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Abstract  Hybridisation between related taxa has a range of possible biological con-
sequences, ranging from the production of sterile offspring, through introgression of 
alleles into populations, to the formation of new species. Examples of plant and animal 
species hybridising with related taxa abound in the New Zealand region. We review New 
Zealand examples of hybridisation that have been verified with chromosomal, protein or 
DNA data. Contemporary hybridisation has been studied at hybrid zones where distinct 
populations meet and mate in a defined and stable zone of contact. The role of human 
habitat modification is highlighted with examples of recent range changes that have led 
to hybridisation and subsequent conservation problems. Hybridisation can result in the 
swamping of endangered species, although it can also act as a bridge for the transfer 
of adaptations among lineages. Historical hybridisation in New Zealand has been ex-
amined with phylogenetics and there are many examples of organelle introgression or 
capture. The origin of new species of New Zealand stick insects, ferns and daisies via 
hybridisation has been demonstrated with cytogenetic and DNA sequence evidence. 
Thus the importance of hybridisation in the evolution of New Zealand’s flora and fauna 
is highlighted.
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INTRODUCTION
Hybridisation is the mating and production of offspring between individuals from genetically 
distinct populations (Harrison 1993). Hybridisation has been variously viewed as either an 
evolutionary dead-end, or an important evolutionary process, both in the formation of novel 
lineages and as a means of linking populations and species by gene flow (see Fig. 1). As an 
important evolutionary process hybridisation can create new species (Kraus & Miyamato 1990; 
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Arnold et al. 1991; DeMarais et al. 1992; Bullini 1994; Rieseberg et al. 1995; Coyne & Orr 
2004; Schwarz et al. 2005), reinforce barriers between gene pools (Howard 1993; Coyne & Orr 
1997, 2004; Servedio & Noor 2003), limit speciation and adaptation (Slatkin 1987), swamp 
endangered species (Rhymer & Simberloff 1996) or form a bridge for transfer of adaptations 
among lineages (Arnold 2004).  
	 With the advent of new genetic tools, New Zealand biologists have taken the opportunity 
to investigate old hypotheses and erect new ones concerning hybridisation. Multilocus mo-
lecular markers permit detection of both ongoing and historical gene flow among lineages and 
detection of lineages that have arisen via hybridisation. New Zealand has a long history of 
hybridisation studies in plants especially but there are now many animal examples and even 
evidence of virus recombination on our shores. In addition, New Zealand has the advantage 
of good time keeping for constraining the age of first contact for many hybridising taxa. The 
arrival of exotic species has been well documented and geological studies give us some ability 
to date the fragmentation, expansion and hybridisation of our native species. New Zealand 
mathematicians who are developing novel methods to study hybridisation will continue to give 
us impact in the international scientific community (for example Huson 2005; Winkworth et 
al. 2005; Baroni et al. 2006; McBreen & Lockhart 2006; Bordewich & Semple 2007; Joly et 
al. 2007, in press a; Holland et al. 2008).
	 Hybridisation has been at the centre of three debates in evolutionary biology: species con-
cepts, species conservation, and origin of new flora and fauna. In each of these three areas, 
New Zealand studies offer new information or a different perspective.

Species concepts
The identification and definition of species often refers to the ability of individuals from 
different populations to mate and produce at least some fertile offspring. The biological species 
concept (Mayr 1942) is based on the principle that different species do not exchange genes, 

Fig.  1  Hybridisation is a common and important evolutionary process worldwide. The long-term 
outcome of hybridisation is dependent on the relative fitness of the hybrids and subsequent generations, 
compared to the parental taxa, as illustrated by the following New Zealand examples.
1Hemideina ricta and H. femorata (Morgan-Richards & Townsend 1995); 2Galaxias depressiceps and 
G. anomalus (Allibone et al. 1996); 3Kunzea sinclairii and Leptospermum scoparium (Harris et al. 
1992); 4Asplenium ×lucrosum (Perrie et al. 2005); 5Hemideina thoracica (Morgan-Richards et al. 2000; 
Morgan-Richards & Wallis 2003); 6Hemideina maori (King et al. 1996, 2003); 7Galaxias depressiceps 
and G. sp D (Esa et al. 2000); 8Kikihia species (Marshall et al. 2008); 9Pseudopanax lessonii and P. 
crassifolius (Shepherd & Perrie unpubl. data); 10Phormium tenax and P. cookianum (Smissen & Heenan 
2007; Smissen et al. 2008); 11Carpophyllum angustifolium and C. maschalocarpum (Zuccarello et al. 
unpubl.); 12Helichrysum lanceolatum × A. bellidioides (Smissen et al. 2007); 13Nothofagus fusca, N. 
truncata, N. solandri var. cliffortioides (Thomsen 2002; Knapp 2007); 14Himantopus novaezelandiae 
and H. leucocephalus (Greene 1999; MacAvoy & Chambers 1999; Wallis 1999); 15Metrosideros spp. 
(Gardner et al. 2004); 16Raoulia spp. (Smissen et al. 2003; Ford unpubl. data); 17Hoheria glabrata and 
H. lyallii (Heenan et al. 2005); 18Coprosma spp. (Wichman et al. 2002); 19Grahamina capito and Fos-
terygion varium (Hannan 2005); 20Brachaspis nivalis and B. collinus (Trewick 2001); 21Anas chlorotis, 
A. superciliosa and A. platyrhynchos (Kennedy & Spencer 2000; Barton 2003); 22Cyanoramphus forbesi 
and C. novaezelandiae chathamensis (Chan et al. 2006); 23Acanthoxyla (Morgan-Richards & Trewick 
2005; Buckley et al. 2008). 24Pratia angulata and P. perpusilla (Murray et al. 2004); 25Anaphalioides 
hookeri (inferred parentage A. bellidioides and A. trinervis; Smissen et al. 2003; Smissen unpubl.; 
Breitwieser et al. 1999); 26Ranunculus nivicola (Carter 2006); 27Six species of Asplenium are of hybrid 
origin (e.g., A. gracillimum has inferred parents A. bulbiferum and A. hookerianum; Perrie & Brownsey 
2005a; Shepherd et al. 2008a); 28Polystichum neozelandicum (inferred parentage P. wawranum and P. 
oculatum; Perrie et al. 2003); 29Anas superciliosa and A. platyrhynchos (Hitchmough et al. 1990); 30Hi-
eracium pilosella and H. praealtum (Morgan-Richards et al. 2004; Trewick et al. 2004); 31Prodontria 
modesta and P. bicolorata (Emerson & Wallis 1994).


