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 Abstract 

Evidence-based policy re global warming is best relying on a relevant sample of 

data. Showing close correlation between CO2 and temperature over hundreds of 

thousands of years is irrelevant today. We choose a sample of annual data from 1959 

to-date to provide some statistically robust stylized facts about the relationships 

between actual CO2 and temperature. Visually, there is a clear upward trend in both 

data. Time series analyses suggest that CO2 is difference-stationary and temperature 

is trend-stationary. Thus, the moments (mean, variance, etc.) of the data in levels are 

functions of time, which means that the correlation between the two variables may 

be spurious. However, we find no statistically robust evidence of correlation, long 

run co-variation, long run common trend, or common cycles between CO2 and 

temperature over a period of 60 years. Nonetheless, at most 40 percent of the 

variance of the Northern Hemisphere temperature is due to , 20 percent of the 

Southern Hemisphere, and much less of global temperature.  
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1. Introduction 

 

There has been growing scientific evidence that the actual increase in greenhouse 

gasses (GHG; CO2, CH4, N2O, fluorinated gases) and global warming, i.e. 

temperature, are closely correlated over time, hence, the policy urgency to act faster 

to reduce greenhouse gases. Cook et al. (2013) says that 97.1 percent of articles’ 

abstracts on global warming “endorsed the consensus position that humans are 

causing global warming.” Lindsey and Dahlman (2020) wrote, “Though warming 

has not been uniform across the planet, the upward trend in the globally averaged 

temperature shows that more areas are warming than cooling. According to the 

National Oceanic and Atmospheric Administration (NOAA) 2019 Global Climate 

Summary, the combined land and ocean temperature has increased at an average 

rate of 0.07°C (0.13°F) per decade since 1880; however, the average rate of increase 

since 1981 (0.18°C / 0.32°F) is more than twice as great.” There is no doubt that both 

temperature and CO2 level have been increasing.  

 In addition to correlation, the common consensus among scientists across many 

different disciplines is that (manmade) greenhouse gases cause an increase in global 

warming (increase in land and ocean temperature), hence the growing global 

popular campaign re climate change. Scientists use many different methods to 

measure temperature and greenhouse gases, e.g., ice coring, tree rings, 

balloons...etc. This literature is extraordinarily voluminous, runs across many 

disciplines, and readily available on the Internet, which we will not attempt to cite 

but we will restrict our citation to immediately relevant articles.  

 Scientists have used many different sources of data too, and many different 

techniques to show correlation between CO2 and temperature. A typical argument 

goes like this, “One of the most remarkable aspects of the paleoclimate record is the 

strong correspondence between temperature and the concentration of CO2 in the 

atmosphere observed during the glacial cycles of the past several hundred thousand 

https://www.ncdc.noaa.gov/sotc/global/201913
https://www.ncdc.noaa.gov/sotc/global/201913
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years,” and the graphical presentation in (Jouzel et al. 2007 and Lüthi et al. 2008). 

Figure (1) shows the temperature (light color) and (dark color) measured by the 

European Project for Ice Coring in Antarctica (EPICA). The graphical correlation is 

extraordinary. The relationship is so tight one needs do nothing else but believe it.  

 However, there are a number of issues in figure (1). First, given the significant 

correlation between CO2 and temperature for 800,000 years, obviously not all 

greenhouse gasses have been manmade. Second, the correlation between CO2 and 

temperature at zero years before present seems the same or lower than it was 100,000 

years before present! Third, history seems to suggest that there are prolonged 

periods of low CO2 and low temperature levels, so what caused CO2 level to fall 

without any interventionist policy? Fourth, the graph is not a proof of causation. 

Could temperature cause CO2? Could causality be bi-directional, running in both 

directions? Fifth, however, most importantly for this paper, which is not about the 

science of climate warming per se but about using statistics to analyze scientific data 

of global warming, is that both CO2 and temperature are measured in levels and have 

trends. Trend in the data could render the correlation between the levels spurious. 

This paper focuses on the time series analysis of trend, and on how to calculate and 

estimate meaningful associations between, mainly, CO2 and temperature. 

In this paper, we argue that the analysis of global warming must depend on 

identifying the nature of the trend, not only in temperature, but in greenhouse gases 

data too. If  CO2  and temperature exhibit trends, then the moments (the mean, 

variance, kurtosis, and skewness) are functions of time and therefore, the correlation 

between these variables is spurious (i.e., meaningless) in general, unless these two 

variables share a common long-run trend (i.e., cointegrated), Granger and Newbold 

(1974) and Engle and Granger (1987). Predicting the trend is difficult (Phillips, 2003). 

In this paper, we examine whether the trend is stochastic (i.e., unit root) or linear. If 

the trend is linear, the time series is said to be trend-stationary, i.e., the trend-

adjusted time series is stationary, or I (0,) and its moments are not functions of time. 

http://www.ncdc.noaa.gov/paleo/study/6080
http://www.ncdc.noaa.gov/paleo/study/6091
https://www.ncdc.noaa.gov/global-warming/temperature-change
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If the trend is stochastic (i.e., unit root), the time series is difference-stationary.i 

However, the correlation between the trended time series is not spurious, if the two 

series share a common long run trend, i.e., temperature and CO2 are cointegrated. 

