.11). The intervals of ω, where the
trace is between ±2, is the stability region.
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Fig. 5.2. Plots of trMs(ω) against ω (left), and the locations of the poles (boxes) and zeros
(dots) of trMs(ω) on the complex plane (right) for the Lobatto IIIA–IIIB method with stage value
s = 30 applied to the separable Hamiltonian ODE (2.11).

Euler’s continued fraction expansion for e given in 1748 (Introductio in Analysin In-
finitorum, Book 1, Chapter 18). We have lims→∞ Rs(z) = ez for all z, and asymptotic
expansions of the error ez − R(z) are known that are uniformly valid in z. Rs(αs)
also converges for all α, but it converges to eαs only for α inside a certain lens-shaped
region. From this one can conclude that ReRs(iαs) → cos(αs) for all |α| < 2. The
poles and zeros of the approximant cluster onto the boundary of the lens-shaped re-
gion with known density [4]. Although the approximations in Table 5.1 are not Padé
approximants, we began our work with the conviction that the Lobatto methods are
so naturally defined that there should be some simple interpretation of trMs(ω) as
an approximation to 2 cosω.

6. Known results on stability of Lobatto PRK methods of general or-
der. We review the results of Jay and Petzold [12]. Their key theorem is that no
member of the Lobatto PRK family is P-stable. They show that the stability function
is a rational function whose numerator has degree 2s− 2 and whose denominator has
degree ≤ 2s− 4, so that trMs(∞) = ∞. First, they use the identity

(6.1) v�N−1w =
det(N + wv�)

det(N)
− 1
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valid for any invertible matrix N and any vectors v and w to show that

(6.2) Ms(ω) =
1

q(ω)

(
p11(ω) p12(ω)
p21(ω) p22(ω)

)
with

(6.3) p11(ω) := det

(
Is −ω(A− 1sb

�)
ωÂ Is

)
, p12(ω) := det

(
Is −ωA

ωÂ Is + ω1sb
�

)
−q,

(6.4)

p21(ω) := det

(
Is − ω1sb̂

� −ωA

ωÂ Is

)
− q, p22(ω) := det

(
Is −ωA

ω(Â− 1sb̂
�) Is

)
,

and

(6.5) q(ω) := det

(
Is −ωA

ωÂ Is

)
.

Second, they use the W -transformation X := W�BAW , X̂ := W�BÂW , where B =
diag(b1, . . . , bs) and Wij = Pj−1(ci) with Pj(x) the jth shifted Legendre polynomial
and ci the nodes of Lobatto quadrature. The W -transformation is extensively used
in RK theory; see, e.g., [11]. (Note that in [9], a slightly different, “generalized”
W -transformation is used to study PRK methods.)

Thus far, their treatment applies to arbitrary PRK methods. Now, we specialize
to Lobatto IIIA–IIIB methods. Let

(6.6) (X̂0)s−1 :=

⎛⎜⎜⎜⎜⎝
1/2 −ξ1

ξ1 0
. . .

. . .
. . . −ξs−2

ξs−2 0

⎞⎟⎟⎟⎟⎠ , ξk :=
1

2
√
4k2 − 1

,

and

(6.7) β := (0, 0, . . . ,−ξs−1u)
�, u :=

s∑
i=1

biP
2
s−1(ci).

Then it is known [29] that the matrices X , X̂ for Lobatto PRK are given by

(6.8) X := (X0 | 0s), X̂ := (X̂�
0 | 0s)�,

where

(6.9) X0 := ((X̂0)
�
s−1 | − β)�, X̂0 := ((X̂0)s−1 | β).

Using these, Jay and Petzold [12] show that

(6.10) p11(ω) =
1

u
det

(
Is−1 ωX̂0

ωX̂�
0 Ds

)
, p22(ω) =

1

u
det

(
Is−1 −ωX�

0

−ωX0 Ds

)
,

where

(6.11) Ds := diag(1, 1, . . . , u).
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7. Determination of the trace of Ms(ω). First, we need the value of u in
(6.7) for methods based on Lobatto quadrature.

Proposition 7.1.

(7.1) u :=

s∑
i=1

biP
2
s−1(ci) =

2s− 1

s− 1
.

The proof is in Appendix A. Now, let

(7.2) Ys−1 =

⎛⎜⎜⎜⎜⎝
0 −ξ1

ξ1 0
. . .

. . . 0 −ξs−2

ξs−2 0

⎞⎟⎟⎟⎟⎠ .

This is the “regular” part of the matrices appearing in trMs(ω). Further, we know
that det(Is−1 + zYs−1) is directly related to the continued fraction expansion of the
stability function of high-order RK methods [11, Theorem 5.18]. Therefore, we try to
write the stability function in terms of Ys−1.

Proposition 7.2. Let

(7.3) U :=
1

u
ββ�

be the (s− 1)× (s− 1) matrix whose only nonzero entry is Us−1,s−1 = uξ2s−1, and let

(7.4) Bs(ω) := det
(
Is−1 + ω2Y 2

s−1 − ω2U
)
.

Then

(7.5) trMs(ω) =

2

(
1− ω2

4

Bs−1(ω)

Bs(ω)

)
1 +

ω2

4

Bs−1(ω)

Bs(ω)

.

Proof. Applying det
(
A B
C D

)
= det(D) det(A−BD−1C) to (6.10) gives

p11(ω) = det
(
Is−1 − ω2(X̂0)s−1(X̂0)

�
s−1 − ω2U

)
,(7.6)

p22(ω) = det
(
Is−1 − ω2(X̂0)

�
s−1(X̂0)s−1 − ω2U

)
.(7.7)

We decompose (X̂0)s−1 as

(X̂0)s−1 =
1

2
e1e

�
1 + Ys−1(7.8)

with e1 = (1, 0, . . . , 0)�, giving

p11(ω) = det

(
Is−1 − ω2U − ω2

(
1

2
e1e

�
1 + Ys−1

)(
1

2
e1e

�
1 − Ys−1

))
= det

(
Is−1 + ω2Y 2

s−1 − ω2U − ω2Z
)
,(7.9)
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where Z is the (s − 1) × (s − 1) matrix for which all entries are zero except for the
top left 2× 2 block, which is

(7.10)

(
1
4 − 1

2ξ1

− 1
2ξ1 0

)
.