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so identification of hybrids has been of fundamental importance in the resolution of species’ 
boundaries. Sometimes distinct populations that are involved in hybridisation are regarded 
as members of different species and sometimes they are regarded as conspecifics. Those who 
investigate hybridisation do not usually hold to a strict version of the biological species con-
cept, accepting that successful mating between members of different species is commonplace. 
Using the tools of molecular genetics, detecting gene flow has become straightforward, but 
delimiting species boundaries can become even more problematic as we strive to distinguish 
retained ancestral polymorphisms from those that have introgressed and understand the long-
term consequences of limited gene flow. There is a perception that zoologists have accepted 
less gene flow than botanists when describing distinct species (but see Rieseberg et al. 2006). 
There are, however, many New Zealand examples of recognised animal species that have 
low levels of gene flow with parapatric relatives, including peripatus (Trewick 1998; Trewick 
2000), tree weta (Morgan-Richards 1995; Trewick & Morgan-Richards 1995), brown teal 
(Barton 2003), parakeets (Kearvel et al. 2003) and fishes (Esa et al. 2000) (Fig. 1). Although 
the New Zealand flora has been cited as having a high frequency of interspecific hybridisation 
in plants (Cockayne & Allan 1934; Anderson & Stebbins 1954; Rattenbury 1962; Dansereau 
1964), no meaningful comparison with other floras or other analyses have been advanced to 
support the premise that hybridisation is of any more significance here than elsewhere in the 
world. Nonetheless, there are now many well documented natural interspecific and interge-
neric plant hybrids occurring in New Zealand (e.g., Connor 1967; Drury 1973; Webb & Druce 
1984; McKenzie et al. 2004; de Lange et al. 2005; Smissen et al. 2007). Phylogenetic analyses 
suggest that some intergeneric hybrids are part of poorly resolved and possibly recent species 
radiations (e.g., Damnamenia × Pleurophyllum; Wagstaff & Breitwieser 2004). In addition, 
there are a number of New Zealand animal examples of intergeneric hybridisation, such as 
stick insects and triplefin fish (Fig. 1).

Species conservation
The managers of endangered species often consider hybridisation to be a bad thing (Aviss 
1995; Rhymer & Simberloff 1996; Wallis 1994, 1999) whereas evolutionary biologists might 
regard it as a positive event (Lewontin & Birch 1966; Fitzpatrick & Shaffer 2007). In New 
Zealand there are a number of detailed studies of endangered species that hybridise and the 
conservation and evolutionary consequences of gene flow are controversial (see below).

Origin of new flora and fauna
The importance of allopolyploidy (whole genome duplication accompanying hybridisation) 
in plant evolution is now well realised internationally with most or all angiosperm species 
probably ancient (paleo-) polyploids (Masterson 1994; Soltis & Soltis 1999). It has long been 
recognised that most New Zealand vascular plants are polyploids, and that among these are 
likely to be many relatively recently formed allopolyploids (neopolyploids) with affinities to 
extant diploid (or lesser order polyploid) species (Hair 1966). Hypotheses of allopolyploid 
species origin based on morphology together with cytology have been and continue to be 
made for a number of plants including ferns (Brownsey 1977), grasses (Connor 2004) and 
orchids (Dawson et al. 2007). Molecular genetic tools have proved very useful both in testing 
these hypotheses and revealing possible additional cases of hybrid species origin, including 
animal examples (see section III below). However, putative cases of diploid hybrid origins 
can sometimes be explained by incomplete lineage sorting, introgression of cpDNA and rapid 
species radiations (Lockhart et al. 2001; Gardner et al. 2004; Smissen et al. 2004).
	 Here we divide New Zealand studies of hybridisation into human-induced (I) and natural 
examples (II) plus the special cases where hybridisation leads to the formation of new species 
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(III). Each section is further subdivided, but the physical location and consequences of hy-
bridisation and backcrossing are too complex to be classified with ease (Fig. 1).

