

MASSEY UNIVERSITY TE KUNENGA KI PŪREHUROA

UNIVERSITY OF NEW ZEALAND

Light Microscopy and Digital Imaging Workshop

Matthew S. Savoian

M.S.Savoian@massey.ac.nz

Nov 14, 2014

Purpose:

Provide a primer on different light microscopy imaging and analysis techniques -and their limitations- using MMIC-based equipment as practical examples

Programme

Morning Session 10:00-12:00

Introduction to Light Microscopy

- Basic Concepts: Magnification, Resolution, Depth of Field
- Different Transmitted Light Modalities

Epi-Fluorescence Microscopy

- Mechanism of Fluorescence
- Widefield Epi-Fluorescence Microscope Components
- Fluorescent Probes/Stains (Fluorescent Proteins as Biosensors)
- Fundamentals of Digital Imaging
- Scanning Confocal Microscopy

Afternoon Session 13:00-15:00

ImageJ as a Tool for Digital Image Analysis

- ImageJ Basics
- Histograms, LUTs and Displays
- 2D and 3D Spatial Measurements
- Use of Linescans
- Quantitation of Fluorescence Intensity
- Quantifying Movement

Analysis of attendee data- as time permits

Principles of Microscopy

Microscopy allows us to view processes that would not be visible to the naked eye

- Object too small we cannot see objects smaller than about 0.1mm or the thickness of a human hair)
- Object lacks contrast (Stains/Phase-Contrast/DIC)
- Process too slow (time-lapse) or not visible in nature (molecular dynamics or interactions-FRAP, FRET)

Every microscope has limits

Poor sample preparation is a recipe for disappointment and poor imaging

Milestones in Microscopy

100- Romans use crystals as "magnifying" and "burning" lenses 1595-Jensen makes first compound microscope 1665- Hooke publishes his "*Micrographia*" and coins the term "cell" 1676- Van Leeuwenhoek observes "animalcules" (bacteria) 1800s- Microscopes improved; theoretical limits of light microscopy determined

1931- Knoll and Ruska produce first Transmission Electron Microscope (TEM)

1945- Porter et al., use TEM to look at tissue culture cells

1967- Modern Epifluorescence microscope invented 1980s- Macromolecular Reconstructions using TEM and tomography 1994- Chalfie et al., use Green fluorescent protein (GFP) as an in vivo marker

1965- First commercial Scanning Electron Microscope

1987- Confocal microscope applied to cell biology

2000s- superresolution invented

Resolution of Different Microscopes

Common Light Microscope Imaging Methods

Transmitted Light Modalities (absorption/phase shift)

- Bright Field
- Phase-Contrast
- Differential Interference Contrast (DIC)

Epi-Fluorescence Light Modalities (emission)

- Widefield
- Scanning Confocal

Upright Light Microscope Anatomy

Configured For:

Transmitted Light

- Brightfield
- Phase-Contrast
- Differential Interference Contrast

IMAGE FORMATION: Attributes of Microscopes

Magnification

Resolution

Refraction: Bending of light as wave changes speed when travelling through different materials (e.g., a straw looking bent in a glass of water)

Diffraction: Bending of light as wave encounters an object or edge

These processes are the core of microscope image formation

Magnification How big something appears

- Compound microscope used in conventional light microscopy utilises several lenses
- Objective lens (closest to specimen) 2.5x-100x
- Projection lens (eyepiece/other) 10x, etc.,
- Total magnification is the product of the magnification of the individual lenses
- Apparent Image Size can be misleading- size must be determined using calibration or scale bars

But magnification can be "empty"

Resolution

What is resolution?

Smallest distance apart at which two points on a specimen can still be seen separately

This is directly related to the light collecting capability of the optical system

---The Objective Lens---

The Diffraction Pattern Defines the Image Characteristics

The Airy Disk (2D diffraction pattern)

Using a self-luminous object as an example

Modified from http://zeiss-campus.magnet.fsu.edu

The Airy Disk (2D diffraction pattern) Dictates Object Apparent Lateral Size

Using a self-luminous object as an example

$$D_{x,y} = 0.61 \lambda / N.A$$

λ=wavelength of emitted light N.A.=Numerical Aperture of Objective Lens (light collecting power of lens)

For Example:

A 50nm bead imaged with a 100x oil Immersion Lens (NA 1.4) emitting 520nm (green) light $D_{x,y}=0.61(520nm)/1.4$

 $D_{x,y} = 0.61(520nm)/1.4$ $D_{x,y} = 226nm$

The *minimum apparent* lateral size of *an* object viewed at 520nm light is 226nm

The Airy Disk Dictates Resolvable Lateral Separation Distance

 $\begin{array}{ll} D_{x,y} = \text{Lateral Resolution} & \lambda = \text{wavelength of emitted light} \\ D_{x,y} = 0.61 \lambda / \text{N.A.} & \text{N.A.} = \text{Numerical Aperture (light collecting power of lens)} \end{array}$

