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Abstract

Graphical processing Units (GPUs) are finding
widespread use as accelerators in computer clusters.
It is not yet trivial to program applications that use
multiple GPU-enabled cluster nodes efficiently. A key
aspect of this is managing effective communication
between GPU memory on separate devices on separate
nodes. We develop a algorithmic framework for Finite-
Difference numerical simulations that would normally
require highly synchronous data-parallelism so they
can effectively use loosely coupled GPU-enabled clus-
ter nodes. We employ asynchronous communications
and appropriate memory overlay of computations and
communications to hide latency.

Index Terms

GPU; asynchronous communications; clusters;
CUDA; MPI

1. Introduction

Accelerators such as Graphical Processing Units
(GPUs) have steadily been finding a role in super-
computer systems in recent years and at the time of
writing are particularly prominent in major interna-
tional systems featuring in the Top500 list of Super-
computers [1]. The Tianhe-1A(top), Nebulae(second)
and Tsubame(fourth) all employ GPU accelerators and
apparently seventeen major systems out of the Top 500
in November 2010 all use NVIDIA GPUs to accelerate
node performance.

There is therefore some importance in understanding
how GPU accelerators behave when combined in a
multi-processor system for various applications. The
Linpack benchmark[2] used by the compilers of the
Top 500 list tests capabilities in dense linear algebra.

Figure 1. Ray-traced rendering of a Cahn-Hilliard
system simulated on a GPU cluster.

This is certainly an important application paradigm but
there are others and we are interested in simulation
models on recti-linear in hyper-dimensional systems.
A good test application for this paradigm is that of
solving finite-difference field equations in one, two,
three and higher hyper-dimensional meshes.

In previous work[3] we considered dual GPU accel-
eration of a single compute node and we have since
been able to experiment with triple and quadruple[4]
GPUs-per-node as well as a range of different GPU
models with varying numbers of cores and memory
configurations. In this present paper we study the
tradeoff space that arises from decomposing a hyper-
dimensional rectilinear problems such as solving a
high-order partial differential equation (PDE) using
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finite-difference methods [5] on a GPU-accelerated
cluster.

Finite-difference methods are still used extensively
in computational simulations – particularly in wave-
based seismic exploration applications[6] and gener-
ally are straightforward to parallelise using geometric
stencil methods of decomposition which attain good
computational speedup[3], [7] and especially on GPUs
[8], [9], [10], [11].

There are various ways to “slice and dice” the data
set – and in fact for a typical simulation problem of
a physical system one can often choose the system
size to best fit the memory configuration and layout of
the parallel system. In this paper we report on results
for a periodic mesh simulation of the Cahn-Hilliard
equation for materials science using a second-order
space/second-order-time finite-differencing approach.
The technique (and our code) extends to other sys-
tems such as the Time-Dependent Ginzburg-Landau
equation[12] as well, and it explores a slightly different
tradeoff space in communications versus computations,
since the TDGL uses complex number arithmetic
whereas the Cahn-Hilliard model field is wholly real.

There are a number of useful parallel program-
ming technologies that could be employed for these
simulations. In this paper we focus on the combina-
tion of the open standard Message Passing Interface
(MPI)[13], [14] to program inter-node communications
and NVIDIA’s Compute Unified Device Architecture
(CUDA) [15], [16], [17] programming language for
programming the calculations on the GPUs themselves.

It is not especially difficult to now build a GPU-
accelerated cluster and we report some performance
data on a cluster comprising sixteen GPU-accelerated
desktop processors connected with cheap 1G Eth-
ernet, which suffices for the work we report here.
Commodity-priced switchgear using 10G Ethernet is
becoming available although 100G Ethernet or Infini-
Band switching systems[18] would be more desirable
to achieve good bandwidth that is compatible with
present generation CPU clock frequencies.

Halo problems of the nature we describe are not new.
A great deal of work has been done on data-parallelism
as it pertains to such applications[19]. However manag-
ing the computation to communications ratio of regular
mesh problems on parallel platforms remains a chal-
lenge particularly in the case of hybrid architectures.
The tradeoff space shifts around with the coming of
each new parallel platform and we present a study of
parameters and (well-known) issues as they pertain to
a hybrid system where a multi-dimensional simulation
model can be geometrically decomposed across cluster
nodes in one of the dimensions, and across the memory

and data-parallel thread structure of the accelerating
GPU in the other two dimensions.

The use of asynchronous communications across
multiple GPU systems is still not yet a widely-known
approach and we build on our prior work[3] with
multiple GPUs hosted from a single GPU and show
the importance of asynchronous communications for
a GPU cluster with multiple CPUs accelerated with
GPUs. We also include some reference performance
data from our example simulation model on com-
binations of single and multiple GPUs by way of
comparison.

