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Abstract

We examine some symplectic and multisymplectic methods for
the notorious Korteweg–de Vries equation, with the question whether
the added structure preservation that these methods offer is key in
providing high quality schemes for the long time integration of non-
linear, conservative partial differential equations. Concentrating on
2nd order discretizations, several interesting schemes are constructed
and studied.

Our essential conclusions are that it is possible to design very sta-
ble, conservative difference schemes for the nonlinear, conservative
KdV equation. Among the best of such schemes are methods which
are symplectic or multisymplectic. Semi-explicit, symplectic schemes
can be very effective in many situations. Compact box schemes are
effective in ensuring that no artificial wiggles appear in the approx-
imate solution. A family of box schemes is constructed, of which
the multisymplectic box scheme is a prominent member, which are
particularly stable on coarse space-time grids.

Keywords: Symplectic method, Multisymplectic method, Korteweg-de
Vries equation, Box scheme, Hamiltonian system

1 Introduction

The design and development of symplectic methods for Hamiltonian or-
dinary differential equations (ODEs) has yielded very powerful numerical
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schemes with beautiful geometric properties. Symplectic and other sym-
metric methods have been noted for their superior performance, especially
for long time integration. See, e.g., the books and monographs [20, 4, 9] and
the many references therein. Recall that Hamiltonian systems describe, for
instance, the motion of frictionless, energy conserving mechanical systems.
Thus, they possess marginal stability, which corresponding symplectic nu-
merical schemes mimic. This “living at the edge of stability” is enabled, at
least for sufficiently small (and possibly many!) time steps, by the implied
geometric structure that such discrete schemes conserve.

On the other hand, it has long been known that conservative discretiza-
tion schemes for nonlinear, nondissipative partial differential equations
(PDEs) governing wave phenomena tend to become numerically unstable,
and dissipation has subsequently been routinely introduced into such nu-
merical schemes. See, e.g., the books [19, 8], which describe the seminal
work of Kreiss [12] and much more. For nonlinear problems of this type, in
particular, conservative difference schemes are known to occasionally yield
numerical solutions which at first look fine, but at a later time may suddenly
explode – see Example 2.1 below. Consequently, non-dissipative schemes
were discouraged, especially for long time integration. Typical work on
pseudospectra, e.g. [21], when applied to stability studies of ODEs, also
must assume that eigenvalues are placed off the imaginary axis and into the
left half plane, so that sufficiently small circles of stability can be drawn
around them: In the context of Hamiltonian systems this corresponds to
using a slightly dissipative discretization scheme.

Thus, the common beliefs of two established communities seem headed
to a clash upon considering symplectic time discretizations for Hamiltonian
semi-discretizations and multisymplectic discretizations of certain Hamil-
tonian PDEs. The purpose of this paper is to examine this situation nu-
merically, attempting to see whether carefully designed, conservative finite
difference and finite volume discretizations can remain stable and deliver
sharp solution profiles for a long time, and if yes then to what extent sym-
plecticity structure is essential in such methods.

We therefore consider some symplectic and multisymplectic methods for
the notorious Korteweg-de Vries (KdV) equation. Following [1] we study
semi-explicit symplectic and fully implicit multisymplectic, 2nd order dif-
ference schemes. We demonstrate their accuracy and qualitative properties
after many time steps. Some such schemes, especially those based on com-
pact discretizations in both space and time, remain remarkably stable over
a wide range of problem and grid parameters (including coarse space-time
grids), and we investigate this further using steady state analysis and a
dispersion analysis.

This article builds on the work reported in [1], but it concentrates more
on the broader question posed above. Section 4.2 develops a different,
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finite volume view of the narrow box scheme (8) which then proves useful in
Section 6. The numerical examples are new, as is Section 6.1, and so are the
more general box schemes (10) and resulting minor improvements such as
(11). Indeed, there is an entire family of box schemes with similar stability
and accuracy properties to those of the multisymplectic box scheme (6).
We summarize our conclusions in the last section of the article.

2 The KdV equation

The KdV equation is given by

ut = α(u2)x + ρux + νuxxx (1)

= V ′(u)x + νuxxx, V (u) =
α

3
u3 +

ρ

2
u2.

We assume given initial conditions u(x, 0) = u0(x) and periodic boundary
conditions. See, e.g., [6] for an analytical treatment.

