

MASSEY UNIVERSITY TE KUNENGA KI PUREHUROA

UNIVERSITY OF NEW ZEALAND

Light Microscopy and Digital Imaging Workshop

Matthew S. Savoian

M.S.Savoian@massey.ac.nz

Nov 14, 2014

Purpose:

Provide a primer on different light microscopy imaging and analysis techniques -and their limitations- using MMIC-based equipment as practical examples

Programme

Morning Session 10:00-12:00

Introduction to Light Microscopy

- **Basic Concepts: Magnification, Resolution, Depth of Field**
- **Different Transmitted Light Modalities**

Epi-Fluorescence Microscopy

- Mechanism of Fluorescence
- Widefield Epi-Fluorescence Microscope Components
- Fluorescent Probes/Stains (Fluorescent Proteins as Biosensors)
- **Fundamentals of Digital Imaging**
- **Scanning Confocal Microscopy**

Afternoon Session 13:00-15:00

ImageJ as a Tool for Digital Image Analysis

- **ImageJ Basics**
- **Histograms, LUTs and Displays**
- 2D and 3D Spatial Measurements
- Use of Linescans
- Quantitation of Fluorescence Intensity
- **-** Quantifying Movement

Analysis of attendee data- as time permits

Principles of Microscopy

Microscopy allows us to view processes that would not be visible to the naked eye

- Object too small we cannot see objects smaller than about 0.1mm or the thickness of a human hair)
- Object lacks contrast (Stains/Phase-Contrast/DIC)
- Process too slow (time-lapse) or not visible in nature (molecular dynamics or interactions-FRAP, FRET)

Every microscope has limits

Poor sample preparation is a recipe for disappointment and poor imaging

Milestones in Microscopy

100- Romans use crystals as "magnifying" and "burning" lenses

1595-Jensen makes first compound microscope

1665- Hooke publishes his "*Micrographia*" and coins the term "cell"

1676- Van Leeuwenhoek observes "animalcules" (bacteria)

1800s- Microscopes improved; theoretical limits of light microscopy determined

1931- Knoll and Ruska produce first Transmission Electron Microscope (TEM)

1945- Porter et al., use TEM to look at tissue culture cells

1967- Modern Epifluorescence microscope invented

1980s- Macromolecular Reconstructions using

1994- Chalfie et al., use Green fluorescent protein Reconstructions using Green fluorescent protein

TEM and tomography (GFP) as an in vivo marker

1965- First commercial Scanning Electron Microscope

1987- Confocal microscope applied to cell biology

2000s- superresolution invented

Resolution of Different Microscopes

Common Light Microscope Imaging **Methods**

Transmitted Light Modalities (absorption/phase shift)

- **Bright Field**
- Phase-Contrast
- Differential Interference Contrast (DIC)

Epi-Fluorescence Light Modalities (emission)

- Widefield
- Scanning Confocal

Upright Light Microscope Anatomy

Configured For:

Transmitted Light

- **Brightfield**
- Phase-Contrast
- **-** Differential Interference **Contrast**

IMAGE FORMATION: Attributes of Microscopes

Q Magnification

□ Resolution

Refraction: Bending of light as wave changes speed when travelling through different materials (e.g., a straw looking bent in a glass of water)

Diffraction: Bending of light as wave encounters an object or edge

These processes are the core of microscope image formation

Magnification How big something appears

- Compound microscope used in conventional light microscopy utilises several lenses
- Objective lens (closest to specimen) 2.5x-100x
- Projection lens (eyepiece/other) 10x, etc.,
- Total magnification is the product of the magnification of the individual lenses
- Apparent Image Size can be misleading- size must be determined using calibration or scale bars

But magnification can be "empty"

What is resolution?