Cointegration means that there is a stationary linear combination of the two trending 

time series CO2 and temperature.  

 

Another important question that we attempt to answer is whether temperature and 

CO2 share a common cycle. Common cycle could be conditional on cointegration as 

in Vahid and Engle (1993). We also examine the correlation between the cyclical 

components of the time series. We do so by using frequency filters to remove the 

noise and the trend first, and then test for correlation between the remaining cyclical 

components.  

 

Furthermore, we test the dynamics of the data by investigating whether it could tell 

us whether, or not, past information (i.e., the lagged values) of CO2 could explain 

current temperature. We estimate a Vector Auto Regression (VAR). We also measure 

the effect of CO2 on temperature conditional fossil fuel consumption and world 

population and how this dynamic affects current temperature, which would be 

informative for policymakers.  

 

We take the data from NOAA and NASA. We focus on the recent history because 

CO2 emissions due to industrialization, modern mechanized agriculture, increasing 

use of fossil fuel, electricity generation, combustion engines, etc., at least in the 

Northern Hemisphere, increased significantly in the second half of the 20 century. 

Our data, therefore, are from 1959 to 2020. The data for CO2 measure mean global 

CO2. The method of measurement is described on the NOAA Website. CO2 is 

expressed as a mole fraction in dry air, micromol/mol, abbreviated as parts per 

million (ppm). BP Statistical Review (2020) also reports data for CO2 emission in 

millions of tones, which looks very similar to the NOAA data. Average global land 

https://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html
https://data.giss.nasa.gov/gistemp/graphs_v3/
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
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and ocean temperature (Celsius) data are from the NOAA. NASA compiles similar 

data, but smoother, and they include Northern and Southern Hemispheres. It is 

informative to test the Northern and Southern Hemispheres separately because the 

North should logically have more emissions that the South. The NASA data source is 

GISTEMP (2021) and Lenssen (2019). We plot the data, which we use in this paper in 

figure (2). Visually, the data have trends. 

 

We test the data in many different ways; use a variety of methods, models, and 

specifications for robustness. Here is a summary of our findings. First, we present 

convincing statistical evidence that the level of CO2 cannot explain the variations in 

temperature. Second, CO2 is a difference-stationary time series, I (1), i.e., has a unit 

root, but temperature is trend-stationary, i.e., no unit root as suggested by Chang at 

al. (2020). We show that the correlation is positive but statistically insignificant. 

However, if temperature has a unit root then the correlation between the differenced 

stationary CO2 and the percentage change in temperature is insignificantly different 

from zero. Third, there is no cointegration – i.e., the levels of CO2 and temperatures 

do not share a common long run trend. Fourth, we found that there is a statistically 

insignificant correlation between trend-adjusted (i.e., stationary) global Co2 and 

trend-adjusted global temperature; trend-adjusted global CO2 and trend-adjusted 

Northern hemisphere temperature; and trend-adjusted CO2 and trend-adjusted 

Southern hemisphere temperature. Fifth, the variance of trend-adjusted temperature 

is 100 times larger than the variance of trend-adjusted CO2. Sixth, there is no 

evidence of long run co-variation. Seventh, the cyclical fluctuations obtained after 

removing noise and trend from the data indicate a weak cyclical correlation, 0.53. 

Eighth, we found that unrestricted (atheoretical) VARs present a useful summary of 

the dynamics of CO2 and temperature, whereby past information of (lagged values) 

has a significant, however, short-lived, and a small in magnitude, predictive power 

of current temperature, more so in the Northern hemisphere. Ninth, the variance of 
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temperature due to CO2 is between 20 and at most 40 percent; and significantly less 

for fossil fuel consumption. 

 

Including other greenhouse gasses such as Methane and Sulfur Hexafluoride did not 

alter the results. We conclude that although many people tend to believe that 

increasing measured CO2  in the atmosphere is not a good thing, which might very 

well be true, there is no statistically robust evidence – in our sample of 60 years of 

the most industrialized times on earth – that it is related to global warming. Policy, 

therefore, should be evidence-based. Manmade greenhouse gasses will be reduced 

when people realize more profitable investment opportunities in greener economic 

activities without government intervention based on flimsy statistical evidence.     

   

Next, we briefly discuss the most relevant literature. In section (3), we then test the 

nature of the trend in CO2 and in temperature. Section (4) answers the question of 

whether CO2 and temperature share a common long-run trend, i.e., cointegrated. 

Section (5) examines the cyclical correlations. Section (6) tests for the correlation, and 

the long-run correlation, between the two variables are in section. In section (7), we 

look at the short-run dynamics. We estimate a number of unrestricted bivariate 

VARs, which include CO2 and temperature. Section (8) investigates whether omitted 

variables might have some explanatory power. We include global fossil fuel 

consumption in the VARs, and world population growth as an additional exogenous 

variable.  Section (9) is a multivariate analysis of all available greenhouse gases 

effects on temperature, and section (10) includes a summary and conclusions. 