For this famous equation we consider finite volume and finite difference
discretizations on a fixed grid with step sizes ∆x, ∆t in space and time,
respectively. Before we start this, though, we must explain the choice of
the KdV equation as our testbed.

2.1 Why KdV?

There are several good reasons to use the KdV equation as a prototype for
our comparative study.

• It is a model nonlinear hyperbolic equation with smooth solutions for
all times.

• It is non-dissipative (although, unlike, e.g., the advection equation,
it is dispersive). Thus, the KdV equation is a natural test bed for
comparing conservative vs dissipative discretizations.

• The KdV equation (1) is notorious: a lot of previous attention has
been devoted to it (indeed, over 1001 papers are cited in MathSciNet).
Moreover, it is well-known that unexpected, “nonlinear” instabilities
occasionally arise for reasonable-looking finite difference discretiza-
tions. Let us consider a corresponding example before continuing
with our reasoning.

Example 2.1 (An unexpected instability) The following explicit,
leap-frog scheme was proposed in the 1960’s [23]. With

µ =
∆t

∆x
(2)
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the scheme at x = xi = i∆x, t = tn = n∆t reads

un+1
i = un−1

i +
2αµ

3
(un

i−1 + un
i + un

i+1)(u
n
i+1 − un

i−1)

+ ρµ(un
i+1 − un

i−1) +
νµ

(∆x)2
(un

i+2 − 2un
i+1 + 2un

i−1 − un
i−2).

Let us introduce the stencil notation used throughout this paper, which
for the above scheme reads 1

0
−1

u = µ

(
2α

3
[1 1 1]u + ρ

)
[−1 0 1]u +

νµ

(∆x)2
[−1 2 0 −2 1]u.

Freezing coefficients and applying von Neumann’s constant coefficient
stability analysis, we obtain that the time step must be restricted to satisfy

∆t < ∆x/

[
|ν|

(∆x)2
+ 2|αumax|+ |ρ|

]
.

Zhao & Qin [24] chose the data

ν = −0.0222, α = −0.5, ρ = 0
u0(x) = cos(πx), u(0, t) = u(2, t).

The solution profile at different times is displayed in Figure 1. The authors
[24] tried various ∆x, ∆t combinations satisfying the linear stability bound.
Yet they always obtained solution blowup for t > 21/π.

Indeed, setting ∆x = .01 and ∆t = .0001 the solution calculated us-
ing Matlab standard arithmetic with this explicit scheme is qualitatively
correct for a while. But around t = 5, after about 50, 000 time steps (!)
enough error accumulates in the solution so that the linear stability bound
becomes violated. After a few more steps the solution blows up.

�

The KdV equation is well-known to satisfy a lot of conservation laws.
We highlight, in particular, three properties; see [1] for more detail:

• Let ‖u(t)‖2 =
∫

u2(x, t)dx. Then, for ρ = 0, it is easy to see norm
preservation

‖u(t)‖ = ‖u0‖, ∀t.
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(For ρ 6= 0 there is a corresponding conservation property which
looks more cumbersome without being meaningfully different. See,
e.g., [1].)

• The KdV equation is a Hamiltonian PDE (e.g., [15, 4]), viz., it can
be written as

ut =
∂

∂x

δH

δu
, H =

∫ (
V (u)− ν

2
(ux)2

)
dx.

• The KdV equation has a multisymplectic structure, see [2, 3, 24, 1].
This arises from writing it as

Lzt + Kzx = ∇S(z) (3)

where K and L are antisymmetric, constant matrices, and

z = (φ, u, v, w)T

φx = u, v = −νux, w = vx +
1
2
φt − V ′(u).

Rather than getting technical, let us simply say that for us, “Multi-
symplectic = symplectic in both space and time”.

These properties may be used to design different discretizations for (1), and
the question then is what stability and qualitative accuracy properties are
obtained. Let us now continue enumerating interesting properties of KdV.

• When |ν| � 1 the PDE (1) is somehow close to the Burgers equa-
tion (the dispersion limit). See, e.g., [10, 13]. But Burgers can have
shocks, whereas the solution of (1) remains always smooth. For the
Burgers equation a non-dissipative scheme cannot avoid developing
wiggles as soon as a shock forms [10, 22]. Thus, interesting phenom-
ena crop up when approximating (1) with small ν using large ∆x.

• When |ν| is not small the term νuxxx leads to stiffness: Fast waves
can destabilize schemes. Often these fast waves are not resolved in
time.