Expanding the determinant in (7.9) along the first row, we get

p11(ω) = det
(
Is−1 + ω2Y 2

s−1 − ω2U
)

− ω2

4
det
(
Is−2 + ω2Y 2

s−2 − ω2Us−2

)
,

(7.11)

where Yk (resp., Uk) is the k× k matrix given by the last k rows and columns of Ys−1

(resp., U). Similarly, p22(ω) can be reformulated to obtain

(7.12) p11(ω) = p22(ω).

Substituting the W -transformation into the expression (6.5) for q(ω) gives

q(ω) = det
(
Is−1 + ω2(X̂0)

2
s−1 − ω2U

)
,

and now using (7.8) and proceeding as for p11(ω) above, we get

(7.13) q(ω) = det
(
Is−1 + ω2Y 2

s−1 − ω2U
)
+

ω2

4
det
(
Is−2 + ω2Y 2

s−2 − ω2Us−2

)
.

Now (6.2), (7.11), (7.12), and (7.13) give the result.
The trace of stability matrix Ms(ω) is a rational function, and we have the fol-

lowing proposition.
Proposition 7.3. The roots of trMs(ω) are real.

Proof. In this proof only, let W = (X̂0)s−1(X̂0)
�
s−1 + U . From (7.6) we have

p11(ω) = det(Is−1 − ω2W ).

Let Vk be the k × k matrix Vk := (X̂0)k(X̂0)
�
k , and let Wk be the k × k matrix given

by the first k rows and columns of W . We have

det(W ) = det(Vs−1) + ξ2s−1u det(Ws−2).(7.14)

Recursively expanding the determinant, we have

det(Ws−2) = det(Vs−2) + ξ2s−2 det(Ws−3), . . . ,

det(W1) =
1

4
+ ξ21 .

(7.15)

Now det(Vk) ≥ 0, (7.14), and (7.15) give det(Wi) > 0 (i = 1, . . . , s−2) and det(W ) >
0. Sylvester’s criterion implies that matrix W is positive definite; therefore the roots
of p11(ω), namely plus and minus the reciprocals of the square roots of the eigenvalues
of W , are real.

Note that the proof implies that the degree of the numerator of trMs(ω) is exactly
2s− 2, as was already proved in [12].

From the point of view of stability, the following result is more important.
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Proposition 7.4. All zeros of the rational functions trMs(ω)± 2 are real.
Proof. From (6.2) and (7.12), we know

(7.16) trMs(ω)± 2 =
2(p11(ω)± q(ω))

q(ω)
,

where

p11(ω) + q(ω) = 2 det
(
Is−1 − ω2(Y �

s−1Ys−1 + U)
)
,(7.17)

p11(ω)− q(ω) = −ω2

2
det
(
Is−2 − ω2(Y �

s−2Ys−2 + Us−2)
)

(7.18)

are derived by using (7.11) and (7.13). Let R = Y �
s−1Ys−1 + U , let Rk (resp., Ŷk) be

the k × k matrix given by the first k rows and columns of R (resp., Ys−1), and let

Qk = Ŷ �
k Ŷk. Recursively expanding the determinant gives

det(R) = det(Qs−1) + ξ2s−1u det(Rs−2),

det(Rs−2) = det(Qs−2) + ξ2s−2 det(Rs−3), . . . ,

det(R1) = ξ21 .

As in the proof of Proposition 7.3, we discover R is positive definite. A similar
calculation shows that Y �

s−2Ys−2 + Us−2 is also positive definite, proving the re-
sult.

Corollary 7.5. trMs(ω) − 2 and trMs(ω) + 2 have precisely 2s − 2 roots.
The stability region (in ω ≥ 0) consists of fewer than the maximum possible number
s− 1 intervals, only if trMs(ω)± 2 has multiple roots. trMs(ω) has precisely 2s− 1
turning points, none in the interior of the stability region. For each a in [−1, 1], the
equation 1

2 trMs(ω) = a has precisely s − 1 solutions. Lobatto PRK provides stable
semidiscretizations in the sense of Theorem 4.1.

Proof. 1
2 trMs(ω) − a is a rational function of numerator degree 2s − 2 with no

poles on the real axis. For a = ±1 we know it has 2s− 2 real zeros. By continuity, it
must have exactly this many also when |a| < 1. A turning point in |a| < 1 would give
more zeros, a contradiction. The stability function is even (being a function of ω2);
hence for a = 1 and a = −1 (values that determine the boundaries of the stability
region) there are s − 1 solutions in ω ≥ 0. This is exactly the stability condition
required in Theorem 4.1.

The proof of Proposition 7.3 gives an expression for trMs(ω) in terms of deter-
minants of 5-diagonal matrices. These could be expanded using a 5-term recurrence
relation to get some information for general s. However, knowing that determinants of
tridiagonal matrices are much simpler, being related to classical continued fractions,
we now express the determinants of 5-diagonal matrices as a product of determinants
of tridiagonal matrices, each with a simple structure.

Let

(7.19) Y s =

⎛⎜⎜⎜⎜⎜⎜⎝

0 −ξ1

ξ1 0
. . .