 

2. Most relevant literature review  

 The literature includes a number of attempts to examine the nature of the trend in 

temperature. The evidence about the nature of trend in temperature, and greenhouse 

gases is mixed. Chang et al. (2020) cites the studies that “generate results consistent 
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with unit root in temperature,” which are Gordon (1991), Woodward and Gray 

(1993, 1995), Gordon et al. (1996), and Kärner (1996). The studies that “generate 

results” consistent with the presence of a deterministic trend with possibly highly 

persistent noise, on the other hand, include, Bloomfield (1992), Bloomfield and 

Nychka (1992), Baillie and Chung (2002), and Fomby and Vogelsang (2002).  

Chang et al. (2020) found direct support to a one-unit root process (stochastic trend) 

in the Southern Hemisphere, and two unit root processes in the Northern 

Hemisphere and the globe, with no evidence for higher-order processes in any of the 

moments of any of these distributions over time. They acknowledge the difficulty in 

distinguishing between a stochastic trend and a deterministic trend with breaks 

using statistical techniques alone.  

There are more studies about the trend in temperature, however. Seater (1993), for 

example, is concerned that there has been no significant trend in temperature, thus, 

global warming is problematic. He focused on temperature data only, i.e., not CO2. 

He studied three data sets on world temperature, and argued that “data on direct 

measurements of world temperature over the past century yield trend estimates of 

.45 degrees Celsius per century with rather wide confidence intervals of (.15, .75). 

The data's behavior raises questions about whether the trend is genuine or due to 

greenhouse-gas emissions.” He means by genuine that it is natural and unaffected 

by CO2 and other emissions. He says, “Data on temperature measurements inferred 

from tree rings over the past 1,500 years display no trend. The upward drift over the 

past century could easily be a cyclical upswing of the type that has occurred many 

times in the past.” His method was regressions of the temperature data on a constant 

term, linear trend, and lagged dependent variable. Indeed, some of the long time 

series data of temperature, measured from tree rings, have no obvious trend.     

 Shakun et al. (2012) argued that, “The covariation of CO2 concentration and 

temperature in Antarctic ice-core records suggests a close link between CO2 and 
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climate during the Pleistocene ice ages. The role and relative importance of CO2 in 

producing these climate changes remains unclear, however, in part because the ice-

core deuterium record reflects local rather than global temperature.” He constructed 

a record of global surface temperature from 80 proxy records and showed that, 

"temperature is correlated with and generally lags CO2 during the last (that is, the 

most recent) deglaciation. Differences between the respective temperature changes 

of the Northern Hemisphere and Southern Hemisphere parallel variations in the 

strength of the Atlantic meridional overturning circulation recorded in marine 

sediments. These observations, together with transient global climate model 

simulations, support the conclusion that an antiphased hemispheric temperature 

response to ocean circulation changes superimposed on globally in-phase warming 

driven by increasing CO2 concentrations is an explanation for much of the 

temperature change at the end of the most recent ice age.” 

 McKitrick (2014) pointed out that, “The Intergovernmental Panel on Climate 

Change (IPCC) has drawn attention to an apparent leveling-off of globally-averaged 

temperatures over the past 15 years or so. He argued that measuring the duration of 

the hiatus (break in the data) has implications for determining if the underlying 

trend has changed, and for evaluating climate models. Here, I propose a method for 

estimating the duration of the hiatus that is robust to unknown forms of 

heteroskedasticity and autocorrelation (HAC) in the temperature series and to 

cherry picking of endpoints. For the specific case of global average temperatures, I 

also add the requirement of spatial consistency between hemispheres. The method 

makes use of the Vogelsang and Frances (2005) HAC-robust trend variance 

estimator, which is valid as long as the underlying series is trend stationary, which is 

the case for the data used herein. Application of the method shows that there is now 

a trendless interval of 19 years duration at the end of the Had CRUT4 surface 

temperature series, and of 16 - 26 years in the lower troposphere. Use of a simple 

AR1 trend model suggests a shorter hiatus of 14 - 20 years but is likely unreliable.”  
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McKitrick and Vogelsang (2014) compare trends across climatic data sets using  

heteroskedasticity and autocorrelation robust methods, specifically the Vogelsang –

Frances (VF) nonparametric testing approach, to allow for a step-change in the mean 

(level shift) at a known or unknown date. The VF method is robust to unknown 

serial correlation up to but not including unit roots. They show that the critical 

values change when the level shift occurs at a known or unknown date. They derive 

an asymptotic approximation that can be used to simulate critical values, and outline 

a bootstrap procedure that generates valid critical values and p-values. This method 

builds on the literature comparing simulated and observed trends in the tropical 

lower troposphere and mid-troposphere since 1958. The method identifies a shift in 

observations around 1977, coinciding with the Pacific Climate Shift. Allowing for a 

level shift causes apparently significant observed trends to become statistically 

insignificant. Model overestimation of warming is significant whether, or not, a level 

shift is accounted for, although null rejections are much stronger when the level shift 

is included. 