• Many recent schemes which have appeared in the literature are fully
implicit (see, e.g., [4]). But this can be cumbersome! On the other
hand, explicit schemes are too limited. So, we considered in [1] a
semi-explicit scheme: see Section 3.2 below.

• Symplectic discretizations may not be compact, whereas multisym-
plectic discretizations are. There is no such difference, e.g., for the
classical wave equation. Here we can therefore ask, is the extra struc-
ture preservation worthwhile?
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2.2 Why not KdV?

There are also reasons that make the choice of the KdV equation as a
prototype for our study less ideal.

• The large amount of previous attention is not only a good thing,
it is also distracting to some. In this work we are pursuing only
the problem statement provided in Section 1, and thus many good
methods and analyses are necessarily left unmentioned.

• KdV is completely integrable, which is uncharacteristic of nonlinear
hyperbolic PDEs. This lessens its importance as a prototype equation
to study.

• It has only one space variable! Our comparative study here and in
[1] does take advantage of this special feature.

Despite the negatives there are sufficiently many positives to hopefully
make the present study of interest.

3 Schemes based on a classical semi-
discretization

The usual semi-discretization in space reads

ut =
α

2∆x

(
θ[−1 0 1]u2 + 2(1− θ)u[−1 0 1]u

)
(4)

+
ρ

2∆x
[−1 0 1]u +

ν

2(∆x)3
[−1 2 0 −2 1]u

where θ is a parameter.
The choice θ = 1 yields a Hamiltonian system arising from approximat-

ing

H∆ = ∆x
∑

i

(
V (ui)−

ν

2(∆x)2
(ui+1 − ui)2

)
(5)

whereas the choice θ = 2/3 yields discrete norm preservation

‖u(t)‖2∆ = ∆x
∑

i

u2
i = ‖u(0)‖2∆

(see, e.g. [22]). Thus, one must make a choice regarding which of these two
properties to preserve. However, as it turns out, there does not seem to
be a major qualitative difference in practice between choosing one of these
alternatives or the other. In particular, replacing θ = 2/3 by θ = 1 in the
explicit leap-frog scheme of Example 2.1 does not have a significant impact
on that scheme’s instability.
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3.1 Full discretization: midpoint

We next consider applying time discretization to the large ODE system (4).
An explicit scheme is usually too limited, as we have seen, and we abandon
any such possibility. On the other hand, the implicit midpoint rule preserves
the properties of the semi-discretization: With θ = 1, midpoint yields a
symplectic scheme (because the ODE (4) is Hamiltonian and midpoint is
a symplectic method), whereas with θ = 2/3, midpoint yields a norm-
preserving scheme,

‖un‖2∆ = ‖u0‖2∆ ∀n

(because midpoint reproduces quadratic invariants).
In the sequel, as in [1], we have used mostly the symplectic midpoint

scheme, although qualitatively similar results are normally obtained also
for the norm preserving version. (For an exception of sorts see Example 5.3
and Figure 4.)

In numerical experiments the implicit midpoint scheme stays stable over
a wide range of parameters for a long time. For a given discretization grid
it is often one of the more accurate among the schemes considered here
and in [1]. However, it does develop tiny spatial wiggles for relatively large
∆x, ∆t, and it can even become unstable in some extreme cases and blow
up. (The l2-stability for θ = 2/3 does not guarantee stability for ux, see
Example 5.3. And when a sharp-sawtooth approximate solution tries to
move fast the nonlinear solver eventually falls apart.) We will take this up
in Section 6. Meanwhile, let us concentrate on three other schemes.

3.2 A semi-explicit, symplectic method

Fully implicit schemes are cumbersome. One must solve large systems
of nonlinear equations at each time step. Even if using only one Newton
iteration per time step (which can be done with decent accuracy only when
using relatively small time steps, and may lose symplecticity) we must form
as well as solve a large linear system every time step or two.

So, in [1] we considered a symplectic, semi-explicit scheme, where the
nonlinear part of the KdV equation is discretized explicitly and the rest is
discretized implicitly. See also [14]. Starting from the Hamiltonian semi-
discretization ut = D∇H∆(u), D = [−1 0 1]/(2∆x), we split the Hamil-
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tonian into three parts:

H∆ = ∆x
∑

i

(
V (ui)−

ν

2(∆x)2
(ui+1 − ui)2

)

= ∆x

(∑
i

V (u2i) +
∑

i

V (u2i+1)−
∑

i

ν

2(∆x)2
(ui+1 − ui)2

)
= H1

∆ + H2
∆ + H3

∆.