. . . 0 −ξs−2

ξs−2 0 −ξs−1
√
u

ξs−1
√
u 0

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Using the notation of Proposition 7.2, we have the following proposition.
Proposition 7.6. Bs(ω) = det(Is−1 + iωYs−1) det(Is + iωY s).
Proof. With Is−1 + ω2Y 2

s−1 = (Is−1 + iωYs−1)(Is−1 − iωYs−1) and det(Is−1 +
iωYs−1) = det(Is−1 − iωYs−1), we derive

Bs(ω) = det
(
Is−1 + ω2Y 2

s−1 − ω2U
)

= det(Is−1 + ω2Y 2
s−1) det

(
Is−1 − ω2U(Is−1 + ω2Y 2

s−1)
−1
)

= det(Is−1 + iωYs−1) det
(
Is−1 − iωYs−1 − ω2U(Is−1 + iωYs−1)

−1
)
.(7.20)

Letting F = Is−1 + iωYs−1, and expanding (7.20) along the last row, we have

det
(
Is−1 − iωYs−1 − ω2UF−1

)
= fs−1,s−1 − iωξs−2fs−2,s−1

− ω2ξ2s−1u

det(F )

(
f2
s−1,s−1 + f2

s−2,s−1 + · · ·+ f2
1,s−1

)
,(7.21)

where fi,j , i, j = 1, . . . , s− 1, are the elements of adj(F ), the adjugate matrix of F .2

Let Fk be the k × k matrix given by the first k rows and columns of F . Recursively
expanding the fi,s−1 gives

fs−1,s−1 = det(Fs−2),

fs−2,s−1 = −iωξs−2 det(Fs−3), . . . ,

f1,s−1 = (−i)s−2ωs−2ξ1, . . . , ξs−2;

(7.22)

therefore

f2
s−1,s−1 + f2

s−2,s−1 + · · ·+ f2
1,s−1

= det(Fs−2)
2 − ω2ξ2s−2 det(Fs−3)

2 + · · ·+ ω2s−4(−1)s−2ξ21 , . . . , ξ
2
s−2.(7.23)

We calculate the first two terms of (7.23) and have

det(Fs−2)
2 − ω2ξ2s−2 det(Fs−3)

2

=
(
det(Fs−2) + ω2ξ2s−2 det(Fs−3)

)
(det(Fs−2)− det(Fs−3))

+ (1− ω2ξ2s−2) det(Fs−2) det(Fs−3).(7.24)

For det(Fi) (2 ≤ i ≤ s− 2) and Fs−1 = F , we have the following recursion:

(7.25) det(Fi+1) = det(Fi)− ω2ξ2i det(Fi−1).

By using (7.25), it follows from (7.24) that

det(Fs−2)
2 − ω2ξ2s−2 det(Fs−3)

2

= det(Fs−2) det(Fs−1)− ω4ξ2s−2ξ
2
s−3 det(Fs−3) det(Fs−4).(7.26)

Substituting (7.22), (7.23), and (7.26) into (7.21), recursively, we obtain

(7.27)

det
(
Is−1 − iωYs−1 − ω2UF−1

)
= det(Fs−2)− ω2ξ2s−2 det(Fs−3)− ω2ξ2s−1u det(Fs−2)

= det(Fs−1)− ω2ξ2s−1u det(Fs−2)

= det(I + iωY s),

2adj(F ) = det(F )F−1 is the transpose of the cofactors (signed minors) of F , i.e., (−1)i+jfi,j is
the determinant of the matrix given by F with row j and column i deleted.
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where the last equality holds by determinant expansion along the last row and column.
Combining (7.20) and the above equality gives the result.

In light of Proposition 7.2 (especially (7.5)) and Proposition 7.6, it makes sense
to focus on (1 − 1

2 trMs(ω))/(1 + 1
2 trMs(ω)) = (ω2Bs−1(ω))/(4Bs(ω)). Note that

(1 − cosω)/(1 + cosω) = tan2 1
2ω. In order to relate our approximation to standard

continued fractions we evaluate at 2ω instead of ω.
Definition 7.7. Let

(7.28) Gs(ω) :=
1− 1

2 trMs(2ω)

1 + 1
2 trMs(2ω)

(≈ tan2 ω).

From Proposition 7.6, we have

(7.29)

Gs(ω) = ω2Bs−1(2ω)

Bs(2ω)

= ω2 det(Is−2 + 2iωYs−2)

det(Is−1 + 2iωYs−1)

det(Is−1 + 2iωY s−1)

det(Is + 2iωY s)
,

where Y s−1 is the (s− 1)× (s− 1) matrix given by the last s− 1 rows and columns
of Y s.

Theorem 7.8. For the s-stage Lobatto IIIA–IIIB method, Gs(ω) has the expres-
sion

(7.30) Gs(ω) = Cs(ω)Ĉs(ω),

where Cs(ω) = ω det(Is−2+2iωYs−2)
det(Is−1+2iωYs−1)

and Ĉs(ω) = ω det(Is−1+2iωY s−1)

det(Is+2iωY s)
are two rational

functions which have the finite continued fraction expansions

Cs(ω) =
ω|
|1 − ω2|

|3 − ω2|
|5 − · · · ω2|

|2s− 3
,(7.31)

Ĉs(ω) =
ω|
|1 − ω2|

|3 − ω2|
|5 − · · · ω2|

|2s− 3
− ω2|

|s− 1
.(7.32)

Proof. From Theorem 5.18 of [11], we have

(7.33) ω
det(Is−2 + 2iωYs−2)

det(Is−1 + 2iωYs−1)
=

ω|
|1 − 4ω2ξ21 |

|1 − · · · − 4ω2ξ2s−2|
|1 .

Recall that 4ξ2k = 1/((2k − 1)(2k + 1)). Multiplying the second numerator and de-
nominator by 1/4ξ21 = 3, the third numerator and denominator by 4ξ21/4ξ

2
2 = 5, and

the kth numerator and denominator by 2k−1 yields the equivalent continued fraction
representation (7.31).

For Ĉs(ω), we have the similar continued fraction with the final numerator ad-
justed by 4ω2uξ2s−1(2s − 3) = ω2/(s − 1). In the calculation, u = (2s − 1)/(s − 1)
has been used by Proposition 7.1; therefore the final numerator is ω2 and the final
denominator is s− 1, giving (7.32).