 

3. Examining the trend 

 

3.1 . Graphical correlation 

 

The correlation between CO2 and temperature depends on the type of trend in the 

data. Determining the nature of the trend of both CO2 and Temperature, therefore, is 

crucial. Figure (2) shows a trend in both, with CO2 rising smoothly over time while 

global, Northern, and Southern hemispheres temperatures have trend and fluctuate 

more than CO2. Before we test for, or remove, the trend, figure (3) shows the 

confidence ellipse (a 95% Chi-Squared test) of the correlation between the levels of 

global CO2 and global temperature. The correlation is positive, as expected, and 

statistically significant. However, graphical correlation may, or may not, be verified 

by a regression equation. 
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3.2 Regression analysis 

 

Table (1) reports six OLS regressions in three panels. The dependent variables are 

global temperature in panel (1), Northern Hemisphere in panel (2), and Southern 

hemisphere in panel (3); the explanatory variable in all three panels is CO2. Each 

panel has two regressions, without, and with, a constant term. The results are very 

informative. The regressions with constant terms are significantly different from the 

ones without. In the first panel and first column, regression, without a constant term, 

   is low equal to 0.15, and the DW statistic is low equal to 0.53. The slope coefficient 

is 0.001. In the second regression in the first panel, with a constant term, there is a 

significant negative intercept,    increased to 0.77, and the DW statistic increased to 

1.92, which is a significantly improved result. This regression seems very reasonable 

in the terms of increased goodness of fit and serially uncorrelated residuals. The 

estimator is BLUE.ii Moreover, the slope coefficient increased from 0.001 to 0.009. In 

this regression, one could interpret the results to say that a 100-ppm increase in CO2 

would increase temperature by 0.9 degrees. The regression suggests that, perhaps, 

there are missing variables that explain global temperature, which are captured by 

the constant term. Scientists must know what these variables are. Nawaz and Sharif 

(2019) cite Lamb (1997) and they reported, “Who [Lamb] is considered the father of 

modern climatology, argued that CO2 levels alone couldn’t account for all of the 

global warming that’s been observed.” Lamb’s conclusion seems consistent with our 

results. 

 

In the second panel, similar things happened when the regression included a 

constant term,   increased from 0.14 to 0.88 in the case of the Northern Hemisphere. 

The slope coefficient increased from 0.001 to 0.013. However, this regression, unlike 

the global temperature regression, is likely to be spurious because the DW statistic is 

low. In the third panel, second regression    increased to 0.85. The DW statistic was 

low. This regression is also spurious.  

https://notalotofpeopleknowthat.wordpress.com/2014/05/16/hh-lambclimate-present-past-futurein-reviewpart-iii/
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2.2.Testing the trend 

 

The difference between trend and difference-stationary time series is that the trend-

stationary time series tends to return to a fixed deterministic trend function or it 

would fluctuate around a fixed trend function. The differenced-stationary time 

series, however, has no tendency to return to a fixed trend function. It simply grows 

at a rate   from its current position. Differencing might render the data stationary, 

most of the time. A stationary time series will be     , i.e., stationary, but not all 

    time series are stationary. Some AR (1) model’s can be stationary but they are not 

    . Also, not all non-stationary times series are     . The inability to determine the 

nature of the trend results in misspecification with all common consequences such as 

inconsistency of the coefficients, see for example, Hamilton (1994).  

 

We test the nature of the trend using a number of commonly used unit root tests, 

e.g., the Dickey - Fuller (1979) – Augmented Dickey-Fuller (Said and Dickey, 1984), 

the GLS (Elliot, Rothenberg, and Stock, 1996), and Phillips-Perron (1988). One should 

be cautious about the ability (the power) of these tests to tell the difference between a 

root of one and 0.98. This is a conclusion shared by many economists, see for 

example, Stock (1991), Cochrane (1991), Rudebusch (1993), and Christiano and 

Eichenbaum (1990). There is a large literature about measuring the power of these 

tests, which we will not cite; however, there is a consensus that the power of these 

tests is low. 

 

Table (2) reports the ADF test results for global temperature and CO2. The OLS 

regression specification includes a constant term and a linear trend. For the 

Augmented Dickey-Fuller test, we use Akaike, Schwarz, and Hannan-Quinn 

Information Criteria, and the modified versions of them to choose the lag structure.iii 

More lags weaken these tests further. However, the ADF overwhelmingly rejects the 
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null hypothesis of a unit root in temperature. Linear trend, though, is statistically 

significant. For CO2, the null hypothesis of unit root could not be rejected. 

 

The results of the Phillips – Perron nonparametric test statistic reported in table (3), 

which are identical to the ADF test results. We use a variety of methods to estimate 

the spectral density function. All specifications indicate rejection of the null 

hypothesis of unit root. The linear trend is statistically significant too.iv  

 

Table (4) reports the ADF-ERS test results. The test rejects the unit root in 

temperature when the number of lags in the regression is zero; the test fails to reject 

the unit root in temperature when the lags increased. This is typical because the 

power of the test deteriorates fast with more lags. For all of the three test statistics 

above, even when we fit different models, i.e., with a constant term only, or without 

a constant term and without a trend, we could not reject the unit root in CO2 and 

with a much higher P value (1 and close to 1). 

 

Finally, we test for unit root with a breakpoint (in the intercept and the trend) in the 

temperature data only because we suspect that the data have been measured using 

many different methods over time. The results are in table (5). It included the results 

of a number of specifications: the ADF test with minimum intercept break t-stat test, 

maximum intercept t-stat test, and maximum intercept beak absolute t-stat test. In 

addition, we specify an innovation and additive outliers, and breaks in the intercept 

and the trend. For each of these specifications, we use the same Information Criteria 

that we used earlier to determine the lag structure. All tests reject the unit root 

except when the modified Information Criteria are used to determine the lag 

structure because the number of lags increased, which weakened the test.  