Smallest distance apart at which two points on a specimen can still be seen separately

This is directly related to the light collecting capability of the optical system

---The Objective Lens---

The Diffraction Pattern Defines the Image Characteristics

The Airy Disk (2D diffraction pattern)

Using a self-luminous object as an example

Modified from http://zeiss-campus.magnet.fsu.edu

The Airy Disk (2D diffraction pattern) Dictates Object *Apparent Lateral Size*

Using a self-luminous object as an example

$$
D_{x,y} = 0.61 \lambda/N.A.
$$

λ=wavelength of emitted light N.A.=Numerical Aperture of Objective Lens (light collecting power of lens)

For Example:

A 50nm bead imaged with a 100x oil Immersion Lens (NA 1.4) emitting 520nm (green) light $D_{x,y}=0.61(520nm)/1.4$

 $D_{x,y}=226$ nm

The *minimum apparent* lateral size of *an* object viewed at 520nm light is 226nm

The Airy Disk Dictates Resolvable *Lateral Separation Distance*

For Example:

A 50nm bead imaged with a 100x oil Immersion Lens (N.A. 1.4) with 520nm (green) light

 $D_{x,y} = 0.61(520nm)/1.4$ $D_{x,y}=226$ nm

Two objects spaced closer than 226nm appear as one

- Shorter wavelengths give higher resolution
- Higher N.A. gives higher resolution

Magnification has no impact on lateral resolution

The Point Spread Function is the 3D Diffraction pattern

Object

(50nm)

 $D_z = 520$ nm $(1.515)/(1.4)^2$

 $D_z = 401$ nm

The *minimum apparent axial size* and *separation distance* of an object emitting 520nm light is ~400nm

Axial (Z) resolution is ~ ½ of lateral (XY) resolution

Magnification has no impact on axial resolution

Images are comprised of Airy Disks/PSFs

How do we exceed the diffraction limit?

Alternative technologies

- Transmission Electron Microscopy (TEM) *Resolution: ~5nm (Atomic!)*
- "Super-resolution" Light Microscopy *Resolution: ~70-150nm (depending on method)*

Deciphering the Objective Lens

Objective Lens N.A. Determination

Objective Lens

Lower N.A. lenses collect less light; therefore images are less bright and *lower resolution*

Highest possible N.A. in air is ~ 0.95 0.95=1.0 (sin72)

Higher magnification lenses have a shorter focal length, greater θ and *commonly require oil to capture the light and achieve higher N.A.*

!!!oil should never contact a dry lens!!!

Addition of oil to a dry lens distorts light collecting pathway

Depth of Field

Amount of a specimen in focus at the same time

Depth of field (DoF) decreases with increased magnification and N.A.

Table from www.olympusmicro.com/primer/anatomy/objectives.html

Contrast

or

Distinguishing detail relative to the background

Many samples have poor inherent contrast

Bright Field image of Insect Cells

Without contrast, magnification and resolution are irrelevant

In Transmitted Light Microscopy contrast can be generated by:

- Altering the light absorption of a sample (e.g., stains)
- Increasing the phase shift of light on a sample (special optics)

Transmitted Light Optical Contrasting **Techniques**

Bright Field

Phase-Contrast

 DIC/NIC (Differential Interference Contrast/Nomarski Interference Contrast)

Transmitted Light Microscopy

Light from tungsten lamp focused on specimen by condenser lens and travels *through* sample

To achieve highest quality images it is essential that the sample is correctly illuminated

Köehler Illumination

- August Köehler, of the Zeiss corporation invented Köehler illumination in 1893
- Samples are uniformly illuminated
- Glare and unwanted stray light minimised
- Maximise resolution and contrast

Setting Up Köehler Illumination

- A)Focus on sample with low power objective
- Close condenser field diaphragm
- Raise condenser up to highest position
- B)Lower condenser until diaphragm image (octagon) is in focus
- C)Centre using condenser centering screws
- D)Open field diaphragm until just filling field of view
- Adjust condenser aperture diaphragm

Transmitted Light Resolution $(D)_{x,y}$ =1.22 λ /N.A. objective +N.A. condenser

The Condenser Diaphragm Balances System CONTRAST and RESOLUTION

Extent of aperture diaphragm closure

80% open is optimal for most applications

Bright Field Microscopy

Image contrast produced by *absorption* of light

- Specimens commonly look coloured on white background
- May be due to natural pigments or introduced stains (e.g., histology)

Walther Flemming's 1882 illustrations of "MITOSIS" (Greek for "thread") using *non-specific* aniline dyes

But stained samples are DEAD!!! Dynamics? Artefacts?