Such continued fractions are Padé approximants of the functions with the same
Maclaurin series, typically giving a “staircase” sequence of approximants formed from
the diagonal and sub- or superdiagonal elements of the Padé table. In this case,
because tanω is an odd function,3 Cs(ω) is the Padé approximant to tanω of type

3“If functions are even or odd, they are degenerate in a rather trivial way, and there is no purpose
in making a great issue of this” [4, sect. 4.2].
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[s−1/s−1], which is actually of degree [s−2/s−1] if s is odd, and of degree [s−1/s−2]

if s is even. The continued fraction of tanω is tan(ω) = ω|
|1 − ω2|

|3 − ω2|
|5 − ω2|

|7 − · · · ,
whose partial sums converge to tanω for all ω �= (2k + 1)π/2, k ∈ Z [4, eq. (4.6.2)].

Further, the continued fractions in Theorem 7.8 can be expressed in closed form
as follows.

Theorem 7.9. Let

(7.34) [n/n]ez(z) =
An(z)

An(−z)
= ez − Vn(z)

be the diagonal Padé approximants to ez whose numerators are given explicitly by [4,
eq. (1.2.12)]

(7.35) An(z) := 1F1(−n,−2n, z) =

n∑
k=0

(−n)k
(−2n)kk!

zk =

n∑
k=0

n!(2n− k)!

(n− k)!(2n)!k!
zk,

and let

(7.36)
Pn(ω) := An(2iω)− An(−2iω),

Qn(ω) := i(An(2iω) +An(−2iω)).

We have

(7.37) Cs(ω) =
Ps−1(ω)

Qs−1(ω)
,

(7.38) Ĉs(ω) =
(2s− 1)Ps(ω)− sPs−1(ω)

(2s− 1)Qs(ω)− sQs−1(ω)
,

and

(7.39) trMs(2ω) = 2
1− Cs(ω)Ĉs(ω)

1 + Cs(ω)Ĉs(ω)
.

Proof. The homographic invariance of value transformations [4, Theorem 1.5.3],
states that taking diagonal Padé approximants commutes with taking linear fractional
transformations of function values f(z) �→ (a+bf(z))/(c+df(z)), provided c+df(0) �=
0. The homographic invariance under argument transformations [4, Theorem 1.5.2]
takes that diagonal Padé approximants commute with taking origin-preserving linear

fractional transformations of arguments, i.e., z �→ αz/(1+βz). Using tanω = e2iω−1
i(e2iω+1)

and both types of transformations with α = 2i, β = 0, a = −1, b = 1, and c = d = i
gives (7.37).

Expanding the determinants by the last row and column gives

(7.40) det(Is + 2iωY s) = det(Is−1 + 2iωYs−1)− 4ω2ξ2s−1u det(Is−2 + 2iωŶs−2).

Similarly,

(7.41) det(Is + 2iωYs) = det(Is−1 + 2iωYs−1)− 4ω2ξ2s−1 det(Is−2 + 2iωŶs−2),

where Ŷs−2 is the (s− 2)× (s− 2) matrix given by the first s− 2 rows and columns

of Ys−1. Eliminating det(Is−2 + 2iωŶs−2) between these equations gives

(7.42) det(Is + 2iωY s) = u det(Is + 2iωYs) + (1− u) det(Is−1 + 2iωYs−1),
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and similarly, we have

(7.43) det(Is−1 + 2iωY s−1) = u det(Is−1 + 2iωYs−1) + (1− u) det(Is−2 + 2iωYs−2),

where u = (2s− 1)/(s− 1), and Y s−1 is the (s− 1)× (s− 1) matrix given by the last
rows and columns of Y s. It is known from (7.35) that

An+1(z) = An(z) +
z2

4(2n− 1)(2n+ 1)
An−1(z),(7.44)

and then from (7.36) and (7.44) we know Qn(ω) satisfies the recurrence

Qn+1(ω) = Qn(ω)− ω2

(2n− 1)(2n+ 1)
Qn−1(ω)(7.45)

with initial valuesQ1(ω) = 2i, Q2(ω) = 2i(1−ω2/3). From (7.41) and (7.45), as ξs−1 =
1/(2

√
(2s− 3)(2s− 1)), we know det(Is−1 + 2iωYs−1) satisfies the same recurrence

as Qs−1(ω) (7.45) with initial values det(I1 +2iωŶ1) = 1, det(I2 +2iωŶ2) = 1−ω2/3.
Therefore,

(7.46) det(Is−1 + 2iωYs−1) =
1

2i
Qs−1(ω),

and similarly,

(7.47) det(Is−2 + 2iωYs−2) =
1

2iω
Ps−1(ω).

Multiplying (7.42) and (7.43) by s−1 gives (7.38). Equation (7.39) follows from (7.28)
and (7.30) and is just included for completeness.

Recall q(ω) is the denominator of the trace of stability matrix, providing the
information on poles of trMs(ω). For the expression of q(ω) we have the following
proposition.

Proposition 7.10. Let

Fl,s := 2i
s!(2s− l)!2l

2s!(s− l)!l!
.

Then q(ω) can be expanded as

(7.48) q(ω) =

s−2∑
m=0

(
−1

4

)m+1

qmω2m,

where

(7.49) qm =
2m∑
i=0

(−1)iF2m−i,s−1 (uFi,s + (1− u)Fi,s−1)

when 0 ≤ m ≤ [(s− 1)/2];

qm =

2m−s+1∑
i=s

(−1)iF2m−i,s−1 (uFi,s + (1− u)Fi,s−1)

+(−1)s−1(1− u)F2m−s+1,s−1Fs−1,s−1(7.50)

when [(s+ 1)/2] ≤ m ≤ s− 2.
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Proof. By Proposition 7.6, and using (7.46), (7.47), q(ω) in (7.13) can be rewritten
as

q(ω) = −1

4
Qs−1(ω/2)

(
uQs(ω/2) + (1− u)Qs−1(ω/2)

)
− 1

4
Ps−1(ω/2)

(
uPs(ω/2) + (1− u)Ps−1(ω/2)

)
.(7.51)

It follows from (7.35) that Qs(ω) and Ps(ω) can be expanded as, respectively,

Qs(ω) =

[s/2]∑
m=0

(−1)lF2l,sω
2m,(7.52)

Ps(ω) =

[(s+1)/2]∑
m=1

(−1)l+1 (2s+ 1− 2l)l

s+ 1− 2l
F2l,sω

2m−1,(7.53)

where Fl,s is as defined in the proposition. Substituting (7.52) and (7.53) into (7.51)
gives the result.