 

Although the tests that we used to test the trend have low powers, however, when a 

weak test rejects the null, i.e., in the case of temperature, the power of the test 
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becomes irrelevant. We take the rejection of the null results in the case of the 

temperature time series to be statistically meaningful and conclude that global land 

and ocean temperature is not a unit root process. However, there is a significant 

linear trend; hence, temperature is highly probably a trend-stationary time series. 

We found the same results for NASA’s Northern and Southern land and Ocean 

temperatures data. We do not report these results but they are available on request.  

 

One last test is the KPSS (1992) nonparametric test. It cannot reject the null 

hypothesis that temperature is I(0) stationary series, with a significant linear trend, 

hence consistent with all other tests. The value of the KPSS test is 0.071578, i.e., 

smaller than the 1, 5, and 10 percent critical values that are reported in Kwiatkowski, 

Phillips, Schmidt & Shin (1992, table 1). The results do not change when we choose 

different methods to estimate the spectral density. However, because its null 

hypothesis is I(0) – not I(1) as in the other previous tests; we cannot compare the 

powers of the tests. Nonetheless, the test confirms that temperature is not a unit root 

process. 

 

Figures (4a, 4b, 4c,) plot the actual data, their linear trend, and their stationary trend-

adjusted temperatures. However, the non-rejection of the unit root by all tests of 

CO2 indicates that CO2 is a difference-stationary time series.    

 

2.3.The spectral density  

 

To shed more light on the unit root, we also estimated the spectral density of CO2 

and global temperature. Figures (5a and 5b) plot the spectral density functions. 

There is a very clear difference. CO2’s spectral is more consistent with a unit root, 

whereby there is a relatively higher activity at zero frequency, albeit not close to 1, 

while temperature’s spectral is relatively flat, and there is very low activity at zero 

frequency.
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2.4. Descriptive stats of the trend-adjusted data are meaningful 

 

Now since we have assessed the nature of that trend, the moments of the trend-

adjusted data are not functions of time and are meaningful. Table (6) reports such 

descriptive statistics for the trend-adjusted stationary data. Note that the variance of 

log-difference CO2 is 100 times smaller than the variance of the trend-adjusted 

temperature. Therefore, variations in CO2 cannot explain the variations in 

temperature. 

 

4. Do CO2 and temperature share a common long-run trend 

 

4.1 Cointegration 

 

The next testing step in the unit root analysis is to test the null hypothesis that 

temperature and CO2 are “not” cointegrated, and try to reject it! If the level of CO2 

and the level temperature (i.e., not adjusted for trend) share a common long run 

trend, the two variables are cointegrated. Since temperature and CO2 are non-

stationary data, cointegration essentially implies the existence of a stationary, I (0), 

linear combination of the two variables, i.e., the Triangular Representation Theorem, 

e.g. Granger (1983).  

 

We test the null hypothesis that CO2 and temperature (the levels) are “not” 

cointegrated. If we reject this null hypothesis, we may conclude that they share a 

common trend in the long run. Testing the null of “no” cointegration requires a long 

span of data, and 62 years of annual data is a sufficient span, see for example, Hakkio 

and Rush (1991). Tables (7a, 7b and 7c) present the results. Typically, the testing is 

done in steps. In table (7a), we regress the level of global temperature on the level of 

CO2 using OLS; and we output the residuals. Engle and Granger (1987) suggested 

six different ways to test for cointegration. One of them is to test the residuals for 
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unit root using the ADF test. Thus, in table (7b), we test the residuals from the first 

regression for unit root using the ADF test. The test is distributed Engle-Granger 

(1987) and it is best suitable for testing a bivariate system. The weak ADF test cannot 

reject the unit root with a P value equal 0.9709. Thus, it suggests that the residuals 

are I(1), hence the two variables are not cointegarted – i.e., do not share a common 

trend. However, a necessary and sufficient condition for cointegration is the 

Triangular Representation Theorem, which involves estimating an Error Correction 

equation. Therefore, in table (7c), we regress the trend-adjusted global temperature 

on a constant, the log-differenced CO2, and the lagged residuals from the previous 

level regression. For cointegration to exist, the t-statistic on the coefficient of the 

lagged residuals must be very large (P value is 0). We found that the t-statistics to be 

statistically insignificant with a P value 0.5853. We conclude that the temperature 

and CO2 are not cointegrated – i.e., they do not share a common long-run trend and 

there exist no linear stationary combination of the two variables. 

 

Our results are similar to those published in Phillips et al.  (2020). They tested 

temperature (T), CO2 and radiation (R) time series for cointegration, and say, “Table 

B.1 in Appendix B provides residual based tests for cointegration among the 

aggregate variables (T, R, CO2). These results are strongly confirmatory of a long run 

linkage among these three variables taken together but show no direct linkage 

between the two component variables (R, CO2) or between (T, CO2). This confirms 

the role that R and CO2 play jointly in the long run determination of T.” 