I  HUMAN-INDUCED HYBRIDISATION
Human modification of the environment began relatively recently in New Zealand (Anderson 
1991), permitting inferences to be made on the subsequent responses of native flora and fauna. 
In particular, hybridisation of New Zealand species that in the recent (pre-human) past were 
geographically isolated has been well documented. Native species have come face to face 
with exotic species (Gillespie 1985; Gibbs 1987; Hitchmough et al. 1990) and range changes 
have brought together previously allopatric natives. For example, the cutting of water races 
by gold miners in Otago connected the galaxiid fish fauna of separate river systems (Esa et 
al. 2000). Exact dates of water race construction allow biologists to estimate gene flow on a 
background of a known number of generations since contact.
	 Plant interspecific hybrids have established in areas of significant human-induced habitat 
disturbance. For example, the native ground covering plant Pratia angulata has hybridised 
with another native P. perpusilla where they grow together at the Rotorua Golf Course form-
ing plants with 91 chromosomes (13x) and 77 chromosomes (11x; Murray et al. 2004). The 
hybrid nature of these plants has been established using molecular cytogenetics. In this ex-
ample, genomic in situ hybridisation (GISH) allowed the identification of parental genomes 
and sequencing of chloroplast (cpDNA) and nuclear (nuDNA) markers supported the hybrid 
origin hypothesis. The use of random amplified polymorphic DNA (RAPD) primers provided 
evidence that there have been multiple natural hybridisation events of these two parental spe-
cies, followed by chromosome doubling.
	 The recently described fern Asplenium ×lucrosum has been widely confused with the 
indigenous Hen and Chickens fern A. bulbiferum. However, morphological and cpDNA 
analyses indicate that A. ×lucrosum is in fact a sterile hybrid between A. bulbiferum and a 
Norfolk Island fern, A. dimorphum (Perrie et al. 2005). The similarity in morphology between 
A. ×lucrosum and A. bulbiferum has led to the former being used mistakenly instead of the 
latter in restoration projects. Although sterile, A. ×lucrosum can spread vegetatively and has 
become a “casual” adventive in some areas (Perrie et al. 2005).
	 New Zealand’s history of numerous plant introductions has produced a flora that is 50% alien 
species (Webb et al. 1988; Wilton & Breitwieser 2000). Such mixing has created unprecedented 
opportunities and pressure for hybridisation (Stace 1975; Arnold 1997). Even introduced spe-
cies have hybridised with each other producing new genotypes in the novel environment. One 
of our most aggressive introduced weed species is the hawkweed Hieracium pilosella, which 
is vigorously invading New Zealand’s high country. Hieracium pilosella mostly reproduces 
without sex, either by gametophytic apomixis or vegatatively by runners. However, there is 
a low percentage of sexual seed within populations (Chapman & Brown 2001). Genome size 
and cpDNA show that at least half of the plants in Canterbury that look like H. pilosella are 
in fact hybrids: pentaploid back-crosses with four sets of H. pilosella chromosomes and one 
set of H. praealtum chromosomes (Morgan-Richards et al. 2004; Trewick et al. 2004). Thus 
hybridisation between two introduced species has been implicated in the evolution of invasive-
ness in particular. This is a controversial topic internationally (Ellstrand & Schierenbeck 2000) 
but in New Zealand it appears that Hieracium has evolved invasiveness via hybridisation.

Ia  Conservation
Habitat destruction in New Zealand has reduced the abundance of certain species, many of 
which are now threatened with extinction. Hybridisation between a number of pairs of bird 
species is thought to have resulted from human-induced changes of species’ distributions and 
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abundance (e.g., stilts (MacAvoy & Chambers 1999; Greene 1999) and parakeets (Chan et al. 
2006)) and cross-fostering of black robins and tomtits (Ma & Lambert 1997). Humans are also 
implicated in the low numbers of weta on Banks Peninsula (Morgan-Richards & Townsend 
1995) and fur seals on Macquarie Island (Lancaster et al. 2006) where hybrids have been 
detected using genetic tools. In both these examples it is thought that relative abundance of 
species affects the selection of mates, increasing hybridisation when one species is relatively 
rare (Hubbs 1955). Likewise, for albatross on Campbell Island interbreeding of two or three 
species is exacerbated by lack of conspecific mates for the rarer black-browed form (Moore 
et al. 2001).
	 Forest clearance on Mangere Island in the Chatham Islands group is thought to have pro-
moted opportunities for hybridisation between Forbes’ parakeets (Cyanoramphus forbesi) 
and Chatham Island red-crowned parakeets (C. novaezelandiae chathamensis). The former 
species generally prefers forest habitats to open vegetation, while the latter generally resides 
in open patches of grass, scrub and herbs (Taylor 1975). A survey of mitochondrial control 
region DNA sequence haplotypes detected gene flow between the two species of parakeets. 
Chatham Island red-crowned parakeet mtDNA haplotypes were identified in DNA samples 
obtained from Forbes’ parakeet morphotypes (Boon et al. 2001; Ballantyne et al. 2004). 
Further examination with microsatellite markers has shown that the Mangere Island Forbes’ 
parakeet population has hybridised extensively with Chatham Island red-crowned parakeets, 
to an extent that there may not even be a single true Forbes’ parakeet without a history of 
hybridisation. The Mangere Island parakeet population is now composed predominantly of 
cryptic hybrids that resemble Forbes’ parakeets in appearance (Chan et al. 2006). This example 
clearly illustrates the negative impact that human-induced habitat modification can have on 
a distinctive member of the New Zealand fauna. On the other hand, immunological studies 
of these populations show that birds that look like hybrids have a stronger immune response 
than parental types (Tompkins et al. 2006). However, this work needs to be integrated with 
microsatellite identification of hybrids as plumage identification of hybrids might be biased 
by the health of the bird. Conservation managers face a dilemma: is reducing hybridisation 
the best long-term solution? It is possible that hybrid genomes improve the immunity of in-
dividuals which thus improves the long-term survival of the population, as has been found in 
North American salamanders (Fitzpatrick & Shaffer 2007). In these examples hybridisation 
could be viewed as a beneficial bridge for transfer of adaptations among lineages (Arnold 
2004).
	 During the 19th century, black stilts (Himantopus novaezelandiae; kaki) were the dominant 
wader of the unstable braided rivers of the South Island. The introduction of willows and 
intensive lowland farming has favoured the spread of the self-introduced pied stilt (H. leuco-
cephalus; poaka) from Australia to the extent that kaki are now restricted to the upper Waitaki 
where fewer than 20 pairs reside. Hybridisation between the species has compounded the 
problem, but is fortunately limited due to a difference in life history: poaka are migratory 
and kaki have usually formed pairs before their return. An active control programme against 
hybridisation has been in place for the last decade or more (Wallis 1999). Mitochondrial DNA 
studies showed that the two species are closely related but can be readily separated by PCR-
RFLP (Restriction Fragment Length Polymorphism) assay, indicating that plumage of these 
stilts indirectly reflects their haplotypes (MacAvoy & Chambers 1999).