Phase-Contrast Microscopy

Human eyes detect differential absorption-If light is not absorbed by a sample you cannot see it

Phase-Contrast Microscopy:

Small changes in the phase of light are converted into visible contrast changes

No staining is required

Vertebrate Culture Cells0 min

 $\begin{array}{ccc}\n & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
 & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
 & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
 & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
 & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
 & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
 & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
 & \mathbf{1} & \$

Phase-Contrast Microscopy

In Phase-Contrast microscopy the optical path of the microscope is modified so that it converts phase changes into an image

- Light from lamp emerges as a hollow cone
- Light is refracted by the sample But *not* the background

A phase ring at the focal plane of the objective exaggerates phase differences between refracted and un-refracted light

These appear as intensity differences in recombined image

[www.olympusmicro.com/primer/techniques/p](http://www.olympusmicro.com/primer/techniques/)hase contrast/phase.html

Differential Interference Contrast (DIC) **Microscopy**

- Contrast based on exaggerating differences in Refractive Index of object and surrounding medium
- Objects have a'relief' like appearance

DOES *NOT* PROVIDE TOPOLOGICAL INFORMATION

Surface analysis requires alternative techniques: e.g., Scanning Electron Microscopy (SEM)

Generates the highest resolution image of any transmitted light method

Generates the thinnest optical section of any transmitted light method

Well suited for high resolution live cell studies

Stem Cell

Mitotically Dividing Neuroblast

How Does DIC work?

1) Light emitted from Lamp is polarised by Polariser 1

2) Polarised light passes through Wollaston Prism 1, is split into Ordinary (**O**) and Extraordinary (**E**) rays separated by diffraction limit

3) **O** and **E** differentially interact with sample- **O** (passes/refracts through nucleus)-pathway longer than **E**

4) Objective Lens focuses **O** and **E** into Wollaston Prism 2 for recombination

5) Combined ray passes through Polariser 2 and then into detector for viewing

Comparing Transmitted Light Optical Contrasting **Techniques**

Modified from www.olympusmicro.com/primer/techniques/dic/dicphasecomparison.html

Epi-Fluorescence Microscopy: A Tool for Molecule-Specific Imaging

Dividing Vertebrate Cells (Salamander and Human)
Epi-Fluorescence Microscopy

Common Applications

- Co-localisation
- Dynamics
- **Protein-Protein Interactions**
- **Protein Post-translational Modifications**

Epi-Fluorescence Microscope Configurations

- Widefield (classic fluorescence microscope)
- **Scanning Confocal**

Fluorescence- The process whereby a molecule emits radiation following bombardment by incident radiation

What is Fluorescence and How Does it Work?

The emitted wavelength is *ALWAYS LONGER and Lower Energy -* Stoke's shift

Short wavelength/High energy **Long wavelength/Low energy**

Fluorophores Have Unique Fluorescence Spectra

Fluorescence Spectrum of Alexa 488

GAUSSIAN Absorption and Emission Profiles

Peak values listed by manufacturers

*Prolonged excitation damages fluorophore and prevents emission **PHOTOBLEACHING***

Modified from Lodish 6th Fig 9.10a

Hg Lamp- spectrum of excitation light wavelengths (350-600nm)

Lasers- Discreet wavelength per laser (e.g., 405nm, 488nm, 561nm, 633nm)

Alternatives: Light Emitting Diodes (LEDs) discreet wavelength per LED

Metal Halide Lamp (e.g., Xenon; broad spectrum of *visible* wavelengths

Epi-fluorescence Microscopes Require Filters

3 Component System

Bandpass Filter – blocks wavelengths outside of selected interval (e.g., AT480/30x; only 465- 495nm transmitted)

Longpass Filter - blocks wavelength transmission below some value (e.g., AT515LP; ≥515nm transmitted)

Shortpass Filter - attenuates longer wavelengths and transmits (passes) shorter wavelengths

Dichroic mirror - reflects excitation beam and transmits emitted (e.g., AT505DC; ≥505nm transmitted)