The application problem we use as a benchmark for
our study is a second-order-space/second-order-time
partial differential equation – the Cahn-Hilliard field
equation [20], [21], [22], which is used for simulations
of phase separation in materials science. Figure 1
shows an example of a simulated Cahn-Hilliard model
system, ray-traced to show the spinodally decomposing
interfaces between two phases after a long period
of computational thermal quenching. The numerical
methods we describe also apply to other partial differ-
ential equations such as the Ginzburg-Landau model
of super-conductivity[12], [23], [24] and many other
application areas, although we focus on the parallel
data distribution and MPI/CUDA hybrid management
aspects in this present paper..

In summary therefore, we explore combinations of
Message Passing Interface (MPI) and Compute Unified
Device Architecture (CUDA) to program a very large
computationally simulated partial differential equation
model system across a cluster of NVIDIA GTX470
GPU-accelerated Intel Core 2 Quad Q9400 2.66 GHz
processor nodes. Our article is structured as follows:

In Section 2 we discuss the challenges faced when
working with multiple GPU devices. In Section 4
we present several methods of decomposing a finite-
differencing simulation across multiple GPUs on both
a single host and distributed nodes. We present and
discuss performance data in Section 5 and offer some
conclusions in Section 6.

2. Multi-GPU Systems

In previous work [3], [4] we have discussed how
the use of CUDA asynchronous memory copies can
be used to improve performance when decomposing
a finite-difference application across multiple GPUs –
connected via PCIe Express bus[25] to a single host
CPU. In this present work however we investigate how
this method performs when the GPUs are distributed
across a compute cluster – when they are hosted by
different CPUs.
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When GPUs are mounted on a single host, com-
munication between them is relatively simple and
very fast. The necessary communication data must be
copied from one device into the host memory and
then copied to the appropriate device. When the GPUs
are distributed throughout a cluster, this data must be
communicated via a network. These networks have sig-
nificantly higher latency and lower bandwidth, thus we
expect a drop in performance. The main advantage of
GPUs distributed over a cluster is improved scalability
which would otherwise be strictly limited in the case
of multiple GPUs contending with one another on a
single PCIe bus.

In practice, GPUs hosted on a single machine are
currently limited to hosting up to a maximum of
four GPUs due to motherboard physical constraints
- and sometime also by power-supply and cooling
limitations. GPU clusters in contrast have only those
physical limitations that arise from network infrastruc-
ture. However, the speed of the cluster will obviously
not scale infinitely due to communication latency lim-
itations. One advantage of increased GPU numbers
– as in a cluster over a bus-based arrangement – is
the resulting increased upper bound on feasible model
system size.

GPUs still have very limited device memory which
restricts the maximum system size that can be sim-
ulated. By decomposing the simulation across many
GPUs, this maximum simulated system size can be
increased considerably. It is an important result for
GPU clusters to explore the scalability and locate the
higher limitations for a cluster system.

GPUs come in a number of models and variations.
In this article, we have focused exclusively on NVIDIA
GPUs running the Compute Unified Device Architec-
ture (CUDA) software. Other software systems such
as the open compute language standard OpenCL are
feasible and promise functionality on other vendor’s
platforms. Our experience has been that CUDA still
delivers considerably more performance than OpenCL
and we focus solely on CUDA and NVIDIA devices
in this paper. CUDA is not totally trivial to port
applications source code to, but we employ a well-
optimised and tested source code we developed for
solving the Cahn-Hilliard equation.

3. Cahn-Hilliard Equation

We and other authors have described this equation in
detail elsewhere[20], [21], [22], but for completeness
we give a brief summary here. The equation is usually
formulated as:

∂u

∂t
= M∇2

(
−Bu + Uu3 − K∇2u

)
(1)

The field u(x, y) or u(x, y, z) is a multi-dimensional
scalar field taking values between ±1 which represent
the two extreme materials phases. So these might
represent different atomic species in an alloy or a
two separate sorts of fluids. The field is initialised
randomly then “numerically quenched” by stepping it
forwards in time. The parameters: M,U,K specify the
detailed material properties and for our benchmarking
purposes here can be set to unity. The model then
has a single remaining parameter B which controls
the temperature of the simulated quench experiment
and thus the rate at which the field separates out
into domains. The spatial calculus in the equation
employs a double Laplacian operator and thus has
a larger halo boundary – or number of neighbours
– than simpler common finite-difference equations
featuring in mathematics textbooks. The Laplacians are
approximated by finite-difference stencils to second-
order accuracy and the time-stepping must generally be
second-order for domain-growth without introducing
artifacts from numerical instability[26]. Figure 1 shows
a three dimensional model system that has been time-
stepped for many iterations after its random quench
and exhibits a complex pattern of interleaving spatial
component clusters. The figure was rendered as hyper-
surfaces that represent the interfaces between physical
domains and are shown rendered using ray-tracing.