Ib  Viral hybridisation
Hybridisation of viruses results in recombination between genetically-divergent virus strains, 
and has been detected in Feline Immunodeficiency Virus (FIV) in cats introduced into New 
Zealand. Viral recombination has been documented in certain RNA virus families, such as 
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picornaviruses, coronaviruses, alphaviruses and retroviruses (Lai 1992). Retroviruses, in 
particular, are renowned for relatively rapid recombination rates, on the order of 2% per 
kilobase per replication cycle (Hu & Temin 1990). Retroviral recombination occurs in a host 
cell during reverse transcription when the infecting virion has a heterozygous genome (Hu 
& Temin 1990).
	 The retrovirus, FIV, a close relative of HIV, has been identified in domestic cats (Felis 
catus) in New Zealand (Swinney et al. 1989; Hayward et al. 2007). Phylogenetic tree construc-
tion of envelope (env) gene sequences has shown that two of the five possible FIV subtypes 
are found in New Zealand infected cats (Hayward et al. 2007). These two subtypes, A and 
C, co-occur in cat populations, leading to dual infection and consequently recombination/
hybridisation. About 6.5% (n = 156) of New Zealand FIV-infected cats are infected with an 
A/C recombinant in the env gene (Hayward & Rodrigo 2008). These recombinant strains are 
circulating recombinant forms, that is, they are the viral progeny of the host cell where the 
recombination event occurred.
	 Viral recombination can repair substitution errors made by the enzyme reverse transcriptase, 
or can modify particular viral properties, such as virulence (Lai 1992). In this way, viruses are 
able to adapt to new environments, such as a new host species (Poss et al. 2007). Whatever 
the result of the crossover event, recombination is instrumental in the evolutionary history of 
viruses. In addition, viral recombination increases the genetic diversity of circulating viruses 
within a population, which has implications for vaccine use and development in New Zea-
land.

II  NATURAL HYBRIDISATION
Although habitat modification by humans often leads to, or exacerbates hybridisation, it is an 
important and common natural process too.

IIa  Hybrid zones (parapatry)
Genetically (and sometimes morphologically) distinct populations can meet and mate in spatio-
temporally bounded regions called hybrid zones (Harrison 1993). The position and width of a 
zone is usually stable over many generations, due to equilibrium between the ability of organ-
isms to disperse and the selective disadvantage suffered by the hybrid offspring (Barton & 
Hewitt 1985). Further stability is ensured when zones lie in density troughs (Barton 1979) or 
on ecotones (Moore 1977). Most hybrid zones involve secondary contact of populations that 
have diverged in isolation. For example, a species flock of galaxiid fishes (G. vulgaris sensu 
lato) show some limited parapatric overlap in the South Island, as a result of natural second-
ary contact, and some of these contacts show occasional hybridisation (Allibone et al. 1996). 
Within the radiation of New Zealand cicadas many parapatric species form hybrid zones upon 
contact (Marshall et al. 2008). New Zealand tree weta hybrid zones have been described on 
mountain ranges (Hemideina maori, King et al. 1996, 2003) and in lowland forest (H. thoracica, 
Morgan-Richards et al. 2000; Morgan-Richards & Wallis 2003). The use of multiple hybrid 
zones within the same species has allowed inferences about relative disadvantage suffered 
by hybrid offspring within each zone. The dispersal ability of H. thoracica individuals from 
different chromosome races is assumed to be identical and thus the difference in zone width is 
inferred as the difference in hybrid fitness. For example, the chromosome hybrid weta produced 
in a narrow region at Waitangi River where the Northland tree weta (2n = 19XO, 20XX) meet 
and mate with the Whangarei tree weta (2n = 17XO, 18XX) suffer about 10 times the hybrid 
fitness disadvantage compared to that suffered by the hybrids produced where the Karikari 
Peninsula weta (2n = 23XO, 24XX) meet and mate with the Northland tree weta (2n = 19XO, 
20XX; Morgan-Richards & Wallis 2003).
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	 Because the majority of hybrid zones form following secondary contact and taxa are often 
influenced by the same vicariant events, it is common for multiple taxa to form hybrid zones 
at approximately the same location. Volcanic activity at the Lake Taupo caldera has repeatedly 
destroyed forest in the central North Island and a number of independent genetic studies have 
found that distinct populations meet near Lake Taupo (e.g., short-tailed bat Lloyd 2003; cab-
bage tree, Armstrong unpubl.; the parasitic plant Dactylanthus taylorii Holzapfel et al. 2002; 
fern Asplenium hookerianum Shepherd et al. 2007). In addition, two chromosome races of the 
Auckland tree weta (Hemideina thoracica) meet and interbreed on the shore of Lake Taupo 
(Morgan-Richards et al. 2000). Concordance of frequency clines for four other genetic loci 
(two allozyme, one microsatellite locus, mtDNA) confirms that this is a secondary contact zone 
between two races of tree weta. The width and centres of the frequency clines of all five loci 
vary very little. The narrowest of the frequency clines is for the chromosome rearrangement. 
This rearrangement is either the direct cause of hybrid disadvantage, or is linked to loci that 
cause hybrid disadvantage. Chromosome heterozygotes often suffer reduced fertility compared 
to chromosome homozygotes due to mal-segregation of chromosomes during gamete produc-
tion (meiosis). The narrowest of the other four frequency clines seen in the weta at Taupo is 
formed by the mtDNA; in contrast to the chromosomes, it is unlikely that the mitochondrial 
genome is linked to loci under selection. However, mtDNA is only maternally inherited and 
female tree weta may have lower dispersal rates compared to males, resulting in a narrow 
mtDNA cline relative to the clines in neutral nuclear loci seen at Taupo.