In [12], Jay and Petzold proved that the degree of q(ω) ≤ 2s− 4.
Proposition 7.11. The degree of q(ω) is equal to 2s− 4, and the coefficient in

q(ω) of ω2s−4 is

8s

4s(2s− 3)!!2
.

Proof. Using (7.48) and (7.50) gives the result.

8. Asymptotic behavior of the trace of Ms(ω) and the stability region.
We now study the asymptotic behavior trMs(ω) in four different regimes.

8.1. Asymptotics for s fixed and ω → 0.
Proposition 8.1. For fixed s and ω → 0, we have

(8.1) cosω − 1

2
trMs(ω) =

1

2s− 2
es−1ω

2s +O(ω2s+2),

where

(8.2) es :=
s!2

(2s)!(2s+ 1)!
.

Proof. For fixed n and z → 0, we have [11]

(8.3) ez − [n/n]ez(z) = (−1)nenz
2n+1 +O(z2n+2).

Substituting into the above expression for C, Ĉ gives

(8.4) tanω − Cs(ω) = 4s−1es−1ω
2s−1 +O(ω2s)

and

(8.5) tanω − Ĉs(ω) = − s

s− 1
4s−1es−1ω

2s−1 +O(ω2s);

note that the error in Ĉ is opposite in sign and slightly larger in magnitude to that
in C, so that together they nearly cancel. Combining these errors gives the error
estimate (8.1).

It is striking that the leading error coefficient is actually smaller (by a factor 1
2s−2 )

than that of the Gauss RK method of the same order.
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8.2. Asymptotics for s fixed and ω → ∞. The representation (7.39) is

perfect for determining the boundary of the stability region. If Cs(ω) = 0 or Ĉs(ω) =

0, then trMs(2ω) = 2, while if Cs(ω) or Ĉs(ω) has a pole at ω = ω∗, then trMs(2ω
∗) =

−2. On the other hand, (7.39) is not so suitable for determining the zeros and poles

of trMs(ω) itself, as these involve the product Cs(ω)Ĉs(ω).
First, we consider the part of the boundary of the stability region determined by

zeros and poles of Cs(ω). From (7.36) and (7.37), Cs(ω) has a zero (resp., pole) if
[n/n]ez(2iω) = 1 (resp., −1), where n = s − 1. Recall that as ω increases from 0 to
∞, the argument of this Padé approximant increases from 0 to nπ. Thus, apart from
the trivial zero at ω = 0, this Padé approximant takes on the value ±1 n− 1 times.
The asymptotic behavior of [n/n]ez as n → ∞ for fixed z and for large z can be used
to give precise asymptotics of the boundary of the stability region.

We let n = s− 1, let m = n(n+1) = s(s− 1), and let the stability boundaries be
ω1, ω2, . . . , ω2s−3.

Expanding in a Taylor series about z = ∞ for fixed n using (7.35), (7.36), and
(7.37) gives

(8.6) log[n/n]ez(z) = niπ +
2m

z
− 2m(m− 6)

3z3
+O(z−5).

The series has a finite radius of convergence that is O(n) as n → ∞. Reverting the
series gives that log[n/n]ez(z) = w at

(8.7)

z =
2m

w − niπ
+

(
1

m
− 1

6

)
(w − niπ) +

m2 − 48m+ 90

45m3
(w − niπ)3 +O ((w − niπ)5

)
.

Evaluating at w = (n− 1)iπ gives the last stability boundary arising from C at

(8.8) ω2s−4 =
2m

π
+

(
1

6
− 1

m

)
π +

m2 − 48m+ 90

45m3
π3 +O(m−1).

A similar approach for the stability boundaries arising from Ĉ gives a stability bound-
ary at

(8.9) ω2s−3 =
2m

π
+

(
1

6
+

1

m

)
π +

m2 + 57m− 180

45m3
π3 +O(m−1).

At these values of ω (or z), the kth term in the Taylor series (8.6) is O(n−k), which
justifies the use of the series. Similarly, evaluating (8.7) at w = (n − k)iπ gives the
good estimate ω2s−2−k ≈ 2m

kπ + kπ
6 of the kth from the last stability boundary for

fixed k.
This approach is very simple, using only Taylor series, but it does not give the

coefficient of m−1. (The series (8.9) converges up to the pole nearest ∞, and we know
that as n → ∞ this is near z = 2in.) However, numerically, including the first two
O(m−1) terms (as above) does give a very precise estimate of the stability boundary.
For example, the leading order estimate 2m/π+π/6 gives 19.622 at s = 6, while (8.9)
gives 19.789, and the actual stability limit is 19.798.

8.3. Asymptotics for s → ∞, ω fixed. For fixed z and n → ∞, we have the
estimate [17, eq. II.14.2.13]

(8.10) Vn(z) = (−1)nenz
2n+1ez+

z2

8n+4
(
1 +O(n−3)

)
.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LINEAR STABILITY OF PRK 255

A Taylor expansion of C(ω/2) at ω = π gives that it has a pole (and hence trMs(ω)
has a stability boundary) at

(8.11) ω2 = π + enπ
2n+1e

−π2

8n+4

(
1 +O(n−3)

)
.