3 Classes of Fluorescent Probes Provide Specific Labelling

1) Dye-small organic molecule conjugates that directly bind their targets

All are cell membrane permeable and can be used on living samples

2) Dye-antibody conjugate labelling

Direct Immunofluorescence

- Antibody from host animal has fluorescent probe covalently attached
- Antibody-Probe binds to target epitope

Indirect Immunofluorescence

- Antibody from host animal 1 binds to target epitope
- Probe-conjugated antibody from animal 2 binds antibody 1

Pros: Signal amplified

Cons:

Second antibody may non-specifically bind to sample resulting in "dirty" staining

Both require samples to be fixed and permeabilised with detergents

3) Dye-free genetically encoded labels

The Fluorescent Protein (FP) Revolution

Green Fluorescent Protein (GFP)

2º Structure

Chromophore

- Protein first isolated and studied in 1962 in "squeezates" by Shimomura
- Gene cloned in 1992 by Prasher et al.,
- Used as an in vivo marker by Chalfie and co-workers in 1994

GFP and Fluorescent Protein Technology have provided *unparalleled* insights into biological processes

GFP Glows WITHOUT Additional Cofactors or Agents

- **238 a.a. long**
	- ~ 27 kDa
- Stable at physiological range of Temperatures and pHs
	- Rapid folding (and glowing)

GFP is NON-TOXIC, uses conserved codons and can be fused to genes of interest from any organism

The Fluorescent Protein Revolution

The Nobel Prize in Chemistry 2008

"for the discovery and development of the green fluorescent protein, GFP"

Osamu Shimomura

Martin Chalfie

Roger Y. Tsien

PubMed results for "Fluorescent Protein" and "GFP"

The Fluorescent Protein (FP) Palette

FPs engineered/isolated from other organisms with variants covering the spectrum

Chromophore differs but all have β-Barrel

Modified from Shaner et al., 2007

Many suffer from forming dimers/tetramers– can lead to artefacts

In vivo Molecular Specificity

Tubulin::EGFP Histone:mCherry

The Fluorescent Protein (FP) Palette

FP experiment considerations:

- 1) Does FP interfere with protein function?
	- Is placement better on N or C term?
		- Does tag form multimers?

2) Is FP bright and photostable enough for experiment?

3) Are FPs spectrally distinct?

EGFP and mCherry EGFP and EYFP

Well defined Extreme overlap-hard to resolve

Fluorescent Proteins as Optical **Highliters**

Fluorescent Proteins as Highliters

Some Fluorescent Proteins can be differentially controlled by light

- PA-GFP (ex. 504nm; em. green)
- PA-mCherry1 (ex. 564nm; em. red)

Fluorescent Proteins as Highliters

Photoconvertible

Fluorescent Proteins can serve as timers

DsRed derivatives- all tetrameric DSRed-E5 green-to-red ~18 hours

Image Acquisition: Digital Imaging

Digital Imaging

- Easy work flow from microscope to presentation (seminars, publications, etc.,)
- Software allows data manipulation and analysis at your desk
- Storage footprint and expense minimal

The Pathway of Digital Image Formation

The Pathway of Digital Image Formation

Object Microscope Detector A/D Converter Computer

Detectors

Photosensitive devices that transduce incoming photons into PROPORTIONATE AND SPATIALLY ORGANISED voltage distributions

In other words.

The Pathway of Digital Image Formation It makes a map!

Each map unit is a pixel: x,y information and brightness information

The Pathway of Digital Image Formation: **Detectors**

Digital Camera

- Charge Coupled Device (CCD)
- Complementary Metal-Oxide Superconductor (CMOS)

Photomultiplier Tube (PMT)

Entire image formed simultaneously from arrays of *physically subdivided* detectors (pixels)

Image formed spot by spot (raster scanning)

The Pathway of Digital Image Formation: Detector Characteristics

Physical Pixel Size: Not so important- apparent size is (see next)

Pixel Number: Not so important– most CCDs <2MPx (1400x1080)

Dynamic Range: Total range of shades 8 bit= 2^8 = 256 12bit= 2^{12} =4095 16bit= 2^{16} =65,535

Quantum Efficiency: Efficiency of electron production per photon collision CCD/CMOS 60-90% PMT ~15%