 

4.2 The long run covariance 

 

Alternatively, we check whether there is a long-run co-variation between the trend-

adjusted CO2 and temperature. Table (8) reports the long-run covariance between 

CO2 and temperature. These long-run co-variances are symmetric, degree-of-

freedom adjusted, the weights are chosen using Akaike Information Criterion (AIC), 
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the kernel is computed using Bartlett method, and the bandwidth method is the 

Newey-West. The long-run covariance is close to zero. 

 

5. Do CO2 and temperature have common cycle 

 

Because we found no cointegrating vector between CO2 and temperature, we cannot 

use Vahid and Engle (1993) to test for a common cycle, which is based on squared 

canonical correlation and conditional on the number of cointegrating vectors. 

However, we examine the cyclical relationship, which Seater (1993) suspected by 

decomposing the time series into trend, cycle, and noise using symmetric and 

asymmetric Band Pass frequency Filter, Christiano – Fitzgerald (1995). The typical 

cycle periodicity in an annual data is 2 to 8 years. Figures (6), (7), (8), and (9) are the 

cyclical fluctuations of the average global temperature, the average Northern 

Hemisphere temperature, the average Southern Hemisphere temperature, and CO2. 

Figure (10) plots together the cyclical fluctuations of global temperature and CO2. 

There is a weak 0.53 correlation between them over the cycle.  

 

6. Correlation  

 

Since we have no statistically significant evidence of long run and cyclical 

relationships between CO2 and temperature, we examine the correlation between 

the trend-adjusted data. Figures (11), (12), and (13), plot the Chi-Squared 95% 

Confidence Ellipses, which tests the significance of the correlations between the 

trend-adjusted CO2 (differenced stationary) and temperature (trend stationary). 

These tests show that there is a positive but statistically insignificant correlation 

between CO2 and temperature globally.  

 

It is important to mention that if temperature is assumed to be a unit root processes 

as suggested by Chang et al. (2020), then the correlation between the differenced 



17 
 

stationary temperature and the differenced stationary CO2 is, in fact, zero. Figures 

(11b), (12b), and (13b) plot the Chi-squared tests.     

 

7. The short-run dynamics: could past CO2 information predict current 

temperature?  

 

So far, there are no significant short-run, long run, or cyclical relationships between 

temperature and CO2. Here, we examine the dynamic, i.e., whether past information 

of CO2 (i.e., lagged values) has any predictable power of current temperature. We 

summarize the dynamics of the data using an unrestricted Vector Autoregression 

(VAR). Essentially, a bi-variate unrestricted VAR is similar to the so called Granger 

causality test, where by the variables are regressed on their own lagged values and 

the lags of the other variables, then the null hypothesis that   does not Granger-

cause   and   does not Granger-cause  are tested using an  statistic. 

 

Our atheoretical VAR is unrestricted, i.e., we do not impose theoretical restrictions on 

the VAR, because the econometrician does not have theoretical restrictions to impose 

on the variables to identify the shocks. The model is not an economic model, and the 

theory about the relationship between CO2 and temperature is not an economic 

theory. Therefore, we will simply examine the dynamic effect of CO2 on 

temperature. We view this VAR as a method to summarize the dynamics of the two 

variables, CO2 and temperature, no more than that.  

 

The VAR is: 

 

                        ,      (1) 

 

where                 
 is a     vector of endogenous variables, and 
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 is a     vector of exogenous variables.      is     matrix of 

lag coefficients , and    is a     matrix of the exogenous variables’ coefficients. 

There is also an exogenous constant term,                  
 is a     vector of 

white-noise innovations with        ;       
     , and       

     for    .  

 

We begin with an unrestricted VAR without any exogenous variables. We examine 

the growth rate of CO2 and trend-adjusted global temperature first. We test the 

number of lags using a number of commonly used exclusion tests (sequential 

modified LR test statistic, final prediction error, AIC, SIC, and HQ criteria). We 

chose two lags because temperature is volatile, which affects the calculation of the 

variances. We think that variance decomposition is more informative than impulse 

response function in this case. The variance decompositions (standard errors are 

generated using 1000 Monte Carlo iterations) are plotted in figure (14). The variance 

of the trend-adjusted global temperature due to CO2 growth is no more than 20 

percent. A structural VAR does not alter the results.v 

 

Then we estimate the same VARs for    CO2 and the trend-adjusted Northern and 

Southern Hemispheres trend-adjusted stationary temperatures. Figure (15) shows 

that the variance of the Northern Hemisphere temperature due to CO2 growth is 

about 30 percent. Figure (16) shows a similar result for the variance of the Southern 

Hemisphere due to CO2 growth. Figure (17) puts the variance of the three measures 

of temperature due to CO2 growth together. These short-run dynamics indicate that 

past information of CO2 could predict a small percentage of the current temperature 

over the sample from 1959 to 2020.vi  

 

8. An Omitted variable problem  

It is quite reasonable to assume that there are other variables, which might affect 

both temperature and CO2, i.e., omitted variables. We had this clue from the 

regressions in Table (1). The constant terms were very significant, and they changed 



19 
 

the goodness of fit of the regressions. There are potential effects of solar variation, 

cosmic ray flux, and the Milankovich cycles, and soil erosion and desertification, 

which may explain some of the unexplained variations in temperature. This would 

the scientists’ job. In this paper, however, we are more concerned with the effect of 

the greenhouse effect on policy. Given that non-fossil fuel – non-manmade 

greenhouse gasses can also affect global warming, we want to test the effect of CO2 

on temperature, conditional on fossil fuels, production and consumption, which 

were missing from our previous VAR, and they could be affecting the dynamic. In 

another word, we test whether adding a third variable that affects CO2 might 

change the relationship between with temperature.vii 

 

We estimate a VAR, which includes in addition to the growth rate of CO2 and trend-

adjusted global land and ocean temperature, the growth rate of global fossil fuel 

consumption. Fossil fuel consumption is the sum of oil, gas, and coal consumptions 

measured in Exajoules (BP Statistical Review, 2020). We also included in the VAR the 

world population growth as an exogenous variable. World population (OECD 

Statistics) has been growing over the past sixty years, and it could have some 

significant exogenous effect on greenhouse gasses.  