The ODE ut = D∇H3
∆(u) has constant coefficients, so we apply the un-

conditionally stable implicit midpoint discretization. This requires setting
up and decomposing the matrix once. For half a time step, let us denote
the inverse of this matrix by M . To the rest we apply odd/even splitting;
e.g., the ODE ut = D∇H1

∆(u),

(u2i)t =
1
2
(V ′(u2i+1)− V ′(u2i−1)), (u2i+1)t = 0

is integrated exactly from tn to tn+1 for the even part.
Our second-order, semi-explicit symplectic scheme is now obtained by

a Strang-type splitting:

U = Mun;

Uodd = Uodd +
∆t

4∆x
(V ′(Uodd+1)− V ′(Uodd−1));

Ueven = Ueven +
∆t

2∆x
(V ′(Ueven+1)− V ′(Ueven−1));

Uodd = Uodd +
∆t

4∆x
(V ′(Uodd+1)− V ′(Uodd−1));

un+1 = MU.

A constant coefficient (von Neumann) stability analysis demands re-
stricting the time step to

∆t < ∆x/ [2|αumax|+ |ρ|].

In another small variation which we use, one can also integrate the ρux

term implicitly without extra cost, and drop ρ from the stability bound.
The selling feature of this semi-explicit scheme is that the work per

time step is roughly an order of magnitude less than for a fully implicit
method! Just how much faster the semi-explicit scheme is depends of course
on various factors, including the implementation details of the nonlinear
solver for a fully implicit scheme.
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4 Box schemes

All the schemes that we have seen so far use a non-compact semi-
discretization of the form (4), so cannot be multisymplectic.

Hence, we applied in [1], following [24], a compact scheme in both x and
t centered at a cell (box), or a finite volume, with the corners

(xi, tn), (xi+1, tn), (xi, tn+1), (xi+1, tn+1).

Like the implicit midpoint the schemes obtained here are fully implicit;
but they are also compact, hence we hope to avoid those extra wiggles that
may appear when using (4).

4.1 Multisymplectic box

The box scheme, i.e. compact midpoint in both x and t applied to a first
order PDE form such as (3), has been around for many years [16, 11, 5].
Recall that KdV can be written as (3). Zhao & Qin [24] showed, following
[18, 3], that for KdV the result is multisymplectic. Eliminating φ, v, w, a
12-point scheme was obtained in [24],

1
16∆t

 1 3 3 1
0 0 0 0
−1 −3 −3 −1

u =
1

4∆x

[
−1 0 1
−1 0 1

]
V ′
(

1
4

[
1 1
1 1

]
u

)

+
ν

4(∆x)3

−1 3 −3 1
−2 6 −6 2
−1 3 −3 1

u. (6)

This scheme turns out to be rather stable and wiggle-free in many (though
not all) situations, which is rather remarkable for a conservative, two-step,
unintuitive scheme!

In [1] we simplified (6) into the 8-point scheme

1
8∆t

[
1 3 3 1
−1 −3 −3 −1

]
u =

1
2∆x

[
−1 0 1

]
V ′
(

1
4

[
1 1
1 1

]
u

)
+

ν

2(∆x)3

[
−1 3 −3 1
−1 3 −3 1

]
u. (7)

Averaging the 8-point scheme (7) at time levels n and n− 1 gives the 12-
point scheme (6). So, using (7) or (6) we obtain identical results up to
roundoff error level if applying the 8-point scheme to initialize the 12-point
scheme.

We call (7) our multisymplectic box.
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4.2 Fully implicit narrow box

Already Reich [17] has observed that the box scheme which preserves mul-
tisymplectic properties can be obtained upon applying standard finite vol-
ume techniques to a multisymplectic (3). But now, let us apply a standard
finite volume discretization directly to the KdV equation in the form (1),
in the hope to obtain a more accurate, compact discretization at the price
of potentially abandoning multisymplecticity:

1. Write KdV in divergence form

div(u, v) ≡ ut + vx = 0,

v = −V ′(u)− νuxx.

2. Integrate this divergence free form using the Gauss Divergence The-
orem,

1
∆t

(un+1
i+1/2 − un

i+1/2) +
1

∆x
(vn+1/2

i+1 − v
n+1/2
i ) = 0.