Noise: Non-signal-based contributors to the image

- Shot/Photon Noise- Random emission of photons from sample
- Thermal Noise- random e- due to thermal fluctuation in detector
- Electronic Noise- when signal transmitted from detector to A/D converter

Detector Characteristics: Pixel Size (Spatial Information)

Pixel size should be matched to system resolution

Each pixel should *appear* 1/3 to 1/2 the size of the Airy **Disk**

Pixel Size Limits Image Information Detector Characteristics: Pixel Size

0.5µm beads imaged using different pixel sizes

240nm pixel **96nm** pixel 48nm pixel

Linescans across area denoted by arrow

Oversampling offers little spatial improvement but may decrease image brightness or increase scan time

Detector Characteristics: Dynamic Range (Intensity Information)

Most monochrome images are 8 bit $(2^8 = 256$ shades) Displayed as a pseudo-coloured LOOK UP TABLE (LUT)

RGB colour images are 24 bit (Red8bit+Green8bit+Blue8bit data)

Each pixel is like a bucket

As photons strike detector, electric charge builds (fills the bucket)

The bucket's depth defines dynamic range

As photons strike, electric charge *PROPORTIONATELY* accumulates (fills the bucket)

Grey Scale LUT

Excessive "white" areas– spatial and intensity detail not visible

- *Loss of information due to saturation?*
- *No data lost- monitor screen too bright?*

Look Up Tables can reveal saturation/underexposure

"HiLo" LUT

Image Saturated

INFORMATION PERMANETLY LOST

As photons strike, electric charge *PROPORTIONATELY* accumulates (fills the bucket)

Below saturation, fluorescence intensity is proportional to collected photons and can be quantified as a metric of molecular concentrations

(Which we will explore later)

Scanning Confocal Microscopy (SCM)

A Hardware Approach to Improving Epi-Fluorescence Image Quality

Scanning Confocal Microscopy Provides Thin Optical Sections

collected from above and below focal plane

Collected fluorescence limited to focal plane

Z-axis

SCM: The Confocal Principle The sharpened image is due to the "pinhole"

An excitation laser is scanned across the sample

Pinhole located in front of detector blocks emitted light not originating from the focal plane

SCM: The Pinhole Dictates Optical Section thickness

Pinhole size 1.0 Airy Units (Default)

Pinhole size 2.0 Airy Units

Images of Microtubules in *Drosophila* cells

Opening the pinhole increases image blur

SCM: The Pinhole Size Determines Image **Brightness**

Images of *Drosophila* cells imaged with identical settings *EXCEPT* for the pinhole diameter

(Microtubules DNA)

1.0 Airy Units (Default) 2.0 Airy Units 0.5 Airy Units

A larger pinhole creates a thicker optical section and allows more light to be captured

Pinholes < 1 Airy Unit reduce signal intensity but DO NOT significantly improve image quality

SCM: 3D Reconstructions

Any automated epi-fluorescence microscope can collect optical sections

Scanning Confocal Microscopy EXCELS with THICK specimens

Z-series

Fruit fly Brain (52 sections, 2µm steps)

Pollen Grain (52 sections, 0.4µm steps)

Max. Intensity Proj. Max. Intensity Proj.

Surface Rendering $\frac{9!}{\sqrt{2!}}$ Surface Rendering

Scanning Confocal Microscopy vs.

Widefield Epi-Fluorescence Microscopy

Pros:

- Thinner optical section
- Superior signal:background
	- 3D reconstructions from optical slices
- Better for imaging into thick specimens (5μ m vs 50μ m)
- Ability to bleach/activate in fixed area of virtually any shape (FRAP/FRET)
- The ability to magnify without loss of intensity

Cons:

- Substantial loss of emitted sample signal (<90%)
- **Excitation lasers may rapidly photobleach sample**
- SLOW scan speed so not ideal for studying living/fast events

In other words, experimental needs dictate the technique

More than "pretty pictures": Light Microscopy As A Quantitative Tool
Measuring Protein Dynamics:

Fluorescence Recovery After Photobleaching (FRAP)