IIb  Sympatry
The backcrossing of hybrids to parental species can result in gene flow between species (intro-
gression). Detecting introgression using only morphological characters can be difficult because 
backcrossed individuals can have similar morphologies to parent species. For example, some 
parakeet hybrids and backcrosses closely resemble parental species in plumage (Chan et al. 
2006), but genetic markers can detect low levels of introgression resulting from rare hybridisa-
tion events among populations. In particular, organelle genomes (chloroplasts, mitochondria) 
are very useful since the non-recombining markers are not diluted out by backcrossing, but 
are inherited intact. They are thus a more reliable signal of introgression than rare introgressed 
alien alleles, which may be present at low frequency anyway. These genomes are also more 
likely than nuclear markers to move to fixation following introgression, owing to their smaller 
effective population size (Ferris et al. 1983).
	 A few New Zealand studies have inferred historical hybridisation using incongruence of 
phylogenies (for example, Metrosideros and Nothofagus) but in these cases lineage sorting 
of ancestral polymorphism is difficult to discount. More convincing cases include the black 
robin, whose mtDNA clusters closely with that of tomtits as opposed to mainland robins 
(Miller & Lambert 2006), and three species of alpine cockroach that share a similar group of 
mtDNAs (Chinn & Gemmell 2004). Most New Zealand hybridisation studies have employed 
a combination of organelle and nuclear markers such as AFLPs (Amplified Fragment Length 
Polymorphisms) and ITS (Internal Transcribed Spacer of the ribosomal cassettes). For ex-
ample, hybridisation between two alpine grasshoppers at Mt Lyford (Kaikoura, Brachaspis 
nivalis × B. collinus; Trewick 2001) was inferred using both mitochondrial and ITS sequences, 
and frequent hybridisation and introgression between the two mountain ribbonwood species 
(Hoheria glabrata and H. lyallii; Heenan et al. 2005) was inferred from the combination of 
chloroplast and ITS sequences.
	 We can divide studies of gene flow into those that have detected historical hybridisation 
(introgression) and those that have detected ongoing gene flow—but sometimes both historical 
and contemporary gene flow have been revealed.
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Historical gene flow (introgression)
Nothofagus is a major component of forests throughout the South Island of New Zealand, and 
several hypotheses have been proposed to explain its absence across the central portion of the 
South Island (reviewed by Wallis & Trewick 2001). A recent investigation using cpDNA to try 
to distinguish between hypotheses found that through hybridisation, red beech (Nothofagus 
fusca) and hard beech (N. truncata) have absorbed genetic material from mountain beech (N. 
solandri var. cliffortioides). A single insertion in the trnL-trnF intergenic spacer is found within 
populations of all three species south of the beech gap, although north of the gap the species 
have their own haplotypes (Thomsen 2002; Knapp 2007). Shared chloroplast sequences have 
also been detected amongst five species of Metrosideros (Gardner et al. 2004). This chloroplast 
sharing, as well as the higher haplotype diversity detected in areas corresponding to putative 
Pleistocene glacial refugia, led the authors to suggest hybridisation and introgression during 
confinement to refugia. However, AFLP data did not reveal this geographic structure within 
pohutukawa (Broadhurst 2008). Environmental instability during the Pleistocene has also 
been suggested as a cause of introgression between diploid and polyploid Coprosma species, 
detected using ITS sequences (Wichman et al. 2002).
	 Interspecific and intergeneric hybrids among New Zealand everlasting daisies (Asteraceae 
tribe Gnaphalieae) in the Raoulia alliance of genera have long been recognised on the basis of 
morphology (Ward 1997). Some putative hybrids have been tested by rigorous morphological 
analysis (McKenzie 2001; McKenzie et al. 2003, 2004) and others are supported by the display 
of additive combinations of nrDNA ITS sequences (Smissen et al. 2003; Smissen unpubl.). The 
intergeneric status of many of the hybrids in the Raoulia alliance reflects marked morphological 
divergence between many of the species involved rather than phylogenetic relationships, as 
generic boundaries in the Gnaphalieae have not been aligned with robust phylogenetic analyses 
(the papers of Bayer et al. 2000, 2002; Breitwieser et al. 1999 not withstanding). Within the 
Raoulia alliance trans-specific plastid DNA polymorphism is prominent (Smissen et al. 2004) 
and may be the result of chloroplast introgression, but to date, no population level studies have 
detected contemporary gene flow. Available DNA sequence and AFLP fingerprint data suggest 
that at least some of the genomes of hybridising species in this group are moderately diverged, 
but there is little congruence between available plastid, nrDNA, and low copy nuclear gene 
trees (Smissen unpubl.). Combined with the reticulate pattern of morphological character state 
distribution in the group, this is suggestive of a role for introgression or homoploid hybrid 
speciation in the group, but evidence remains circumstantial.
	 Introgression between two species of New Zealand triplefin fish (family Tripterygiidae) 
has been detected in the southern parts of the South Island (Hannan 2005). The two species 
have different habitats, with Grahamina capito found typically in shallow harbours and 
inlets, while Fosterygion varium generally prefers subtidal clear water reefs. The hybrids 
are morphologically identical to G. capito but have mtDNA of F. varium (Hannan 2005). In 
addition, six nuDNA markers from hybrid individuals clustered with the G. capito lineage 
(Hannan 2005). These data suggest that F. varium females have mated with G. capito males, 
and then backcrossing has occurred with G. capito (Hannan 2005). Forty individuals from 
three localities show evidence of mtDNA introgression but the reciprocal situation, with 
G. capito females mating with F. varium males, has not been detected (Hannan 2005). In 
parakeets, evidence of historical mtDNA introgression has been detected (Boon et al. 2001) 
as well as ongoing hybridisation leading to gene flow (see above). Pachycladon shows both 
nuDNA sequence and cytogenetic evidence of historical hybridisation, revealing a hybridi-
sation event about 1.6–0.8 million years ago at the origin of the radiation of nine allopoly-
ploid species. (Heenan et al. 2002; Joly et al. in press b). In the case of the alpine cicadas 
(Maoricicada), incongruence among four gene trees is more likely the result of historical 
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introgression between M. iolanthe and members of the genus with similar songs, than lineage 
sorting (Buckley et al. 2006).