This estimate is already quite accurate for small n. For n = 3 (hence s = 4) it gives
a stability boundary at ω ≈ π+0.0211; the actual value is π+0.0207. As n → ∞ the
dominant behavior is

(8.12) ω2 ∼ π +
1

e

( eπ
4n

)2n+1

.

The boundary of the kth stability region (for fixed k as s → ∞) can be estimated
similarly; its distance from kπ increases according to the order of the method, i.e., as
k2n+1.

A similar approach yields an estimate of the boundary of the stability region due
to Ĉ(ω). However, because of the form of (7.38), we need the asymptotic expansion
of An(z) itself rather than just that of the Padé approximants An(z)/An(−z). Equa-
tion (7.34) determines An(z) up to multiplication by an even function of z. On the
other hand, for z fixed and n → ∞, we have [16, eq. I.4.8.16-19]

(8.13) e−z/2An(z) ∼
∞∑
k=0

(−1)kdk(z)(n+ 1
2 )

−k,

where d0(z) = 1 and

(8.14) 8dk+1(z) = −4zd′k(z) +
∫ z

0

tdk(t) dt,

i.e., d1(z) = z2

16 , d2(z) = z4

512 − z2

16 . The dk(z) are all even and provide the overall

behavior of ez/2An(z), but this approximation alone substituted in (7.38) simply

yields the approximation Ĉs(ω) ∼ tanω, which does not provide an error estimate.
Therefore, we combine (7.34), (8.10), and (8.13) to get

(8.15) ez − An(z)e
z/2∑2

k=0 dk(z)(n+ 1
2 )

−k
∼ Vn(z)

(
1 +O(n−3)

)
,

where the Vn(z) provides the exponentially small error terms that are subdominant
to any finite term in the expansion (8.13). Now substituting (8.15), (8.10) into (7.36),

(7.38) and proceeding as for (8.11) gives a stability boundary arising from Ĉs(ω) at

(8.16) ω1 = π − (1 + 1
n )enπ

2n+1e
−π2

8n+4

(
1 +O(n−3)

)
.

The unstable region (ω1, ω2) is nearly centered on π.

From the preceeding asymptotics we now get that Cs(ω) → tanω and Ĉs(ω) →
tanω for all ω �= (2k + 1)π and 1/Cs(ω) → cotω, 1/Ĉs(ω) → cotω for all ω �= 2kπ;
combining, we have the following theorem.

Theorem 8.2.

(8.17) trMs(ω) → 2 cosω

for all fixed ω as s → ∞.
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Fig. 8.1. The poles and zeros of Rn(νz) cluster along K, and the relative error of this approx-
imation to eνz tends to zero only inside K.

8.4. Uniform asymptotics for s → ∞. Let Rn(z) := [n/n]ez(z) be the di-
agonal Padé approximants to the exponential function. A great deal is known about
these functions. As we have seen, they converge to ez for all fixed z. However, if z is
not fixed but is O(n), then they have a different asymptotic behavior. In particular,
the zeros and poles of Rn(nz) cluster along the boundary of an eye-shaped region
(Figure 8.1) that we call K following Olver [21] who (as far as we have been able to
determine) was the first to identify it. (It appears in his Figure 3, scaled by i

2 ; see

also Figure 8.3 of [22].) The boundary of the eye K is given by ∂K := ζ−1
([−iπ

2 , iπ
2

])
together with its reflection in the imaginary axis, where

(8.18) ζ(z) =

√
1 +

z2

4
+ ln

z

2
(
1 +

√
1 + z2

4

) ,
with branches chosen so that ζ is real when z is real and ζ is continuous in | arg z| ≤ π

2 .
∂K intersects the imaginary axis at z = 2i, although Rn(nz) has no zeros or poles
actually on the imaginary axis. Despite an extensive literature on the behavior of
Rn(z) and associated special functions, we could not find in the literature a precise
statement of its actual asymptotic behavior. We therefore develop it here.

Proposition 8.3. Let D be the quadrant 0 ≤ arg z ≤ π
2 . We have the asymptotic

relation

(8.19) Rn(νz) ∼
{

eνz, z inside K,

(−1)neν(z−2ζ), z outside K

uniformly in z for any z ∈ D, where ν = n + 1
2 . For z in other quadrants, the

asymptotic behavior of Rn can be obtained using Rn(z) = Rn(z) and Rn(−z) =
1/Rn(z).

The proof is in Appendix B.
For large z, we have

(8.20) z − 2ζ(z) ∼ 2

z
− 2

3z3
+

4

5z5
− · · · .

From Theorem 7.9, the stability boundaries are given by the poles and zeros of
Cs(ω) and Ĉs(ω). From (7.36) and (7.37), the stability boundaries due to Cs(ω) are
the points where Rn−1(iω) = ±1. The asymptotic behavior of Rn(z) found above
hence explains the observed splitting of the stability domains into two sets, one on
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which trMs(ω) ≈ 2 cosω with stability boundaries near integer multiples of π, and
one in which the stability boundaries grow more rapidly.

In particular, there is a stability boundary (asymptotically) at kπ for k = 1, . . . , k∗

and at νg−1(−ikπ/ν)/i, k = 1, . . . , n−1−k∗, where g(z) = z−2ζ(z) and k∗ = �2ν/π�
is determined by z lying inside or outside K.4

The stability boundaries corresponding to Ĉ can be found as follows. First, note
from (7.36) we need only the behavior ofAn on the imaginary axis. Basic trigonometry
gives us that

(8.21) Cs(ω) = tan θs(ω), θs(ω) := argAn(2iω),

and

(8.22) Ĉs(ω) = tan θ̂s(ω), θ̂s(ω) := arg (uAn+1(2iω) + (1− u)An(2iω)) ,

where u = (2s− 1)/(s− 1). A Taylor expansion of An+1(νz)/An(νz) for large n using
(B.1), (B.5) gives

(8.23) uAn+1(νz) + (1 − u)An(νz) = ϕ(n, z)An(νz),

where

(8.24) ϕ(n, z) ∼
√
1 +

z2

4
+O (n−1

)
for z on the positive imaginary axis bounded away from 2i. Thus, as n → ∞,

(8.25)

θ̂s(νω) = θs(νω) + argϕ(n, z)

∼ θs(νω) +

{
0, 0 ≤ ω < 1,
π
2 , ω > 1.