 

Figure (18) plots the additional variables, global fossil fuel consumption, and world 

population. Both have unit roots. Figure (19a), (19b) and (19c) report the variance 

decompositions, i.e., percent temperature variance due to CO2, based on Cholesky 

degree-of-freedom adjusted, and 1000 Monte Carlo generated standard error. The 

growth rate of CO2 explains more of the variance of the Northern Hemisphere 

temperature than it does for the Southern Hemisphere, and global temperatures, 

about 40 percent. It explains just a little more than 20 percent of the global 

temperature, and about 30 percent of the Southern Hemisphere’s. Figures (20a), 

(20b), and (20c) plot the variances of temperature due to fossil fuel. The amount of 

variations in temperature due fossil fuel consumption growth is trivial.  

https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
https://stats.oecd.org/
https://stats.oecd.org/
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Scientists believe there is a feedback mechanism that significantly influences the CO2 

– temperature connection. Perhaps they reached the same conclusion Lamb (1997) 

has reached, which is consistent with our results in table (1). See the Royal Society on 

water vapor feedback effect on temperature. Dlugokencky  (2016) et al. say, “This 

strong water vapor feedback means that for a scenario considering a doubling of the 

CO2 concentration from pre-industrial conditions, water vapor and clouds globally 

lead to an increase in thermal energy that is about three times that of the long-lived 

greenhouse gases. Therefore, measured in the ability to trap the heat emanating from 

the Earth’s surface, water vapor and clouds are the largest contributors to warming. 

The amount of water vapor in the atmosphere is a direct response to the amount of 

CO2 and the other long-lived greenhouse gases, increasing as they do.” 

 

Note that there are many different methods to measure water vapor. At least eight 

are mentioned in Dlugokencky (2016) et al.  However, these methods make it 

difficult to have a consistent trend measurement. They argue that “for example, the 

limited lifespan of satellite missions or insufficiently documented or understood 

changes in instrumentation. Combining records from different instruments that do 

not agree with one another is also a problem. One example is the offset between 

records from the HALOE and MLS satellite instruments. Nevertheless, observations 

show a steady increase of the total water vapor column as well as a 30-year net 

increase in stratospheric water vapor. Also, see Ning et al. (2016), for example, who 

found number of breaks in the integrated water vapor (IWV) time series obtained 

from reprocessed data acquired from global navigation satellite systems (GNSS). 

Furthermore, it is very difficult to get a consistent time series data for water vapor 

online. We conclude that since water vapor amplifies CO2 effect on temperature, our 

Dynamic OLS regressions include lag and lead CO2, albeit one lag and one lead, 

they should capture some of the water vapor feedback effect. The data for water 

vapor are not readily and easily accessible from NOAA webpage, and there is no 

time series data as far as we know.  

https://royalsociety.org/topics-policy/projects/climate-change-evidence-causes/basics-of-climate-change/
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9. The other greenhouse gases 

 

Finally, we attempt to include the other greenhouse gases in our analysis. NOAA 

publishes data for methane,    , Sulfur Hexafluoride    , and Nitrous Oxide,   . 

However, they come with different samples. Take methane (   ) for example, the 

sample is 1984 to 2019.    has a shorter sample from 1998 and     is very short 

from 2001. The sample size affects the time series analysis, and the method of 

analysis. We use a multivariate method for cointegration instead of bivariate 

methods.  Water vapor is also a greenhouse gas.  

 

We begin with the three gases, methane, Nitrous Oxide, and Sulfur Hexafluoride 

because some time series data are readily accessible. We test for unit root just like 

did before. Methane (CH4) has a unit root because the common tests for unit root 

could not reject the null, which might be due to low power. Nonetheless, it has a 

significant positive trend. Thus, it is differenced-stationary. For Sulfur Hexafluoride 

SF6, has a unit root too. Nitrous Oxide,    data are unsuitable for time series 

analysis. Figure (21) plot these time series. 

 

 To test the null hypothesis of “no” cointegration, we follow two strategies. First, we 

test pair wise, with temperature exactly like what we have done with CO2 earlier 

and use the bivariate Engle-Granger (1987) method. So, we test temperature and     

then we test temperature and     separately.  

 

Table (9) reports the results of the temperature-Methane pair. In (9a), we regress 

global temperature on a constant and Methane. In table (9b), we test the residuals 

from the above regression for unit root using the ADF test. The test with the AIC 

rejects the unit root and with the modified, AIC cannot reject the unit root, however, 

in (9c), the lagged residuals are statistically insignificant from zero, which suggest 

that there is no evidence of cointegration between global temperature and methane. 
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This latter ECM regression is a more reliable method to test for the null hypothesis of 

no cointegration. Table (10) tests the pair of temperature-   . The sample is much 

smaller, from 2001to 2019. There is no evidence of cointegration here either. 