Contemporary gene flow
Despite considerable differences in morphology, Pseudopanax lessonii (coastal five-finger, 
houpara) and P. crassifolius (lancewood, horoeka) form an array of morphological interme-
diates wherever they occur in close proximity. Preliminary genetic analyses using AFLPs 
and microsatellite DNA markers indicate that P. lessonii and P. crassifolius are genetically 
distinguishable as separate evolutionary lineages, and that the majority of their hybrids are 
later generation hybrids (Shepherd & Perrie unpubl.). F1 (first generation) hybrids appear to 
be uncommon, suggesting that P. lessonii and P. crassifolius only rarely cross directly and 
that the hybrids are primarily crossing with each other. Despite nuDNA differentiation, 3.3 
kb of cpDNA sequence revealed no fixed differences between P. lessonii and P. crassifolius, 
but a number of substitutions distinguish these two species from P. linearis (Shepherd & Per-
rie unpubl.). This similarity in cpDNA could indicate cytoplasmic introgression, because the 
cpDNA phylogeny is in conflict with morphology and ITS relationships (Mitchell & Wagstaff 
1997) where P. linearis and P. crassifolius are more closely related to each other than either 
is to P. lessonii.
	 The two widely recognised species of the endemic New Zealand genus Phormium (New 
Zealand flax) have been observed to hybridise in the wild when sharing the same habitat within 
the same geographical range (Cockayne & Allan 1934) and F1 hybrids have been produced in 
controlled crosses (Allan & Zotov 1937; Houliston et al. unpubl.). Morphological evidence 
drawn from field observation has been advanced to suggest introgression between species in 
some parts of New Zealand (Wardle 1979). AFLP analysis of sympatric Phormium tenax and 
P. cookianum (Smissen & Heenan 2007) shows two genetic groups concordant with taxonomy, 
but also reveals a number of individual plants or populations combining genetic markers of 
both species.
	 Seven individual flax plants from a population at Okiwi Bay (Marlborough), referred to as 
P. tenax (Smissen & Heenan 2007), displayed AFLP markers more typical of P. cookianum 
suggesting introgression from the locally more common P. cookianum. A follow up study 
(Smissen et al. 2008) focusing on this site confirmed genetic admixture between the two spe-
cies at Okiwi Bay. However, two populations can still be distinguished morphologically and 
genetically, indicating that either some level of reproductive isolation is present or that there 
has been insufficient time in the same habitat to allow homogenisation of the gene-pools. 
There is no evidence for any intrinsic barrier to gene flow between P. cookianum and P. tenax 
and hybridisation between them seems to be reasonably commonplace. However, across their 
overlapping geographic ranges, clear habitat preferences are evident, putting ecological factors 
firmly in the spotlight as the reproductive isolating mechanism.
	 The fertility and fecundity of wild F1 hybrids between everlasting daisy species in the 
Raoulia alliance (Asteraceae tribe Gnaphalieae) has been examined in the cross Anaphaloides 
bellidioides × Helichrysum lanceolatum (Smissen et al. 2007) using multilocus DNA finger-
printing. This study presented some evidence of reduced seed set in hybrids but sampling 
was limited. Two wild back-crosses to H. lanceolatum were identified using AFLP profiles. 
Subsequent generations have been produced in the glasshouse and some come close to recover-
ing the morphology of H. lanceolatum (Smissen unpubl.). However, F1 hybrids were far more 
common than second and later generation hybrids in nature and introgression between the 
parental populations was not detected. Glasshouse grown backcrosses to A. bellidioides show 
marked morphological variation as would be expected in recombinant generations descended 
from a cross between two morphogically very different species.
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III  HYBRID SPECIES
When hybridisation results in a lineage reproductively isolated from its two parental taxa a 
new species is almost instantaneously produced. Due to the difficulty in reproducing without 
backcrossing to parental taxa, this form of speciation is rare compared to the rate of hybridisa-
tion without speciation. However, it is possible for hybridisation to be followed by chromo-
some doubling and the resulting individual to reproduce asexually or by selfing. Evidence for 
diploid hybrid species formation is weaker. Speciation via hybridisation is much less common 
in animals than in plants because isolating mechanisms (such as selfing) are less likely to 
evolve in concert with hybridisation. Chromosome doubling in animals can also have a dire 
effect on sex determination, and animals may be generally more susceptible to changes in gene 
dosage. Pratia discussed earlier is an example of new lineages arising from human induced 
range changes (Murray et al. 2004). In this case, hybrid lineages are recognised as distinct 
chromosome races (not new species), but are the result of interspecific crosses. Breitwieser 
et al. (1999) used evidence from additive ITS sequences to support the hypothesis that Ana-
phalioides hookeri is a hybrid species with parentage A. bellidioides × A. trinervis. Since it 
has a tetraploid chromosome count (2n=4x=56; Groves 1977), it is presumably an example of 
allopolyploidy (hybridisation followed by chromosome doubling to produce an independent 
hybrid lineage). In New Zealand buttercups, Ranunculus nivicola is an allopolyploid species 
with R. verticillatus and R. insignis parents. The degree of cpDNA sharing between R. insignis 
and R. enysii suggest that these two species have also been hybridising and R. insignis may 
even be of hybrid origin itself (Carter 2006).
	 Polyploidy is a common phenomenon amongst New Zealand’s ferns. All species of Asple-
nium native to New Zealand are at least tetraploid and, of the 17 species in the Austral group, 
nine are octoploid. cpDNA and nuDNA (Leafy) indicate that most of these octoploids are 
allopolyploids (Perrie & Brownsey 2005a; Shepherd et al. 2008a). cpDNA of the octoploids 
is very similar to their parental species, suggesting recent origins with little time to develop 
autapomorphies (Shepherd et al. 2008b). In some cases, octoploids share multiple chloroplast 
types with each other and their progenitors, indicating repeated polyploidisation events (A. 
gracillimum, A. cimmeriorum (Perrie & Brownsey 2005b)). Allopolyploidy in New Zealand 
ferns has also been documented using molecular approaches in Polystichum, where P. neoze-
landicum is an allo-octoploid of the tetraploids P. wawranum and P. oculatum (Perrie et al. 
2003). Chloroplast sequences indicate that the tetraploid Hypolepis ambigua may be composed 
of independently derived allopolyploid lineages of unknown parentage (Perrie & Brownsey 
unpubl.), whereas morphological comparisons suggest that the tetraploid Pteris macilenta is 
almost certainly an allopolyploid derivative of P. comans and P. saxatilis (Braggins 1975).
	 Although hybrid speciation is less common in animals, stick insects provide one well docu-
mented New Zealand example. Their use of parthenogenetic reproduction makes stick insects 
one of the few animal groups with multiple examples of lineages of hybrid origin around the 
world (Bullini 1994). At least three New Zealand species are facultative parthenogens (Cli-
tarchus hookeri, Argarsarchus horridus and Tectarchus huttoni) producing female offspring 
from unfertilised eggs. One endemic stick insect lineage within New Zealand, Acanthoxyla, 
has eight species but no males. Chromosome counts suggest they are diploid, but nuDNA 
suggests that some Acanthoxyla lineages might be triploid (Buckley et al. 2008). Sequence 
data indicate that all Acanthoxyla are of hybrid origin (Morgan-Richards & Trewick 2005; 
Buckley et al. 2008) but whether C. hookeri is the original paternal species, or involved in a 
more recent hybridisation with some lineages of Acanthoxyla, is in question. The ancestral 
sexual maternal species of Acanthoxyla is probably extinct (Trewick et al. 2008). In this stick 
insect it is possible that the whole genus arose via hybridisation and the morphological diver-
sity currently present (and recognised as eight species) may be the result of rapid divergence. 
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Alternatively, there may have been three (rather than two) sexual species involved in the 
multiple hybridisation and many origins creating the current diversity.