This formula is exact, where

un
i+1/2 =

1
∆x

∫ xi+1

xi

u(x, tn)dx, v
n+1/2
i =

1
∆t

∫ tn+1

tn

v(xi, t)dt.

3. Apply the usual compact discretization for the second spatial deriva-
tive appearing in the definition of v,

−v
n+1/2
i = V ′(un+1/2

i ) +
ν

(∆x)2
[1 −2 1]un+1/2

i .

This is a second order approximation.

4. Discretize the line integrals by the trapezoidal rule. This yields the
scheme

1
2∆t

[
1 1
−1 −1

]
u =

1
∆x

[
−1 1

]
V ′
(

1
2

[
1
1

]
u

)
+

ν

2(∆x)3

[
−1 3 −3 1
−1 3 −3 1

]
u. (8)

We call (8) our narrow box scheme. The terms corresponding to first deriva-
tives in (1) have narrower stencils than in (7), whereas the third derivative
approximation is the same. The narrow scheme boasts a smaller coefficient
in its leading truncation error term than (7) has.
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5 Some numerical tests

We have identified four schemes to concentrate on: the implicit midpoint,
the semi-explicit symplectic, the multisymplectic box and the narrow box.
Next, we perform some numerical tests. For much more, see [1].

Example 5.1 (Example 2.1 again) Consider the same example as the
one used to demonstrate instability before.

Noting that 2|αumax| ≈ 2.6, we take this to be the Courant number for
the semi-explicit method. Thus, we set

µ = 0.2

both here and in Example 5.3 below.
Here we take ∆x = .005, ∆t = .001, and record relative errors at t = 5

and at t = 10 in the discrete Hamiltonian (5) (denoted Error-Ham) and
in the l2-norm (denoted Error-norm). Note that these are often under-
estimators for the maximal pointwise error. The results are displayed in
Table 1.

The main observation concerning these results is that the multisymplec-
tic box is the least accurate, and by a significant margin. On the other hand,
the semi-explicit, symplectic method shines, given its much smaller compu-
tational cost per time step. The narrow box scheme is the most accurate
on the given grid.

�

Example 5.2 (A different example) The following is also taken from
[24]. We choose

ν = −1, α = −3, ρ = 0,
u0(x) = 6sech2(x), u(−20, t) = u(20, t).

After a short while the solution has two solitons, a tall and narrow one
(maximum height = 8) and a shorter, wider one. These pulses both move
with time to the right, wrapping around as is usual for periodic boundary
conditions. But the taller soliton moves faster, hence the two occasionally
merge and then split apart again. See Figure 2 for snapshots at times t = 4
and t = 100.
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Turning to the numerical discretization, note that 2|αumax| ≈ 48. For
the semi-explicit scheme we take ∆x = .05, ∆t = .001.

But the remaining three fully implicit schemes do not share the sta-
bility restriction of the semi-explicit scheme. For them we take ∆x =
.05, ∆t = .005. This yields roughly equal computation time per time step
for all schemes. Results are recorded in Table 2.

For these parameters the fully implicit midpoint scheme happens to per-
form poorly. The coarser time step .005 is simply too rough for it, and
it displays behaviour that would be typical for a dissipative scheme. (The
variant developed in [7] and described in [4] performs similarly.) For the
finer time step .001 its accuracy is comparable to that of the others, and
the characteristics of the symplectic method re-emerge, but then it can be
argued that its computational expense is unjustified.

The other striking effect in the results of Table 2 is that these error un-
derestimators hardly deteriorate for a long time. Note that with ∆t = .001
it takes 100, 000 time steps to arrive at t = 100. These error underesti-
mators thus appear to be too good to be true! Indeed, the pointwise error
does deteriorate: The shape of the solitons is preserved by all schemes other
than midpoint with ∆t = .005, but their location is not. This well-known
numerical dispersion effect is evident in Figure 2. Further experimentation
with finer space-time grids indicates that the phase shift is significantly the
smallest in the semi-explicit plot Figure 2(a) (where the computation was
indeed performed with a smaller time step).

�

Example 5.3 (Rough grids) We now return to the problem of Example
2.1 and apply our discretization schemes using rough resolutions. By this
we mean that the discretization step ∆x is too large to be able to reconstruct
all the solution details visible at t = 10 in Figure 1. (See also [1] for another
detailed example of a similar sort.) We keep µ = 0.2 fixed.