The stability boundaries due to Ĉs are located where θ̂s = kπ/2, k ∈ Z, and so
coincide (to this order of approximation) with those due to Cs.

Substituting (8.21), (8.22) into (7.39) gives

(8.26) trMs(2ω) =
cos(θs(ω) + θ̂s(ω))

cos(θs(ω)− θ̂s(ω))
,

which, together with the asymptotic expansions above, yields our final desired result.
Theorem 8.4. For all 0 ≤ ω < 2 we have

(8.27) trMs(νω) → 2 cos(νω)

as s → ∞, where ν = s+ 1
2 .

4For n = 5 (i.e., s = 6; see Table 5.2) this gives stability boundaries at π, 2π, 3π (here we pass
K), and 19.8062 (not quite as accurate as the simpler approximations of section 8.2). For n = 10, it
gives stability boundaries at π, 2π, . . . , 6π ≈ 18.9 (here we pass K), 25.18, 36.20, and 70.72, while the
exact boundaries corresponding to C are at (1+8.25×10−16)π, (2+1.21×10−9)π, (3+3.24×10−6)π,
4.00055π, 5.017π, 6.176π, 24.88, 36.03, and 70.53.
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Appendix A. Proof of Proposition 7.1.
Theorem A.1. Let

(A.1) Ps−1(x) =

√
2s− 1

(s− 1)!

d

dx

ds−2

dxs−2

(
xs−1(x− 1)s−1

)
be the shifted Legendre polynomial of degree s − 1. Let c1, . . . , cs be the roots of the
Lobatto polynomial

(A.2) PLobatto(x) =
ds−2

dxs−2

(
xs−1(x− 1)s−1

)
,

and let b1, . . . , bs be the weights such that the following simplifying assumption is
satisfied:

B(2s− 2) :

s∑
i=1

bic
q−1
i =

1

q
=

∫ 1

0

xq−1dx, 1 ≤ q ≤ 2s− 2.(A.3)

Then we have

(A.4) u :=

s∑
i=1

biP
2
s−1(ci) =

2s− 1

s− 1
.

Proof. With the roots c1, . . . , cs, the Lobatto polynomial PLobatto(x) can be re-
formulated as

(A.5) PLobatto(x) =
(2s− 2)!

s!
(x− c1) · · · (x− cs).

Let V be the Vandermonde matrix

(A.6) V =

⎛⎜⎜⎝
1 c1 · · · cs−1

1

1 c2 · · · cs−1
2

· · · · · · · · · · · ·
1 cs · · · cs−1

s

⎞⎟⎟⎠ ,

and let ρ1, . . . , ρs be the coefficients of the polynomial (x−c1) · · · (x−cs). From (A.5)
we have

PLobatto(x) =
(2s− 2)!

s!

(−1)s

det(V )
det

⎛⎜⎜⎝
1 x · · · xs

1 c1 · · · cs1
· · · · · · · · · · · ·
1 cs · · · css

⎞⎟⎟⎠
=

(2s− 2)!

s!
(xs + ρ1x

s−1 + · · ·+ ρs−1x+ ρs).

For s− 1 ≤ q ≤ 2s− 2, condition B(2s− 2) implies that

(A.7)
(
b1 b2 · · · bs

)⎛⎜⎜⎝
cs−2
1 · · · · · · c2s−3

1

· · · · · · · · · · · ·
· · · · · · · · · · · ·
cs−2
s · · · · · · c2s−3

s

⎞⎟⎟⎠ =
(

1
s−1

1
s · · · 1

2s−2

)
;
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therefore,

s∑
i=1

bic
2s−2
i =

(
b1 b2 · · · bs

)⎛⎜⎜⎝
c2s−2
1

· · ·

c2s−2
s

⎞⎟⎟⎠

=
(

1
s−1

1
s · · · 1

2s−2

)⎛⎜⎜⎝
cs−2
1 · · · · · · c2s−3

1

· · · · · · · · · · · ·
· · · · · · · · · · · ·
cs−2
s · · · · · · c2s−3

s

⎞⎟⎟⎠
−1⎛⎜⎜⎝

c2s−2
1

· · ·

c2s−2
s

⎞⎟⎟⎠
= − ρs

s− 1
− · · · − ρ1

2s− 2

= −
∫ 1

0

xs−2
(
ρs + · · ·+ ρ1x

s−1
)
dx

= −
∫ 1

0

xs−2

(
s!

(2s− 2)!
PLobatto(x)− xs

)
dx.

Furthermore, using integration by parts, we obtain

s∑
i=1

bic
2s−2
i =

1

2s− 1
− (−1)s−2s!(s− 2)!

(2s− 2)!

∫ 1

0

xs−1(x− 1)s−1dx

=
1

2s− 1
+

s!(s− 2)!(s− 1)!2

(2s− 2)!2(2s− 1)
.

(A.8)

Let a =
√
2s−1(2s−2)!
(s−1)!2 be the coefficient of highest order of Ps−1(x). We rewrite Ps−1(x)

as

(A.9) Ps−1(x) = Ps−1(x)− axs−1 + axs−1,

and then

(A.10)
s∑

i=1

biP
2
s−1(ci) =

s∑
i=1

bi
(
Ps−1(ci)− acs−1

i

) (
Ps−1(ci) + acs−1

i

)
+ a2

s∑
i=1

bic
2s−2
i .