FUTURE DIRECTIONS
Like most biological research, studies of hybridisation in New Zealand have led to more ques-
tions being asked than have been answered. For example, are the independently derived lineages 
of the allopolyploid Asplenium gracillimum reproductively isolated? Does Acanthoxyla have 
three parental species? Is the introgression that has been detected between numerous species 
of New Zealand’s flora (e.g., within Metrosideros, Coprosma and Pseudopanax) typical of 
the flora as a whole and has hybridisation been more common here than overseas? Here we 
outline some areas of hybrid research that we expect to be both fruitful and exciting in the 
years ahead. We have focused on questions that are well suited to the New Zealand system 
and of general interest and most likely to push back the frontiers of biology.
	 Any history of hybridisation leads to conflict in gene trees (Ballard & Whitlock 2004). If 
hybridisation has generally been quantitatively underestimated, then molecular phylogenies 
based on single (or even a few) genes may not reflect species history. In these cases, multi
locus phylogenies are required, as well as techniques to recover the reticulated species history 
(Holland et al. 2005; Baroni et al. 2006; Edwards et al. 2007). We expect to see progress in the 
near future as novel phylogenetic methods to detect hybridisation, both current and historical 
(Huson et al. 2005; Winkworth et al. 2005; Baroni et al. 2006; McBreen & Lockhart 2006; 
Holland et al. 2008; Joly et al. in press a), are applied to more species. Technical advances in 
multilocus genotyping methods and pyrosequencing make many more markers available, and 
expectations of molecular phylogenetic datasets will correspondingly increase dramatically. 
If disruptive selection promotes parental phenotypes at the expense of hybrid phenotypes we 
would expect to detect many examples of cryptic hybridisation as more multi-marker studies 
reveal competing gene trees for new taxa.
	 Pyrosequencing could prove to be the biggest innovation in genetics since DNA sequencing 
itself. The ability to sequence genomes of non-model organisms with little or no preliminary 
sequence information represents a major step in comparative genomics and evolutionary 
biology (Vera et al. 2008). Multiple markers not only allow distinction of more hybrid classes 
(e.g., F1, F2, backcrosses; Anderson & Thompson 2002; Shepherd & Perrie unpubl.), but permit 
demonstration of hybrid origin in cases where one parental species has made a relatively small 
contribution to the current nuclear genome. Differential rates of introgression may depend on 
size of linkage groups and a more detailed knowledge of mosaic genomes will allow descrip-
tion of co-adapted alleles, their regulation and their putative role in speciation. We will also 
be able to document differential introgression of neutral and adaptive markers at hybrid zones 
and determine how porous species boundaries are.
	 The immediate consequence of hybridisation (F1) and long-term effects (reticulate evo
lution) need to be connected with an improved understanding of the selection pressure on 
F2 and backcrossed individuals using fitness estimates based on lifelong reproductive output 
and compared to that of parental types. Ecological and experimental studies that make direct 
measures of relative fitness of hybrids and parentals in different habitats have the potential to 
contribute enormously to our understanding of hybridisation as a fundamental evolutionary 
process. In addition, comparisons of hybrid zones offer excellent biological systems to examine 
differential fitness, both multiple hybrid zone in the same location (e.g., Taupo, Northland 
Peninsula) and the same taxon involved in hybrid zones in different regions (e.g., cicadas, 
tree weta, fresh water fish, geckos). By keeping either age of zone constant (same location), 
or dispersal ability constant (same taxon) one can infer aspects of relative hybrid fitness. Deep 
sequencing of genomes will be a major step towards the detection of the molecular basis of 
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fitness and adaptations, and provides raw data for analysis of genes involved in postzygotic 
isolation in hybrids, so-called “speciation genes” (Orr et al. 2004). For example, the new 
generation of sequencing technology will allow the biochemical pathway and alleles respon-
sible for gamete (pollen, sperm) competition to be identified and thus their role in limiting 
hybridisation will be understood. Transcriptome analysis through isolation of mRNAs also 
allows estimation of gene expression, touted by many to be at least as important as structural 
changes to the genes in question (King & Wilson 1975). It could be, for example, that hybrid 
breakdown is attributable to changes in gene expression caused by novel interactions between 
two transcriptional networks (Landry et al. 2007).
	 In cases such as Phormium and Pseudopanax ecological selection may be critically important 
in maintaining species differences in the face of extensive hybridism and an apparent absence 
of robust intrinsic barriers to gene flow. In other groups, such as the Raoulia alliance, genetic 
divergence between hybridising species appears to be greater, and intrinsic barriers to gene 
flow are greater, but selection against recombinant genotypes is still likely to be important in 
limiting gene flow. In contrast, tree weta have relatively high levels of genetic diversity that 
date to geographic isolation during the Pliocene, yet populations with distinct karyotypes 
failed to speciate, possibly due to simple mate recognition systems in this genus.
	 The role of hybridisation in invasion, range expansion and adaptation to climate changes 
is another key area likely to provide stimulating research. The evolution of invasiveness is 
facilitated by hybridisation and the relationship between age of New Zealand’s biota and 
proportion of hybrid species could spark comparative studies of both island and continental 
ecosystems. One might view hybrid species as evidence of recent dispersal or invasion, but 
study of the genetics of weedy-ness and the hybrid genome will be more productive. From our 
understanding of the history and processes that have shaped the distribution and abundance of 
current taxa we can make predictions of how our flora and fauna will respond to the current 
rapid period of climate warming. The glacial cycles of the Pleiostocene must have seen major 
changes in ranges of many species, but not on the scale inferred in the Northern Hemisphere, 
as many New Zealand species have maintained diversity and (probably) their widespread 
distribution rather than skulking in refugia during cold periods. However, glacial refugia have 
been linked to times and places of high levels of hybridisation. We require better estimates of 
genetic potential within populations and measures of both intra- and interspecific gene flow 
in natural populations to allow us to predict the speed and potential of populations to adapt to 
environmental change. Hybridisation provides a means to transfer adaptive traits, but gene flow 
among locally adapted populations of different sizes can result in genetic swamping, slowing 
the process of evolutionary response to environmental change and adaptation to marginal 
habitats. Thus we need to measure density, diversity, dispersal and hybridisation over entire 
species ranges.