At first we set ∆x = .02, thus ∆t = .004. The solutions are graphed in
Figure 3.

Note the extra wiggles that appear in the solution curves of those
schemes which are based on the semi-discretization (4). The box schemes
do not show such wiggles. The narrow box scheme produces a curve which
is less smooth but closer to the exact solution, whereas the multisymplectic
box scheme produces a very stable, wiggle-free, not very accurate solution.
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Next we make things really rough by setting ∆x = 1/30, hence ∆t =
1/150. Now the semi-explicit, symplectic scheme blows up before reaching
t = 10, and so do the narrow box and the symplectic midpoint schemes.
The multisymplectic box scheme is the only one which continues to produce
smooth, wavy solution profiles which, while having little to do with the exact
solution, remain very stable and could look like the exact solution of another
problem of the same type; see Figure 4(a).

As mentioned earlier, setting θ = 2/3 rather than θ = 1 in (4) and
applying implicit midpoint in time produces a scheme which is “uncondi-
tionally stable” in the l2-sense. For the present example the solution indeed
does not blow up in this case, unlike its symplectic comrade. However, it
does not look like much more than noise either, even though the l2-norm is
in relative error of only 3.9e− 8 (which comes from the accuracy tolerance
of the nonlinear solver); see Figure 4(b).

�

6 Stability of some box schemes

The apparent stability of the multisymplectic box scheme, as demonstrated
in Example 5.3 for large step sizes, is noteworthy. This is so because the
scheme is conservative, and as such only marginally stable. Moreover,
symplectic methods are generally expected to do well over a long time using
small discretization steps, not large ones; see, e.g., [9]. Is there something
magical about the multisymplectic structure?

To analyze this we consider, following [1], the linearized KdV

ut = ρ̂ux + νuxxx. (9)

The discretized (9) depends on two parameters,

r = ρ̂
∆t

∆x
, s =

ρ̂

ν
(∆x)2.

The first parameter is the signed Courant number for the semi-explicit
method, whereas the second indicates the strength of the first spatial
derivative term as compared to the third derivative term over the current
spatial grid.
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Extending [1], let us consider the general one-step box discretization

1
∆t

[
d c c d
−d −c −c −d

]
u =

ρ̂

2∆x

[
−b −a a b
−b −a a b

]
u (10)

+
ν

2(∆x)3

[
−1 3 −3 1
−1 3 −3 1

]
u.

Second order accuracy requires that a + 3b = 1, c + d = 1/2, so we really
have only two free parameters, a and c.

Clearly, the choice a = 1/4, c = 3/8 yields our multisymplectic box,
and the choice a = 1, c = 1/2 yields the narrow box. But other possibilities
arise. For instance, recalling the finite volume derivation of the narrow box
scheme we realize that a wider, 4-point spatial stencil, required anyway by
the third derivative discretization, can be used to design a more accurate
quadrature of ui+1/2, replacing the trapezoidal rule in this task. This yields
the value c = 13

24 .

6.1 The steady state case

The situation for the general box scheme (10) becomes very simple if ut = 0.
Although this is not expected to happen for interesting KdV equations, the
analysis does provide some indications as to what may be expected, at least
when ∆t is relatively large.

For (10) we obtain a linear difference scheme with the characteristic
polynomial

p(ζ) = (ζ − 1)[(sb + 1)(ζ2 + 1) + (s(a + b)− 2)ζ].

The scheme is stable only if all roots of the characteristic polynomial are
in the unit circle, which occurs if{

s < 4
1−4b , b < 1/4,

Unconditionally, b ≥ 1/4.

Note that b ≥ 1/4 implies a ≤ 1/4. Moreover, the larger b the wider
the stencil of the first derivative discretization, so the less accurate is the
corresponding truncation error term.

For the narrow box scheme we have b = 0, hence the stability condition
is s < 4, which is normally very generous. The same condition can be
easily shown to hold also for the semi-explicit discretization (4). We have
therefore obtained the following results:

• The most accurate, unconditionally stable box semi-discretization at
steady state is the multisymplectic box scheme.
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• For the narrow box, as well as the fully implicit midpoint and the
semi-explicit symplectic schemes, stability at steady state holds if

s < 4.