For Example:

A 50nm bead imaged with a 100x oil Immersion Lens (N.A. 1.4) with 520nm (green) light

D_{x,y}=0.61(520nm)/1.4 D_{x,y}=226nm

Two objects spaced closer than 226nm appear as one

- Shorter wavelengths give higher resolution
- Higher N.A. gives higher resolution

Magnification has no impact on lateral resolution

The Point Spread Function is the 3D Diffraction pattern

P Object (50nm)

 $D_z = \frac{520 \text{nm}(1.515)}{(1.4)^2}$

 $D_z = 401$ nm

The *minimum apparent axial size* and *separation distance* of an object emitting 520nm light is ~400nm

Axial (Z) resolution is ~ $\frac{1}{2}$ of lateral (XY) resolution

Magnification has no impact on axial resolution

Images are comprised of Airy Disks/PSFs

How do we exceed the diffraction limit?

Alternative technologies

- Transmission Electron Microscopy (TEM) Resolution: ~5nm (Atomic!)
- "Super-resolution" Light Microscopy Resolution: ~70-150nm (depending on method)

Deciphering the Objective Lens

Objective Lens N.A. Determination

Objective Lens

Lower N.A. lenses collect less light; therefore images are less bright and *lower* resolution

Highest possible N.A. in air is ~0.95 0.95=1.0 (sin72)

Higher magnification lenses have a shorter focal length, greater θ and commonly require oil to capture the light and achieve higher N.A.

!!!oil should never contact a dry lens!!!

Addition of oil to a dry lens distorts light collecting pathway

Depth of Field

Amount of a specimen in focus at the same time

Depth of field (DoF) decreases with increased magnification and N.A.

Table from www.olympusmicro.com/primer/anatomy/objectives.html

Contrast

or

Distinguishing detail relative to the background

Many samples have poor inherent contrast

Bright Field image of Insect Cells

Without contrast, magnification and resolution are irrelevant

In Transmitted Light Microscopy contrast can be generated by:

- Altering the light absorption of a sample (e.g., stains)
- Increasing the phase shift of light on a sample (special optics)

Transmitted Light Optical Contrasting Techniques

Bright Field

Phase-Contrast

 DIC/NIC (Differential Interference Contrast/Nomarski Interference Contrast)

Transmitted Light Microscopy

Light from tungsten lamp focused on specimen by condenser lens and travels *through* sample

To achieve highest quality images it is essential that the sample is correctly illuminated

Köehler Illumination

- August Köehler, of the Zeiss corporation invented Köehler illumination in 1893
- Samples are uniformly illuminated
- Glare and unwanted stray light minimised
- Maximise resolution and contrast

Setting Up Köehler Illumination

- A)Focus on sample with low power objective
- Close condenser field diaphragm
- Raise condenser up to highest position
- B)Lower condenser until diaphragm image (octagon) is in focus
- C)Centre using condenser centering screws
- D)Open field diaphragm until just filling field of view
- Adjust condenser aperture diaphragm

Transmitted Light Resolution (D)_{x,y}=1.22 λ /N.A._{objective}+N.A._{condenser}

The Condenser Diaphragm Balances System CONTRAST and RESOLUTION

Extent of aperture diaphragm closure

Contrast

80% open is optimal for most applications

Bright Field Microscopy

Image contrast produced by *absorption* of light

- Specimens commonly look coloured on white background
- May be due to natural pigments or introduced stains (e.g., histology)

Human Tissue

Walther Flemming's 1882 illustrations of "MITOSIS" (Greek for "thread") using *non-specific* aniline dyes

But stained samples are DEAD!!! Dynamics? Artefacts?

Phase-Contrast Microscopy

Human eyes detect differential absorption-If light is not absorbed by a sample you cannot see it

Phase-Contrast Microscopy:

Small changes in the phase of light are converted into visible contrast changes

No staining is required

Vertebrate Culture Cells

... And that means you can study living samples!

Phase-Contrast Microscopy

In Phase-Contrast microscopy the optical path of the microscope is modified so that it converts phase changes into an image

- Light from lamp emerges as a hollow cone
- Light is refracted by the sample But not the background

 A phase ring at the focal plane of the objective exaggerates phase differences between refracted and un-refracted light

These appear as intensity differences in recombined image

www.olympusmicro.com/primer/techniques/phase contrast/phase.html

Differential Interference Contrast (DIC) Microscopy

- Contrast based on exaggerating differences in Refractive Index of object and surrounding medium
- Objects have a 'relief' like appearance

DOES NOT PROVIDE TOPOLOGICAL INFORMATION

Surface analysis requires alternative techniques: e.g., Scanning Electron Microscopy (SEM)

Generates the highest resolution image of any transmitted light method

Generates the thinnest optical section of any transmitted light method

Well suited for high resolution live cell studies

Mitotically Dividing Neuroblast Stem Cell

How Does DIC work?