CONCLUSIONS
Hybridisation has been the focus of studies of species concepts, conservation and origins and 
will continue to be a key focus of evolutionary biology.
(1)	 We see in New Zealand that many distinct and well defined species can and do hybridise 

with related taxa, resulting in low levels of gene flow, and yet these species maintain 
themselves as discrete units. Hybridisation of at least 19 pairs of endemic New Zealand 
species, involving plants, insects, fish, and birds, has been confirmed with genetic markers 
(Fig. 1). Thus, recognition of species status does not rely on absence of gene flow.

(2)	 Hybridisation can be seen as a threat to biodiversity in some situations, for example stilts, 
ducks and parakeets, but it also has the potential to benefit populations by increasing 
genetic diversity as seen in cat viruses and many plant lineages.
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(3)	 The important role of hybridisation in the evolution of New Zealand’s endemic plants and 
animals has been highlighted by recent genetic studies. Recent hybrid origins of ferns, 
buttercups, everlasting daisies and stick insects indicate the ongoing generation of biodi-
versity via hybridisation. Evidence of hybridisation concurrent with climate cycles, such 
as seen in Coprosma, suggests natural range changes may increase levels of hybridisation. 
This finding is supported by examples of hybridisation where human habitat modification 
and disturbance has altered species distribution and abundance, for example fish, stilts, 
weta and parakeets. Hybridisation is a common and important evolutionary process here 
in New Zealand and elsewhere.
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