For Example 2.1, hence also Examples 5.1 and 5.3, representative values
are
ν = −.0222, ρ̂ = −2.6. Thus,

∆x = .005 ⇒ s = 0.134
∆x = .02 ⇒ s = 2.15

∆x = 1/30 ⇒ s = 5.96.

In particular, for ∆x = 1/30, s > 4.

6.2 Dispersion analysis

The steady state analysis is insufficient, of course, to describe the general
situation. Indeed, those extra wiggles that the non-compact schemes dis-
play in Figure 3 have not been accounted for. But in [1] we show that a
dispersion analysis does account for the more general situation.

Thus, we substitute a solution of the form

un
j = eı(ξj+ωn) = eı[(ξ/∆x)(j∆x)+(ω/∆t)(n∆t)] = u(j∆x, n∆t),

and plot dispersion curves of frequency ω vs wave number ξ for the lin-
earized KdV (9), the semi-discretization (4), the fully implicit midpoint,
and the two box schemes.

Dispersion curves at s = .134, µ = 0.2 are displayed in Figure 5(a).
We see that the box schemes exhibit excellent behaviour, qualitatively pre-
serving the exact dispersion relation. For the multisymplectic box this is a
corollary of a general proposition for (3) proved in [1]. On the other hand,
the schemes based on (4) do support combinations of small frequencies and
large wave numbers which are not supported by the exact linear KdV.

This defect of the non-compact schemes becomes more serious for larger
s. In Figure 5(b) we display dispersion curves at s = 2.15, µ = 0.2. Now,
whereas the box schemes are still qualitatively correct, for the non-compact
schemes there is a whole range of high wavenumbers which is supported by
low frequencies. Since the approximated solution is rich in low frequencies
we may expect artificial wiggles due to corresponding high wave numbers
in the approximate solutions obtained by schemes which are based on (4).
This is indeed borne out by the results reported in Example 5.3, see espe-
cially Figure 3.
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Having extended [1] by considering also other box schemes of the form
(10) we next check what happens if we let a and c take on different values,
for instance a = 1/8 and/or c = 13/24. It turns out that the obtained
schemes produce qualitatively similar dispersion curves.

Finally, we consider a case where s > 4. Dispersion curves at s =
5.96, µ = 0.2 are displayed in Figure 5(c). Now only the multisymplectic
box scheme sticks with the correct dispersion curve, qualitatively speaking.
These observations again correspond very well to our findings in Exam-
ple 5.3, particularly Figure 4.

It is tempting to conclude at this point that there is indeed something
special, not quite explained by theory, by which multisymplecticity yields
supreme stability! However, it turns out that other box schemes with a ≤
1/4 (e.g. a = 1/8), behave qualitatively the same as the multisymplectic
box with a = 1/4 does. Moreover, other box schemes of the form (10) with
c = 13/24 produce qualitatively similar dispersion curves, depending only
on the value of a. Indeed, for ut we have a variant of the midpoint rule,
regardless of the value of c, so varying c is not expected to affect stability
significantly.

Example 6.1 Running the experiments of Examples 5.2, 5.1 and 5.3 using
schemes with a ≤ 1/4 and c = 13/24 yields qualitatively similar results to
those previously discussed.

In Table 3 we display results using c = 13/24, comparing them to pre-
vious ones from Tables 1 and 2. Clearly, choosing c = 13/24 appears to
improve accuracy in a minor way, especially in terms of conserving the
l2-norm, without compromising stability.

�

7 Conclusions

• Symplectic and multisymplectic methods can provide successful con-
servative schemes for the KdV equation! Specifically, they can stay
remarkably stable and preserve sharp solution features over a very
long time.

• A symplectic, semi-explicit scheme is proposed which combines im-
plicit midpoint for the uxxx term with an explicit odd/even splitting
for the Burgers term. This usually performs well when the time step
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is restricted by a constant coefficient analysis for the explicit part
alone.

• A multisymplectic box scheme has been simplified and studied com-
pared to a narrow box scheme. These are fully implicit, hence more
expensive than the semi-explicit scheme, but they allow larger time
steps and remain remarkably stable for a wide variety of parameters.

• A steady state stability analysis for the linearized KdV indicates un-
conditional stability for a family of box schemes of which the multi-
symplectic box is the most accurate. For other schemes including the
narrow box there is conditional stability with a generous condition.