1) Pre-bleach: GFP-tagged molecules dynamically associate with structure

2) Bleach: HIGH ENERGY LIGHT IRREVERSIBLY damages targeted chromophores preventing further fluorescence

3) Recovery: Fluorescence returns to the structure as unbleached molecules exchange with and "dilute out" bleached ones

FRAP at work: Kinetochore Protein Dynamics

Drosophila mitotic cell expressing GFP tagged Klp67A

FRAP reveals:

- % of protein pool that is dynamically exchanging
- Rate of mobility

 \bigwedge Pre-bleach fluorescence intensity

B Post-bleach intensity plateau

Difference between A-B reveals non-dynamic population

C Slope identifies mobility rate Steeper is more rapid

 $T_{1/2}$ ~6 sec

Studying Protein-Protein Interactions: Bimolecular Fluorescence Complementation (BiFC)

Fluorescent Protein cloned as two separate halves

(e.g., YFP; N-term a.a. 1-154 + C-term 155-238) fused to candidate interactors (A, B)

Neither fragment glows **A-B** interact and YFP halves come together; YFP fluoresces

Quantify fluorescence intensity of each to reveal efficiency of binding

 \div A and B need to be within ~10nm

Binding irreversible- not good for dissociation kinetics

Studying Protein-Protein Interactions: Förster Resonance Energy Transfer (FRET)

Measure fluorescence intensity to reveal efficiency of binding

- Donor Emission must OVERLAP Acceptor Excitation
	- Chromophores are ≤10nm apart

FRET as a Quantitative Biosensor

Sites and durations of Mechanical Tension

Tension LOW: A contacts B; **FRET**

Tension HIGH: A and B separated **FRET LOST**

Protein Modifications e.g., Local kinase activity

Chromophore interaction is a function of DISTANCE and **ORIENTATION**

N-terminal fragment fused at the N-terminal protein A + C-terminal fragment fused at the N-terminal protein B N-terminal fragment fused at the N-terminal protein A + C-terminal fragment fused at the C-terminal protein B N-terminal fragment fused at the C-terminal protein A + C-terminal fragment fused at the N-terminal protein B N-terminal fragment fused at the C-terminal protein A + C-terminal fragment fused at the C-terminal protein B C-terminal fragment fused at the N-terminal protein A + N-terminal fragment fused at the N-terminal protein B C-terminal fragment fused at the N-terminal protein A + N-terminal fragment fused at the C-terminal protein B C-terminal fragment fused at the C-terminal protein A + N-terminal fragment fused at the N-terminal protein B C-terminal fragment fused at the C-terminal protein A + N-terminal fragment fused at the C-terminal protein B

And don't forget, the linker needs to be long and flexible enough to permit interactions as well!

It's Alive!!!!!!!

Dealing with Living Material

- What is physiological temperature?
- How metabolically active is it? Do waste products induce immediate insult? Is gas required?

Excitation light induces photobleaching and phototoxicity

- Shorter $\lambda \rightarrow h$ higher energy $\rightarrow h$ higher resolution \rightarrow more phototoxic
- Longer $\lambda \rightarrow$ less phototoxic but poorer resolution
- Limit exposure time/laser excitation power \rightarrow but this means a weaker signal
- Limit z-series \rightarrow but this means less spatial information
- Limit sampling (framing) rate \rightarrow but this means poorer temporal resolution

Compromise based on EMPIRICAL DETERMINATION BALANCING *WANTS* vs *NEEDS*

Useful Online References and Primers:

<http://www.microscopyu.com/> <http://zeiss-campus.magnet.fsu.edu/index.html> <http://www.olympusmicro.com/index.html>

Online spectra comparison <http://www.chroma.com/spectra-viewer>

Questions?

LUNCH TIME!

ImageJ: A Free to Use Image Analysis Programme

By Wayne Rasband

http://imagej.nih.gov/ij/

There are multiple routes to answering any experimental challenge

If you have questions. . . ASK!