4. Finite Difference Decomposition

To split a finite-differencing simulation of a field
equation like the Cahn-Hilliard system across a cluster
of GPUs, the field must be decomposed into sections
that can be stored and processed by each GPU. There
are many options in terms of field decomposition -
blocks, layers and so forth[27]. We have found that
decomposing the field into layers in the highest dimen-
sion has proved the most efficient. The field is split into
equal layers and spread across the GPUs in each node
of the GPU cluster. This method of decomposition is
shown in Figure 2.

The main challenge of decomposing an application
across a compute cluster is the relatively high latency
of communication across the network. This commu-
nication is especially important as the GPU acceler-
ated nodes have a higher computational throughput.
In our previous work [3], [4] on multiple GPUs on
a single host, our update algorithm communicated
the bordering information using asynchronous memory
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Figure 2. Layer decomposition of a three-dimensional field split across eight nodes in a GPU cluster.

copies to hide latency. This algorithm can be seen in
Algorithm 1.

Algorithm 1 Multi-GPU update algorithm using asyn-
chronous memory communication to hide latency.

for all steps do
Compute border cells (stream 1)
Compute remaining cells in field (stream 2)
Copy borders from GPU to host (stream 1)
Exchange borders with neighbours (CPU)
Copy new borders into GPU (stream 1)
Synchronize streams

end for

The main advantage of this algorithm for multiple
GPUs is that the communication can be performed
while the GPU is still working. The main computation
time is taken up computing the simulation for the main
body of the field. By computing the borders first and
using asynchronous memory copies, the communica-
tion can be performed during this main computation
time.

4.1. Algorithm A

This algorithm can be adapted for use with dis-
tributed GPUs. Instead of exchanging borders with
another thread through the host memory, this data must
be sent via MPI. This algorithm still allows information
to be communicated while the GPU is still computing,
however the latency of sending data across a network
is much higher than simple memory copies and we
expect a drop in performance. The adapted algorithm
is shown in Algorithm 2.

Algorithm 2 GPU cluster update algorithm using
asynchronous memory communication and MPI.

for all steps do
Compute border cells (stream 1)
Compute remaining cells in field (stream 2)
Copy borders from GPU to host (stream 1)
Send data to each neighbour (MPI)
Wait for data from neighbours (MPI)
Copy new borders into GPU (stream 1)
Synchronize streams

end for

While this algorithm does work, we found that the
performance was unpredictable when the number of
hosts was increased. This performance data is pre-
sented in Section 5. However, a simple modification
to this algorithm has provided faster and more reliable
performance.

4.2. Algorithm B

This method uses a uni-directional communication
method to exchange borders between GPU nodes.
Rather than sending an receiving one border from each
neighbour, this method sends data to only one neigh-
bour and only receives data from the other. The amount
of data sent is remains the same (each send is twice
the size of Algorithm A) but the communication is
simpler as the nodes are not trying to send and receive
data from the same neighbour. The two methods of
communication can be seen in Figure 3. The steps of
this algorithm can be seen in Algorithm 3.

This method of uni-directional communication ef-
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Figure 3. Border communication schemes between GPUs. Bi-directional communication as used by
Algorithm A (left) and uni-directional communication as used by Algorithm B (right).

Algorithm 3 GPU cluster update algorithm using
asynchronous memory communication and MPI.

for all steps do
Compute border cells (stream 1)
Compute remaining cells in field (stream 2)
Copy border from GPU to host (stream 1)
Send data to one neighbour (MPI)
Wait for data other neighbour (MPI)
Copy new border into GPU (stream 1)
Synchronize streams

end for

fectively means that the field section each node is
responsible is continuously moving through the field.
By shifting the data each time-step to accommodate the
incoming data, the field is still correct and valid. This
method provides more reliable performance and better
scalability as the number of cluster nodes increases.
These results are presented in Section 5.

5. Results and Discussion

To compare these different architectures and algo-
rithms we have measured their performance across a
range of system sizes and configurations and compared
these to single GPU implementation. First of all we
have tested the performance of our multiple GPU,
single host machine (as presented in [4]). This machine
is a Intel i7 980X with 12GB of system memory

hosting four GTX480s. The performance data of this
machine (compared to single GPU implementations)
are shown in Figure 4.