• A dispersion analysis suggests advantage to the box schemes over
schemes based on non-compact spatial discretization. The latter may
produce artificial wiggles into the solution. Even for conditionally
stable box schemes the dispersion curves indicate trouble when the
steady state stability condition is violated.

• The multisymplectic box scheme is not very accurate. It appears in-
ferior to the narrow box scheme in this regard. However, the accuracy
of both schemes can be somewhat improved without affecting their
stability properties. In particular, the scheme

1
24∆t

[
−1 13 13 −1
1 −13 −13 1

]
u =

1
2∆x

[
−1 0 1

]
V ′
(

1
4

[
1 1
1 1

]
u

)
+

ν

2(∆x)3

[
−1 3 −3 1
−1 3 −3 1

]
u (11)

offers an interesting variant of the multisymplectic box.

• It remains unclear whether the concept of multisymplecticity as such
is crucial to (approximately) preserve in practical discretizations. The
simpler concept of compact discretization in both time and space is
probably more important practically. And yet, the multisymplectic
method (6) does possess impressive properties. Its nonintuitive dis-
cretization of the nonlinear KdV term is best in terms of combining
accuracy with unconditional stability, and the scheme (11) may be
regarded as a “relative” of the multisymplectic scheme.
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Method T Error-Ham Error-norm
Multisymplectic Box 5 5.0e− 1 2.1e− 3

Narrow Box 5 6.0e− 5 4.9e− 4
Semi-explicit Symplectic 5 3.6e− 3 8.9e− 4

Implicit midpoint 5 8.4e− 5 8.9e− 4
Multisymplectic Box 10 4.8e− 1 2.0e− 3

Narrow Box 10 8.6e− 5 4.8e− 4
Semi-explicit Symplectic 10 3.7e− 3 8.7e− 4

Implicit midpoint 10 1.2e− 4 8.7e− 4

Table 1: Error indicators in Hamiltonian and norm for Example 2.1 using
∆x = .005, ∆t = .001.
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Method T ∆t Error-Ham Error-norm
Multisymplectic Box 4 .005 5.8e− 3 8.8e− 4

Narrow Box 4 .005 1.5e− 3 2.3e− 4
Semi-explicit Symplectic 4 .001 3.5e− 4 4.5e− 4

Implicit midpoint 4 .005 6.6e− 2 2.0e− 2
Implicit midpoint 4 .001 1.2e− 4 5.0e− 4

Multisymplectic Box 100 .005 5.8e− 3 8.9e− 4
Narrow Box 100 .005 1.5e− 3 2.3e− 4

Semi-explicit Symplectic 100 .001 3.5e− 4 4.5e− 4
Implicit midpoint 100 .005 3.7e− 1 1.2e− 1
Implicit midpoint 100 .001 1.1e− 4 5.0e− 4

Table 2: Error indicators in Hamiltonian and norm for Example 5.2 using
∆x = .05.
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Example 2.1 T = 10 ∆x = .005 ∆t = .001
Method a c Error-Ham Error-norm

Multisymplectic Box 1/4 3/8 4.8e− 1 2.0e− 3
1/4 13/24 4.7e− 1 3.5e− 6

Narrow Box 1 1/2 8.6e− 5 4.8e− 4
1 13/24 7.7e− 5 3.6e− 6

Midpoint 1.2e− 4 8.7e− 4
Example 5.2 T = 4 ∆x = .05 ∆t = .005

Method a c Error-Ham Error-norm
Multisymplectic Box 1/4 3/8 5.8e− 3 8.8e− 4

1/4 13/24 5.6e− 3 1.3e− 6
Narrow Box 1 1/2 1.5e− 3 2.3e− 4

1 13/24 1.4e− 3 3.2e− 7

Table 3: The effect of choosing c = 13/24. The l2-norm is better preserved
without any apparent penalty.
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Figure captions

Figure 1. Snapshots of the solution for Example 2.1.

Figure 2. Solutions for Example 5.2 at times t = 4 and t = 100. Note how
crisply all of the conservative schemes except midpoint capture the solitons
after a long time integration.

Figure 3. Solutions for Example 2.1 for a rough resolution ∆x = .02 at
time t = 10. Note the wiggles in the non-compact schemes (a) and (b).

Figure 4. Solutions for example 2.1 for a very rough resolution ∆x = 1/30
at time t = 10.

Figure 5. Dispersion curves at various values of s, with µ = 0.2, for the
linearized KdV.
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