Getting Around ImageJ: Layout

Getting Around ImageJ: Loading Data Sets

ImageJ can open just about any data format. . . (e.g., .Lif, .avi, .tif)

Open "SpindlePicture" image from "Workshop2014DataSets" folder

Cursor Coordinates

Pixel Intensity at Cursor

Histogram: Distribution of Shades in an Image

LOOK UP TABLES (LUTs) change image displays but *not* their intensity values

Image->Adjust->Brightness/Contrast: changes display but not image data

An RGB colour image is 3 intensity channels with 3 different LUTs

Channel1=Red=Kinetochores Channel2=Green=Microtubules Channel3=Blue=DNA Composite=Colour Image with

- Open "RGBMitosis" image from "Workshop2014DataSets" folder
	- \triangleright Look at Values with cursor, Try to alter LUT
		- > Image->Color->Split Channels
		- > Image->Color->Merge Channels

Make a Composite Image

Separate LUTs

Note: Channel #

 Manipulate LUTs and Brightness/Contrast for each Channel

Save altered LUT choices as RGB image

> Image->Color->Type->RGB Color

File->Save As->Tiff

Open "RGBMitosis3D" image from "Workshop2014DataSets" folder

z-plane information

3D data sets are called "Stacks"

 \triangleright Move through the volume- different information lay in different sections

Stacks can be manipulated

Image->Stacks

To further view the 3D Information:

Image->Stacks->Orthogonal Views

z-plane slider

- \triangleright Move through the volume by dragging the crosshair
- *ANY* image can be saved by selecting it and going to: File->Save As->Tiff->. . .

To collapse the volume into a single 2D projection:

Image->Stacks->Z Project

 \triangleright Set top and bottom limits (exclude "empty" sections) Choose "Max Intensity"

Is having more sections better? Worse?

Getting Around ImageJ: Measurements Spatial Analyses Require Image Calibration

 \triangleright Image- \triangleright Properties...

If not in the file header ask/determine empirically

Getting Around ImageJ: Measurements

To add a Scale Bar

Analyze->Tools->Scale Bar. . .

Getting Around ImageJ: 2D Distance Measurements

Open "3DMeasureRGB" from "Workshop2014DataSets" folder

 \triangleright Collapse to Max. Int. Proj

Use Line Tool to draw line between centrosomes

Measure Line By: Analyze->Measure OR \triangleright Ctrl + M

 \triangleright Copy and Paste Results in **Spreadsheet** (i.e., Excel)

Getting Around ImageJ: 3D Distance Measurements

Open "3DMeasureRGB" from "Workshop2014DataSets" folder

Plugins->Macros-> "3D-Distance-Tool Options"

Separation distance in x,y,z is 12.58 µm vs. 9 µm in x,y

2D projections may be misrepresentations of separations and distances

Open "FieldofCells" image from "Workshop2014DataSets" folder

How many nuclei are in the field and how large are they?

We could manually count and measure or have the computer do the labour

Remember: Object Signal Intensity = Signal of Interest + **Background**

1) Determine Background

- \triangleright Use Freeform tool to define background (more area is better)
- \triangleright Measure and Determine Mean Intensity

2) Subtract Background

orrected Resultant Image

Background=0

Thresholding and Automated Analysis

Segmentation: Defining objects of interest from the background and one another

> Image->Adjust->Threshold

Corrected

Only intensities between 22-255 will be registered

8 bit image reduced to 2 bit (red signal on black background)

Thresholding and Automated Analysis

Analyze->Set Measurements

Define Parameters to be Measured

Thresholding and Automated Analysis

\triangleright Analyze- \triangleright Analyze Particles

UTPUT

Outlines of -1 $-$ Summary **Thresholded/ Individual Results** File Edit Font **Analysed** Slice Count Total Area Average Size ∣%Area Mean Mode Perim IntDen **Table**-32 59.402 76.406 47.062 35.198 4597.711 FieldofCells.tif 1900.874 2.848 **Particles** $\overline{}$ IntDen Rawtret 4672 7340 Avg. Int. Den 22 **Total** Avg Area **Intensity** $\overline{22}$ 124 22 65 33 2244 35255 $O O$ $22\,$ 142 32 3991 62700 Particle $\text{(um}^2)$ Data (Mean Int. 3368 52919 \odot # Total % image Avg. *Area) \circ \odot Intensity in two forms: Area Perim area \odot thresholded (um) (um) *Mean Int.*Area Sum of Int.* \circ_{\odot} $_{\odot}$

Summary of Results Table

Getting Around ImageJ: Object Counting

Thresholding and Automated Analysis

BUT COMPUTERS ARE IMPERFECT!