1) Light emitted from Lamp is polarised by Polariser 1

2) Polarised light passes through Wollaston Prism 1, is split into Ordinary
(O) and Extraordinary (E) rays separated by diffraction limit

3) **O** and **E** differentially interact with sample- **O** (passes/refracts through nucleus)-pathway longer than **E**

4) Objective Lens focuses **O** and **E** into Wollaston Prism 2 for recombination

5) Combined ray passes through Polariser 2 and then into detector for viewing

Comparing Transmitted Light Optical Contrasting Techniques

Characteristic	Bright Field	Phase Contrast	DIC
Good for transparent samples?	No	Yes	Yes
Good for stained samples?	Yes	No	Yes
Halos?	No	Yes	No
3D effect?	No	No	Yes
Can use plastic slides/containers?	Yes	Yes	No
Brightness?	100%	1.3%	0.36-2.3%
Fluorescence light loss?	0%	28%	73%

Modified from www.olympusmicro.com/primer/techniques/dic/dicphasecomparison.html

Epi-Fluorescence Microscopy: A Tool for Molecule-Specific Imaging

Dividing Vertebrate Cells (Salamander and Human)
Epi-Fluorescence Microscopy

Common Applications

- Co-localisation
- Dynamics
- Protein-Protein Interactions
- Protein Post-translational Modifications

Epi-Fluorescence Microscope Configurations

- Widefield (classic fluorescence microscope)
- Scanning Confocal

Fluorescence- The process whereby a molecule emits radiation following bombardment by incident radiation

What is Fluorescence and How Does it Work?

The emitted wavelength is ALWAYS LONGER and Lower Energy - Stoke's shift

Short wavelength/High energy

Long wavelength/Low energy

Fluorophores Have Unique Fluorescence Spectra

Fluorescence Spectrum of Alexa 488

GAUSSIAN Absorption and Emission Profiles

Peak values listed by manufacturers

Prolonged excitation damages fluorophore and prevents emission **PHOTOBLEACHING**

Modified from Lodish 6th Fig 9.10a

Illumination Sources

Hg Lamp- spectrum of excitation light wavelengths (350-600nm)

Lasers- Discreet wavelength per laser (e.g., 405nm, 488nm, 561nm, 633nm)

Alternatives: Light Emitting Diodes (LEDs)discreet wavelength per LED

Metal Halide Lamp (e.g., Xenon; broad spectrum of *visible* wavelengths

Epi-fluorescence Microscopes Require Filters

3 Component System

Bandpass Filter – blocks wavelengths outside of selected interval (e.g., AT480/30x; only 465-495nm transmitted)

Longpass Filter - blocks wavelength transmission below some value (e.g., AT515LP; ≥515nm transmitted)

Shortpass Filter - attenuates longer wavelengths and transmits (passes) shorter wavelengths

Dichroic mirror - reflects excitation beam and transmits emitted (e.g., AT505DC; ≥505nm transmitted)

3 Classes of Fluorescent Probes Provide Specific Labelling

1) Dye-small organic molecule conjugates that directly bind their targets

Target Species	Probe Function	Example Probe
Various Ions	pH/Ion Concentration	pHRhodo/Fura-2
Lipids	Localisation	Nile Red
Proteins	Localisation	Fast Green
Actin	Localisation	Phallodin-alexa dye conjugate
Microtubules	Localisation	Taxol-alexa dye conjugate
Nucleic Acid	Localisation	Hoecsht33342, SYTO dyes
Mitochondria	Localisation	MitoTracker
ER	Localisation	ER-tracker
Lysosomes	Localisation	LysoTracker
Golgi	Localisation	Ceramide-BODIPY conjugate

All are cell membrane permeable and can be used on living samples

2) Dye-antibody conjugate labelling

Direct Immunofluorescence

- Antibody from host animal has fluorescent probe covalently attached
- Antibody-Probe binds to target epitope

Indirect Immunofluorescence

- Antibody from host animal 1 binds to target epitope
- Probe-conjugated antibody from animal 2 binds antibody 1

Pros: Signal amplified

Cons:

Second antibody may non-specifically bind to sample resulting in "dirty" staining

Both require samples to be fixed and permeabilised with detergents

3) Dye-free genetically encoded labels

The Fluorescent Protein (FP) Revolution

Green Fluorescent Protein (GFP)

- Protein first isolated and studied in 1962 in "squeezates" by Shimomura
- Gene cloned in 1992 by Prasher et al.,
- Used as an in vivo marker by Chalfie and co-workers in 1994

GFP and Fluorescent Protein Technology have provided *unparalleled* insights into biological processes

GFP Glows WITHOUT Additional Cofactors or Agents

- 238 a.a. long
 - ~27 kDa
- Stable at physiological range of Temperatures and pHs
 - Rapid folding (and glowing)