This implementation makes efficient use of all the
GPUs and provides an almost linear speedup. However,
it is limited to a maximum of four GPUs. Next
we investigate how our bi-directional communication
algorithm (algorithm A) performs on the GPU cluster.
This data is shown in Figure 5.

As can be seen from the plot, this algorithm shows
varying results and unreliable performance. The al-
gorithm also does not scale well and some systems
actually take longer with more nodes. However, this
algorithm does allow a larger number of nodes to
be utilised (our cluster is limited to 16) and thus
allows larger systems to be simulated. Finally we
compare our uni-directional communication algorithm
(algorithm B) with single GPU data (See Figure 6).

It can be clearly seen that this algorithm provides
much more reliable and scalable performance. While
it does not quite reach almost linear speed-up attained
by the single-host algorithm, it does give a consistent
performance improvement and can be scaled to many
more GPUs. Considering the increased latency due to
network communication, this algorithm provides an
efficient method of decomposing a finite-differencing
equation across a GPU cluster.

Another point of importance is the maximum sys-
tem size each architecture is able to support. Finite-
differencing systems have a somewhat limited maxi-
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Figure 4. Comparison of single GPU data and multiple GTX480s hosted on a single node. Results shown
on a linear scale (left) and ln-ln scale (right).

Figure 5. Comparison of single GPU data and 2, 4, 8 and 16 GTX470s on a distributed cluster using the
bi-directional update algorithm (A). Results shown on a linear scale (left) and ln-ln scale (right).

mum system size due to the relatively small amount
of device memory available on GPUs. The most GPUs
that the field can be split between, the more device
memory available and the larger the maximum system
size is. Table 1 shows the maximum system size each
test architecture is able to compute.

We have also investigated how these update al-
gorithms perform for three-dimensional systems. The
single-host algorithm provides the almost linear
speedup as seen previously in the two-dimensional
version. However, the GPU cluster algorithms are
somewhat disappointing. The bi-directional communi-
cation algorithm showed the same unreliable results as
experienced in two-dimensions but did provide a small

Table 1. Maximum system size that can be
simulated on each machine configuration.

Architecture Max System Size
GTX470 122882

GTX480 122882

GTX470x2 163842

GTX480x2 184322

GTX470x4 245762

GTX480x4 266242

GTX470x8 327682

GTX470x16 471042
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Figure 6. Comparison of single GPU data and 2, 4, 8 and 16 GTX470s on a distributed cluster using the
uni-directional update algorithm (B). Results shown on a linear scale (left) and ln-ln scale (right).

speedup over a single GPU.
The uni-directional algorithm close to a 2x speedup

over a single GPU with two nodes, however this per-
formance gain does not scale. Simulations decomposed
over 4, 8 and 16 nodes showing no further performance
gain (and in some cases a slight performance loss). In
three-dimensions the communication time outweighs
the computational gain of more processing nodes.

The only real advantage decomposing a simulation
over more cluster nodes is the maximum system size
that can be computed. The single GPU (GTX480)
implementation was limited to 4483, four GPUs on a
single host was capable of simulating a system of size
8963 while 16 cluster nodes were capable of computing
up to a system size of 12803.

6. Summary and Conclusions

We have reported on geometric domain decomposi-
tion results of a finite difference application problem
(the Cahn-Hilliard partial differential equation) on a
cluster of NVIDIA GPU-accelerated Intel CPUs. We
have explored combinations of multiple GPUs on a
single node as well as a cluster of single-GPU nodes.
We have presented and compared two algorithms for
managing communication between these nodes and
compared their performance.

We have shown that the increased complexity in-
volved when communicating across a network inter-
connect can cause unexpected and unreliable results as
exhibited by the bi-directional communication update
algorithm. Even minor changes such as the adoption
of a uni-directional communication method can have

drastic impact on the reliability and overall perfor-
mance of the simulation.

The algorithm we have presented makes efficient
use of distributed GPU nodes showing good scalability
and improvements in both maximum system size and
performance for two-dimensional simulations. It also
shows a limited but tangible performance gain in
three-dimensions but more importantly allows larger
simulated systems to be computed than would be
otherwise feasible in the memory of a single CPU/GPU
combination.

GP-GPU computing has already offered a new lease
of life to data-parallel computing as an accelerator for
individual CPUs. We anticipate it will now continue
to offer good means of accelerating cluster systems at
the small to medium commodity priced range using
the “gamer” grade GPUs we have discussed here as
well as blade grade systems used in supercomputers.
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