Nuclei missed/# underestimated Partial nuclei counted/# overestimated, area underestimated (can remove via "Exclude on edges")

Linescans reveal intensity *distributions*

How does the distribution of Klp67A vary?

Linescans compare intensity *distributions*

Open "FluorQuantRGB" image from "Workshop2014DataSets" folder

Changing line width or orientation affects profile

On Line Tool->Double left click

Line Width $\left| \cdot \right|$ \triangleright $\overline{1}$ \Box Spline Fit

To save plot: File->Save As->Tiff

Quantifying Subcellular Intensities

How do we quantify the discreet accumulations of the protein shown in RED?

Open "FluorQuantRGB" image from "Workshop2014DataSets" folder

But any intensity data is R+G+B

We want Red Channel Intensity only

Need to isolate red channel

Image->Color->Split Channels

Three individual channels

Remember: Signal Intensity = Signal of Interest + Background This varies within the image so can't globally subtract it

Red Channel

- Draw ROI encompassing *Object*
- \triangleright Measure Intensity (Ctrl + M)

Move ROI to *appropriate BACKGROUND*

 \triangleright Measure Intensity (Ctrl + M)

Copy and Paste Results in Spreadsheet (i.e., Excel)

 \triangleright Use Equation: Intensity_{Corrected}= (Intensity_{Signal} – Intensity_{Background})/Intensity _{Background} Intensity $_{\text{Corrected}} = (5947 - 5213)/5213$ 0.14 *Arbitrary Units*

What is "appropriate" Background and why does if matter?

Background *MUST* reflect measured object's local environment

 $Intensity_{Corrected} = (Int._{\text{Signal}} - Int._{\text{Background}})/Int._{\text{Background}}$

Background too high=Intensity_{Corrected} too low Background too low= Intensity_{Corrected} too high

To compare data between samples/slides, *imaging conditions should be constant*

This means that exposure/laser power/gain/etc., must be determined for brightest sample first (to avoid saturation)

(Demonstration Only)

How fast do the chromosomes move during division?

Useful data requires adequate SPATIAL and Temporal resolution (~3 pixels movement per time point) Fluorescence and Transmitted Light data can be tracked

- Object "automatic tracking" plugins for ImageJ:
- Difference Tracker
- MTrackJ2
- **MultiTracker**
- **-** ObjectTracker
- **SpeckleTrackerJ**
- **SpotTracker**
- **TrackMate**

All based on segmentation

Requires:

- **-** Thresholding (defining object vs. background)
- **-** Defining object/particle size
- Objects MUST remain *distinct* to be followed with confidence

Semi-Automated Tracking **MTrackJ** By Erik Meijering

http://www.imagescience.org/meijering/software/mtrackj/

Each mouse click positions data point and advances to next frame

Copy/export data for further analysis

Kymographs: Time/Space Plots

e.g., Kbi Kymograph, Kymograph, MultipleKymograph

Kbi Kymograph (Kbi Tools Plugins) By Natsumaro Kutsuna http://hasezawa.ib.k.u-tokyo.ac.jp/zp/Kbi/ImageJKbiPlugins

What is a kymograph?

Because pixels are calibrated in space and time SLOPE=VELOCITY

Kymographs: Time/Space Plots

Basic procedure illustrated with Kbi Kymograph

Open data set

Make Max. Int. projection to reveal object movement pathway

Draw line along object pathway

Duplicate line on original data set

Edit->Selection->Restore Selection

Make kymograph

Plugins->Kbi_Kymograph

Analyse kymograph to get slope/velocity

- \triangleright Draw line along object edge
- > Plugins->Kbi_KymoMeasure
	- **≻ Calibrate**
	- \triangleright Copy/Export velocity
Acknowledgements

Jordan Taylor (TEM) J.W.Taylor@massey.ac.nz

Niki Murray (SEM) N.A.Murray@massey.ac.nz

Remember, MMIC is now free for Massey Work!