GFP is NON-TOXIC, uses conserved codons and can be fused to genes of interest from any organism

The Fluorescent Protein Revolution

The Nobel Prize in Chemistry 2008

"for the discovery and development of the green fluorescent protein, GFP"

Osamu Shimomura

Martin Chalfie

Roger Y. Tsien

PubMed results for "Fluorescent Protein" and "GFP"

The Fluorescent Protein (FP) Palette

FPs engineered/isolated from other organisms with variants covering the spectrum

mPlum mGrape2	Protein*	Color of spectral class	Excitation peak (nm)	Emission peak (nm)	Association state [‡]
	EBFP2	Blue	383	448	Weak dimer
mRaspberry	ECFP ^{‡‡}	Cyan	433/445	475/503	Weak dimer
mGrape1	mCerulean	Cyan	433/445	475/503	Monomer
mCherry	mTFP1	Cyan-green	462	492	Monomer
incheny	mEGFP	Green	488	507	Monomer
mStrawberry	mEmerald	Green	487	509	Monomer
mTangerine	sfGFP	Green	485	510	Weak dimer
IdTomato	EYFP ^{‡‡}	Yellow	514	527	Weak dimer
IdTomato	mVenus	Yellow	515	528	Monomer
mOrange	mCitrine	Yellow	516	529	Monomer
mBanana	YPet	Yellow	517	530	Weak dimer
	mKO	Orange	548	559	Monomer
mHoneydew	tdTomato	Orange	554	581	T-dimer
Citrine	TagRFP	Orange	555	584	Monomer
EGFP	mRFP1 ^{‡‡}	Red	584	607	Monomer
	mCherry	Red	587	610	Monomer
ECFP	mKate	Far-red	588 635		Monomer
E8FP	mPlum	Far-red	590	649	Monomer

Chromophore differs but all have β-Barrel

Modified from Shaner et al., 2007

Many suffer from forming dimers/tetramers- can lead to artefacts

In vivo Molecular Specificity Tubulin::EGFP Histone:mCherry

The Fluorescent Protein (FP) Palette

Protein*	Color of spectral class	Excitation peak (nm)	Emission peak (nm)	Association state [‡]
EBFP2	Blue	383	448	Weak dimer
ECFP ^{‡‡}	Cyan	433/445	475/503	Weak dimer
mCerulean	Cyan	433/445	475/503	Monomer
mTFP1	Cyan-green	462	492	Monomer
mEGFP	Green	488	507	Monomer
mEmerald	Green	487	509	Monomer
sfGFP	Green	485	510	Weak dimer
EYFP ^{‡‡}	Yellow	514	527	Weak dimer
mVenus	Yellow	515	528	Monomer
mCitrine	Yellow	516	529	Monomer
YPet	Yellow	517	530	Weak dimer
mKO	Orange	548	559	Monomer
tdTomato	Orange	554	581	T-dimer
TagRFP	Orange	555	584	Monomer
mRFP1 ^{‡‡}	Red	584	607	Monomer
mCherry	Red	587	610	Monomer
mKate	Far-red	588	635	Monomer
mPlum	Far-red	590	649	Monomer

FP experiment considerations:

- 1) Does FP interfere with protein function?
 - Is placement better on N or C term?
 - Does tag form multimers?

2) Is FP bright and photostable enough for experiment?

3) Are FPs spectrally distinct?

Well defined

EGFP and EYFP

Extreme overlap-hard to resolve

Fluorescent Proteins as Optical Highliters

Fluorescent Proteins as Highliters

Some Fluorescent Proteins can be differentially controlled by light

- PA-GFP (ex. 504nm; em. green)
- PA-mCherry1 (ex. 564nm; em. red)

Photoswitchat	ole (on/off)	<u>Excite</u> (nm)	Inactivate (nm)	<u>Activate</u> (nm)
 Dronpa rsEGFP2 Dreiklang 	(em. green) (em. green) (em. green/vellow)	503 478 511	503 503 405	400 408 365
 rsCherry 	(em. red)	572	450	550

Fluorescent Proteins as Highliters

Photoconvertible

			Conversion Wavelength (nm)
•	PS-CFP2	cyan-to-green	405
•	Dendra2	green-to-red	480
•	PCDronpa2	green-to-red	405
•	mEOS2	green-to-red	405
•	Kaede	green-to-red	405
•	psmOrange2	orange-to-far re	ed 489

Fluorescent Proteins can serve as timers

mCherry Derivatives		
Blu	e-to-Red Fluorescence Conversion Time (Hours)	
 Fast-FT 	~4	
 Medium-FT 	~7	
 Slow-FT 	~28	
DsRed derivatives- all tett	rameric	
DSRed-E5 green-to-red ~18 hours		

Image Acquisition: Digital Imaging

Digital Imaging

- Easy work flow from microscope to presentation (seminars, publications, etc.,)
- Software allows data manipulation and analysis at your desk
- Storage footprint and expense minimal

The Pathway of Digital Image Formation

The Pathway of Digital Image Formation

Object Microscope Detector A/D Converter Computer

Detectors

Photosensitive devices that transduce incoming photons into PROPORTIONATE AND SPATIALLY ORGANISED voltage distributions

In other words. . .