Noticing that Ps−1(x) − axs−1 is a polynomial of degree s − 2, and (A.3) holds for
polynomials of degree up to 2s− 3, it follows from (A.8) and (A.10) that

s∑
i=1

biP
2
s−1(ci) =

∫ 1

0

(
Ps−1(x) − axs−1

) (
Ps−1(x) + axs−1

)
dx+

a2

2s− 1
+

s

s− 1

=

∫ 1

0

P 2
s−1(x)dx +

s

s− 1

=
2s− 1

s− 1
.
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Appendix B. Asymptotic expansion of the diagonal Padé approximants
to the exponential function.

Proof of Proposition 8.3. The proof is based on the asymptotic expansions of
Olver [21] of Bessel functions of large argument, the connection being that

(B.1) An(z) = 1F1(−n,−2n, z) =
n!

(2n)!
√
π
zn+

1
2 ez/2Kn+ 1

2
(z/2)

and thus, setting ν = n+ 1
2 and taking −π < arg z ≤ π,

(B.2) Rn(νz) = eiνπeνz
Kν(νz/2)

Kν(−νz/2)
.

We obtain the asymptotic behavior of Rn(νz) as n → ∞ for any fixed z lying in the
quadrant D := 0 ≤ arg z ≤ π

2 . We divide D into six regions and consider each in
turn. First, we give Olver’s result. Let

(B.3) ζ =

√
1 +

z2

4
+ ln

z

2
(
1 +

√
1 + z2

4

) ,
which maps the half plane �z > 0 conformally onto the union of the half plane �ζ > 0
and the half strip |�ζ| < π

2 , �ζ ≤ 0. (The interior of K maps into �ζ < 0, while the
exterior of K maps into �ζ > 0.) Then [21, eq. (2.13)–(2.14)]

(B.4) Iν(νz/2) ∼ eνζ√
2πν(1 + z2

4 )1/4

and

(B.5) Kν(νz/2) ∼
√

π

2ν

e−νζ

(1 + z2

4 )1/4

as ν → ∞, uniformly with respect to z in | arg z| ≤ π
2 − ε. (In fact, a complete

asymptotic expansion in inverse powers of ν is provided.) In [22, p. 380], it is shown
by analytic continuation that (B.5) also holds in | arg z| ≤ π

2 , provided z is bounded
away from ±2i.

Region 1. �z > 0, z inside K. We use the identity

(B.6) Kν(−z) = eiνπKν(z) + iπIν (z), ν �∈ Z.

In this region, �ζ < 0 so Iν(νz/2) is subdominant to Kν(νz/2) and we have

(B.7) Rn(νz) ∼ eνz,

with the full asymptotic expansion proceeding in inverse powers of ν.
Region 2. �z > 0, z outside K. We proceed as for Region 1, but now �ζ > 0 is

Kν(νz/2) so subdominant to Iν(νz/2) and we use (B.4) to get

(B.8)

Rn(νz) = eiνπeνz
Kν(νz/2)

Kν(−νz/2)

∼ eiνπeνze−2νζ/i

= (−1)neν(z−2ζ).
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Region 3. �z = 0, z inside K. Here −z = z, so we have

(B.9)

Rn(νz) = eiνπeνz
Kν(νz/2)

Kν(−νz/2)

= eiνπeνze2i argKν(νz/2)

∼ eiνπeνze2i(−ν)π
2

= eνz.

Region 4. �z = 0, z outside K. We proceed as for Region 3, but now arg(1 +
z2/4)1/4 = π

4 and �ζ(z) = 0 so arg e−νζ = −ν�ζ; combining,

(B.10)
Rn(νz) ∼ eiνπeνze−2νζe−2iπ4

= (−1)neν(z−2ζ).

Region 5. �z > 0, z ∈ ∂K. Here ζ ∈ [0, π
2 i), so neither Kν(νz/2) nor Iν(νz/2)

is dominant; we must retain them both. Combining (B.2), (B.4), (B.5), and (B.6)
gives

(B.11) Rn(νz) ∼ eν(z+ζ)

eνζ + (−1)ne−νζ
.

Region 6. z = 2i. Here we use

(B.12) Kν(iν) = − iπ

2
e−

1
2νiπ(Jν(ν) − iYν(ν))

together with equations (9.1.3), (9.3.31), and (9.3.32) of [1] to get

(B.13) Kν(iν) ∼ − iπ

2
e−

1
2νiπ21/33−2/3Γ(2/3)−1(1 +

√
3i)ν−1/3,

which, together with (B.2), gives

(B.14) Rn(νz) ∼ eνz−iπ3 .

(With a little more work, equations (9.3.35), (9.3.36) of [1] give expansions uniformly
valid as z → 2i.)

Combining Regions 1–4 now proves the proposition.
Note that (B.11) also provides asymptotic estimates of the poles (and hence zeros)

of Rn, namely, they are asymptotically located at νzj , where

(B.15) νζj =

(
j +

1

2

)
π, j = 1, . . . , n/2,

for n even, and at

(B.16) νζj = jπ, j = 0, . . . , (n− 1)/2,

for n odd. These estimates are amazingly good. Even at n = 1, they estimate that
the single pole is at νζ−1(0) = 3

2 × 1.3254868386983634 ≈ 1.988, whereas the actual

pole is at z = 2 (recall that R1(z) =
1+ z

2

1− z
2
)—an error of 0.6%. Note also that at

ζ = 0, z = 1.3254868386983634, Rn(νz) ∼ 1
2e

νz for n even. The convergence of the
approximants to the asymptotic limit is shown in Figure B.1, where the change in
behavior as ∂K is crossed is immediately apparent. The transition region, of width
O(ν−2/3) in the neighborhood of z = 2i, can also be seen.
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Fig. B.1. Convergence of diagonal Padé approximants to ez. logRn(νz)/ν (solid lines) is
shown for n = 2, 4, 8, and 16, along the positive real axis (top) and imaginary axis (bottom), along
with the asymptotic behavior given in Proposition 8.3 (dotted lines).
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