The Pathway of Digital Image Formation It makes a map!

Each map unit is a pixel: x,y information and brightness information

The Pathway of Digital Image Formation: Detectors

Digital Camera

- Charge Coupled Device (CCD)
- Complementary Metal-Oxide Superconductor (CMOS)

Photomultiplier Tube (PMT)

Entire image formed simultaneously from arrays of *physically subdivided* detectors (pixels)

Image formed spot by spot (raster scanning)

The Pathway of Digital Image Formation: Detector Characteristics

Physical Pixel Size: Not so important- apparent size is (see next)

Pixel Number: Not so important– most CCDs <2MPx (1400x1080)

Dynamic Range: Total range of shades 8bit= 2⁸=256 12bit= 2¹²=4095

 $16bit = 2^{16} = 65,535$

Quantum Efficiency: Efficiency of electron production per photon collision CCD/CMOS 60-90% PMT ~15%

Noise: Non-signal-based contributors to the image

- Shot/Photon Noise- Random emission of photons from sample
- Thermal Noise- random e- due to thermal fluctuation in detector
- Electronic Noise- when signal transmitted from detector to A/D converter

Detector Characteristics: Pixel Size (Spatial Information)

Pixel size should be matched to system resolution

Each pixel should appear 1/3 to 1/2 the size of the Airy Disk

Detector Characteristics: Pixel Size Pixel Size Limits Image Information

0.5µm beads imaged using different pixel sizes

240nm pixel

96nm pixel

48nm pixel

Linescans across area denoted by arrow

Oversampling offers little spatial improvement but may decrease image brightness or increase scan time

Detector Characteristics: Dynamic Range (Intensity Information)

Most monochrome images are 8 bit (2⁸ =256 shades) Displayed as a pseudo-coloured LOOK UP TABLE (LUT)

RGB colour images are 24 bit (Red8bit+Green8bit+Blue8bit data)

Each pixel is like a bucket

As photons strike detector, electric charge builds (fills the bucket)

The bucket's depth defines dynamic range

As photons strike, electric charge *PROPORTIONATELY* accumulates (fills the bucket)

Grey Scale LUT

Excessive "white" areas – spatial and intensity detail not visible

- Loss of information due to saturation?
- No data lost- monitor screen too bright?

Look Up Tables can reveal saturation/underexposure

"HiLo" LUT

Image Saturated

INFORMATION PERMANETLY LOST

As photons strike, electric charge *PROPORTIONATELY* accumulates (fills the bucket)

Below saturation, fluorescence intensity is proportional to collected photons and can be quantified as a metric of molecular concentrations

(Which we will explore later)

Scanning Confocal Microscopy (SCM)

A Hardware Approach to Improving Epi-Fluorescence Image Quality

Scanning Confocal Microscopy Provides Thin **Optical Sections**

Drosophila cells stained for Microtubules and DNA

collected from above and below focal plane

limited to focal plane

SCM: The Confocal Principle The sharpened image is due to the "pinhole"

An excitation laser is scanned across the sample

Pinhole located in front of detector blocks emitted light not originating from the focal plane

SCM: The Pinhole Dictates Optical Section thickness

Pinhole size 1.0 Airy Units (Default)

Pinhole size 2.0 Airy Units

Images of Microtubules in Drosophila cells

Opening the pinhole increases image blur

SCM: The Pinhole Size Determines Image Brightness

Images of *Drosophila* cells imaged with identical settings *EXCEPT* for the pinhole diameter

(Microtubules DNA)

1.0 Airy Units (Default)

2.0 Airy Units

0.5 Airy Units

A larger pinhole creates a thicker optical section and allows more light to be captured

Pinholes < 1 Airy Unit reduce signal intensity but DO NOT significantly improve image quality

SCM: 3D Reconstructions

Any automated epi-fluorescence microscope can collect optical sections

Scanning Confocal Microscopy EXCELS with THICK specimens

Z-series

Fruit fly Brain (52 sections, 2µm steps)

Pollen Grain (52 sections, 0.4µm steps)

Max. Intensity Proj.

Surface Rendering

Scanning Confocal Microscopy vs.

Widefield Epi-Fluorescence Microscopy

Pros:

- Thinner optical section
- Superior signal:background
 - 3D reconstructions from optical slices
- Better for imaging into thick specimens (5μm vs 50μm)
- Ability to bleach/activate in fixed area of virtually any shape (FRAP/FRET)
- The ability to magnify without loss of intensity

Cons:

- Substantial loss of emitted sample signal (<90%)
- Excitation lasers may rapidly photobleach sample
- SLOW scan speed so not ideal for studying living/fast events

In other words, experimental needs dictate the technique

More than "pretty pictures": Light Microscopy As A Quantitative Tool
Measuring Protein Dynamics:

Fluorescence Recovery After Photobleaching (FRAP)

1) Pre-bleach: GFP-tagged molecules dynamically associate with structure

2) Bleach: HIGH ENERGY LIGHT IRREVERSIBLY damages targeted chromophores preventing further fluorescence

3) Recovery: Fluorescence returns to the structure as unbleached molecules exchange with and "dilute out" bleached ones

FRAP at work: Kinetochore Protein Dynamics

Drosophila mitotic cell expressing GFP tagged Klp67A

FRAP reveals:

- % of protein pool that is dynamically exchanging
- Rate of mobility

A Pre-bleach fluorescence intensity

B Post-bleach intensity plateau

Difference between A-B reveals non-dynamic population

C Slope identifies mobility rate Steeper is more rapid T_{1/2} ~6 sec

Studying Protein-Protein Interactions: Bimolecular Fluorescence Complementation (BiFC)

Fluorescent Protein cloned as two separate halves

(e.g., YFP; N-term a.a. 1-154 + C-term 155-238) fused to candidate interactors (A, B)

 A-B interact and YFP halves come together; YFP fluoresces

Quantify fluorescence intensity of each to reveal efficiency of binding

✤ A and B need to be within ~10nm

Binding irreversible- not good for dissociation kinetics

Studying Protein-Protein Interactions: Förster Resonance Energy Transfer (FRET)

Measure fluorescence intensity to reveal efficiency of binding

Donor Emission must OVERLAP Acceptor Excitation
 Chromophores are <10nm apart

FRET as a Quantitative Biosensor

Sites and durations of Mechanical Tension

Tension LOW: A contacts B; FRET

Tension HIGH: A and B separated FRET LOST

Protein Modifications e.g., Local kinase activity

Chromophore interaction is a function of **DISTANCE** and **ORIENTATION**

N-terminal fragment fused at the N-terminal protein A + C-terminal fragment fused at the N-terminal protein B N-terminal fragment fused at the N-terminal protein A + C-terminal fragment fused at the C-terminal protein B N-terminal fragment fused at the C-terminal protein A + C-terminal fragment fused at the N-terminal protein B N-terminal fragment fused at the C-terminal protein A + C-terminal fragment fused at the C-terminal protein B C-terminal fragment fused at the N-terminal protein A + N-terminal fragment fused at the N-terminal protein B C-terminal fragment fused at the N-terminal protein A + N-terminal fragment fused at the C-terminal protein B C-terminal fragment fused at the C-terminal protein A + N-terminal fragment fused at the C-terminal protein B C-terminal fragment fused at the C-terminal protein A + N-terminal fragment fused at the C-terminal protein B

And don't forget, the linker needs to be long and flexible enough to permit interactions as well!

It's Alive!!!!!!!

Dealing with Living Material

- What is physiological temperature?
- How metabolically active is it? Do waste products induce immediate insult? Is gas required?

Excitation light induces photobleaching and phototoxicity

- Shorter $\lambda \rightarrow$ higher energy \rightarrow higher resolution \rightarrow more phototoxic
- Longer $\lambda \rightarrow$ less phototoxic but poorer resolution
- Limit exposure time/laser excitation power \rightarrow but this means a weaker signal
- Limit z-series → but this means less spatial information
- Limit sampling (framing) rate \rightarrow but this means poorer temporal resolution

Compromise based on EMPIRICAL DETERMINATION BALANCING WANTS vs NEEDS

Useful Online References and Primers:

http://www.microscopyu.com/ http://zeiss-campus.magnet.fsu.edu/index.html http://www.olympusmicro.com/index.html

Online spectra comparison http://www.chroma.com/spectra-viewer

Questions?

LUNCH TIME!

ImageJ: A Free to Use Image Analysis Programme

🤞 ImageJ																×
File Ed	lit Imag	e P	roce	SS	Ana	lyze	Plu	gins	Wi	ndow	Не	lp				
ЦO,	G S	~	⊿.	- +_	*	А	0	ংশ্য	Z	Dey	Stk	B	٩	P		>>
Point or multi-point (right click to switch; double click to configure)																

By Wayne Rasband

http://imagej.nih.gov/ij/

There are multiple routes to answering any experimental challenge

If you have questions. . . ASK!

Getting Around ImageJ: Layout

Getting Around ImageJ: Loading Data Sets

ImageJ can open just about any data format. . . (e.g., .Lif, .avi, .tif)

Open "SpindlePicture" image from "Workshop2014DataSets" folder

Cursor Coordinates

Pixel Intensity at Cursor

Histogram: Distribution of Shades in an Image

LOOK UP TABLES (LUTs) change image displays but *not* their intensity values

Image->Adjust->Brightness/Contrast: changes display but not image data

An RGB colour image is 3 intensity channels with 3 different LUTs

Channel1=Red=Kinetochores Channel2=Green=Microtubules Channel3=Blue=DNA

- > Open "RGBMitosis" image from "Workshop2014DataSets" folder
 - Look at Values with cursor, Try to alter LUT
 - Image->Color->Split Channels
 - Image->Color->Merge Channels

Make a Composite Image

Composite=Colour Image with Separate LUTs

🛔 Merge Channe	ls	×
C1 (red):	RGBMitosis.tif (red)	-
C2 (green):	RGBMitosis.tif (green)	•
C3 (blue):	RGBMitosis.tif (blue)	•
C4 (gray):	*None*	•
C5 (cyan):	*None*	•
C6 (magenta):	*None*	•
C7 (yellow):	*None*	•
Create co	mposite	
🗆 Keep sou	rce images	
🗌 Ignore so	urce LUTs	
		OK Cancel

Note: Channel #

Manipulate LUTs and Brightness/Contrast for each Channel Save altered LUT choices as RGB image

Image->Color->Type->RGB Color

File->Save As->Tiff

Open "RGBMitosis3D" image from "Workshop2014DataSets" folder

z-plane information

3D data sets are called "Stacks"

Move through the volume- different information lay in different sections

Stacks can be manipulated

Image->Stacks

To further view the 3D Information:

Image->Stacks->Orthogonal Views

z-plane slider

- > Move through the volume by dragging the crosshair
- ANY image can be saved by selecting it and going to:
 File->Save As->Tiff->...

To collapse the volume into a single 2D projection:

Image->Stacks->Z Project

Set top and bottom limits (exclude "empty" sections)
 Choose "Max Intensity"

Is having more sections better? Worse?

Getting Around ImageJ: Measurements Spatial Analyses Require Image Calibration

Image->Properties...

If not in the file header ask/determine empirically

Getting Around ImageJ: Measurements

To add a Scale Bar

➢ Analyze->Tools->Scale Bar. . .

Getting Around ImageJ: 2D Distance Measurements

Open "3DMeasureRGB" from "Workshop2014DataSets" folder

Collapse to Max. Int. Proj

Use Line Tool to draw line between centrosomes

Measure Line By: ➤ Analyze->Measure OR ➤ Ctrl + M

🛓 Re	sults										_ 🗆 🗾	ĸ
File	Edit	Font	Results									
	Area	Mean	StdDev	Mode	Min	Мах	Perim.	Angle	IntDen	RawIntDe	Length	
1	1	52	12	44	39	86	9	-10	55	3807	9	-
•												

Copy and Paste Results in Spreadsheet (i.e., Excel)

Getting Around ImageJ: 3D Distance Measurements

Open "3DMeasureRGB" from "Workshop2014DataSets" folder

Plugins->Macros-> "3D-Distance-Tool Options"

Separation distance in x,y,z is 12.58 µm vs. 9 µm in x,y

2D projections may be misrepresentations of separations and distances

Open "FieldofCells" image from "Workshop2014DataSets" folder

How many nuclei are in the field and how large are they?

We could manually count and measure or have the computer do the labour

Remember: Object Signal Intensity = Signal of Interest + Background

1) Determine Background

- Use Freeform tool to define background (more area is better)
- Measure and Determine Mean Intensity

🛓 R	esults	6							٢
File	Edit	Font 1	esults						
	Area	Mean	StdDev	Mode	Min	Max	IntDen	RawintDen	-
1	42448	6	1	5	3	22	239722	3766578	Ĭ
		$\mathbf{\nabla}$							_

2) Subtract Background

File Edit Image Process Analyze Plugins Window	Help		Co
Smooth Ctri-Shift-S Sharpen Find Edges Find Maama Enhance Contrast	5. 1 0 × ×	Process->Math->Subtract	
Noise • Shadows • Binary • Mam •	Add		
FFT Filters Batch Image Catculator Subtract Background Repeat Command Ctri+Shift+R	External Multiply Divide AND OR XOR Min Max Gamma Set Log Exp Souace Souace	Value: 6 Preview Preview Result	>
	Square Root Reciprocal NaN Background Abs Macro.		

Corrected Resultant Image

Background=0

Thresholding and Automated Analysis

Segmentation: Defining objects of interest from the background and one another

Image->Adjust->Threshold

Corrected

Only intensities between 22-255 will be registered

8 bit image reduced to 2 bit (red signal on black background)

Thresholding and Automated Analysis

Analyze->Set Measurements

Define Parameters to be Measured

Thresholding and Automated Analysis

Analyze->Analyze Particles

Ουτρυτ

Outlines of - -Summary Thresholded/ Individual Results File Edit Font Analysed Count | Total Area %Area **Table** Slice Average Size Mean Mode Perim IntDen FieldofCells.tif 32 1900.874 59.402 2.848 76.406 47.062 35.198 4597.711 **Particles** Þ 4672 Avg. Int. Den Total Avg Area Intensity 22 59 124 41 22 65 33 2244 35255 22 142 32 3991 62700 Particle (um^2) Data (Mean Int. 3368 52919 Total # % image Avg. *Area) Intensity in two forms: Area Perim area thresholded (um)(um)Mean Int.*Area Sum of Int. •

Summary of Results Table

Getting Around ImageJ: Object Counting

Thresholding and Automated Analysis

BUT COMPUTERS ARE IMPERFECT!

Nuclei missed/# underestimated Partial nuclei counted/# overestimated, area underestimated (can remove via "Exclude on edges")

Getting Around ImageJ: Comparing and Quantifying Fluorescence

Linescans reveal intensity distributions

How does the distribution of Klp67A vary?

Getting Around ImageJ: Comparing and Quantifying Fluorescence

Linescans compare intensity distributions

Open "FluorQuantRGB" image from "Workshop2014DataSets" folder

Use line tool to draw line ROI across structures/features of interest

Use multi-segment line since object is not straight

Plugins->Colour Functions->RGB Profiler

Distance in PIXELS

Intensity in Arbitrary Units

Changing line width or orientation affects profile

On Line Tool->Double left click

Line Width

To save plot: ➤ File->Save As->Tiff

Getting Around ImageJ: Comparing and Quantifying Fluorescence

Quantifying Subcellular Intensities

How do we quantify the discreet accumulations of the protein shown in RED?

Getting Around ImageJ: Comparing and Quantifying Fluorescence

Open "FluorQuantRGB" image from "Workshop2014DataSets" folder

But any intensity data is R+G+B

We want Red Channel Intensity only

Need to isolate red channel

Image->Color->Split Channels

Three individual channels

Getting Around ImageJ: Comparing and Quantifying Fluorescence

Remember: Signal Intensity = Signal of Interest + Background This varies within the image so can't globally subtract it

Red Channel

- Draw ROI encompassing Object
- Measure Intensity (Ctrl + M)

Move ROI to appropriate BACKGROUND

Measure Intensity (Ctrl + M)

Copy and Paste Results in Spreadsheet (i.e., Excel)

Use Equation: Intensity_{Corrected}= (Intensity_{Signal} – Intensity_{Background})/Intensity_{Background}) Intensity_{Corrected}=(5947-5213)/5213 0.14 Arbitrary Units

Getting Around ImageJ: Comparing and Quantifying Fluorescence

What is "appropriate" Background and why does if matter?

Background *MUST* reflect measured object's local environment

Intensity_{Corrected} = (Int._{Signal} – Int._{Background})/Int. _{Background}

Background too high=Intensity_{Corrected} too low Background too low= Intensity_{Corrected} too high

To compare data between samples/slides, imaging conditions should be constant

This means that exposure/laser power/gain/etc., must be determined for brightest sample first (to avoid saturation)

(Demonstration Only)

How fast do the chromosomes move during division?

Fluorescence and Transmitted Light data can be tracked Useful data requires adequate SPATIAL and Temporal resolution (~3 pixels movement per time point)

- Object "automatic tracking" plugins for ImageJ:
- Difference Tracker
- MTrackJ2
- MultiTracker
- ObjectTracker
- SpeckleTrackerJ
- SpotTracker
- TrackMate

All based on segmentation

Requires:

- Thresholding (defining object vs. background)
- Defining object/particle size
- Objects MUST remain *distinct* to be followed with confidence

Semi-Automated Tracking MTrackJ By Erik Meijering

http://www.imagescience.org/meijering/software/mtrackj/

Each mouse click positions data point and advances to next frame

Copy/export data for further analysis

Kymographs: Time/Space Plots

e.g., Kbi Kymograph, Kymograph, MultipleKymograph

Kbi Kymograph (Kbi Tools Plugins) By Natsumaro Kutsuna http://hasezawa.ib.k.u-tokyo.ac.jp/zp/Kbi/ImageJKbiPlugins

What is a kymograph?

Because pixels are calibrated in space and time SLOPE=VELOCITY

Kymographs: Time/Space Plots

Basic procedure illustrated with Kbi Kymograph

Open data set

Make Max. Int. projection to reveal object movement pathway

Draw line along object pathway

Duplicate line on original data set

Edit->Selection->Restore Selection

Make kymograph > Plugins->Kbi_Kymograph

Analyse kymograph to get slope/velocity

- Draw line along object edge
- Plugins->Kbi_KymoMeasure
 - Calibrate
 - Copy/Export velocity
Acknowledgements

Jordan Taylor (TEM) J.W.Taylor@massey.ac.nz

Niki Murray (SEM) N.A.Murray@massey.ac.nz

Remember, MMIC is now free for Massey Work!