 

Since none of the greenhouse gasses is cointegrated with temperature, we do not 

expect a multivariate test for temperature and all the three greenhouse gases 

together to provide any insight about the long run common trend between them. It 

would indicate cointegration, but it would be a cointegration among the greenhouse 

gasses themselves, and not with temperature. The Johansen Maximum Likelihood 

test suggests two to three cointegration relationships. Two cointegration 

relationships are probably between CO2 and     because the sample is longer while 

the sample of     is short. These multivariate results are also similar to Phillips et al. 

(2020). They did not find a cointegration relationship between CO2 and temperature, 

but they found a cointegration relationship among CO2, Temperature, and radiation. 

 

Table (11) reports the results. We test the null hypothesis of no cointegration among 

the four variables temperature, CO2, CH4, and SF6 using both the bivariate Engle-

Granger (1987) and the Johansen’s Maximum Likelihood Test, Johansen (1988, 1991 

and 1995) and Johansen and Juselius (1990). The Johansen tests in more appropriate 

in a multivariate case like this one. However, the sample size is short, 22 years as 

compared with 62 in the previous analysis because the sample for     is short, 2001 

to 2019. Cointegration requires a long span of data, and the Johansen test statistics, 

i.e., the Trace and the Maximum Eigenvalue, have a small sample bias that is very 

difficult to fix, therefore, one should take these results with a grain of salt. See, for 

example, Cheung and Lai (1993) for correcting the critical values of the Johansen’s 

test statistics.  

 

For the Engle-Granger test, we use OLS to regress global temperature on the levels of 

CO2,    ,    and deterministic linear trend; output the residuals; test them for unit 
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root using the ADF test; and finally estimate an OLS error correction equation. The 

tests suggest that these variables are cointegrated. The error correction term has a 

large t statistic (p value is 0.0033). The ADF also strongly rejects the unit root in the 

residuals of the level regression.  The Johansen tests include intercept and trend in 

the cointegration equation and no intercept in the VAR. This is the only plausible 

specification because we tested the normalized cointegration relationships for unit 

root using the ADF and we could reject the unit root at the 10 percent level. Recall 

that the Johansen test statistic and the ADF are identical in the case of one unit root. 

Other specifications do not seem to be same.viii  

 

Figure (22) plots the three-cointegration relationships and the residuals from the 

level regression of temperature on the greenhouse gasses, i.e., the Engle-Granger 

cointegartion relationship. These plots suggest that there might be a long trend 

among these variables albeit one should be careful about such interpretation because 

of the small sample problem. The first cointegration relationship is indeed I(0), the 

second too, but the third has a trend. The Engle-Granger residuals are I(0). A 

cointegration relationship among the greenhouse gasses is not a surprise in general. 

The question is whether the share one with temperature.  

 

Cointegration implies that we could either run OLS regressions in levels, whereby   

the t statistics is still valid or we could use other error correction methods such as 

VECM, FMOLS and Dynamic OLS. We do both. In table (12), we report several 

regression results. All variables are in levels. The dependent variable is temperature, 

and the regressers are CO2,    , and    . The table has six panels. The first three 

panels are for OLS. The third panel is Dynamic OLS (see Phillips – Loreatn (1991), 

Saikkonen 1991, and Stock and Watson (1993) for the asymptotic theory).ix Each 

panel has two columns. The first column reports regressions without a constant 

term. The second column reports the regressions with constant terms. 
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The first three panels are the OLS results for average global land and ocean 

temperature, the Northern Hemisphere temperature, and the Southern Hemisphere 

temperature respectively. The regressions without constants suggest that all 

greenhouse gasses are statistically insignificant explanatory variables for 

temperature. The goodness of fit is low in global temperature regression in column 

(1), 0.29 and DW statistic is 1.94. Adding a constant to the regression in the second 

column makes all coefficients statistically significant and improves the fit, adjusted 

R-squared increases to 0.50, not particularly high. The DW statistic is 2.3. CO2 has a 

large coefficient 0.25; methane coefficient is 0.023 and     is negative 2.30. The point 

is that the constant term captures more missing explanatory variables. Nevertheless, 

most importantly, these estimates are nonsensical. A 100-ppm increase in CO2 raises 

global temperature by 25 degrees Celsius!  

 

In the second panel for the Northern Hemisphere temperature, the first column 

reports all three explanatory variables are statistically insignificant. The relatively 

high adjusted R-squared and low DW statistic suggests that the regression is 

spurious. Again, the results change when we add a constant to the regression. The 

coefficients are statistically significant and the errors are serially uncorrelated with a 

DW statistic 1.72. Here too, the coefficient of CO2 is 0.15, too large to make any 

sense. 

 

And, in the third panel for the Southern Hemisphere temperature, the first column is 

the regression without a constant, and the coefficients are insignificant except for 

   . The goodness of fit, adjusted R-squared is 0.63 and the DW statistic is 1.78, 

however, surprisingly when we add a constant to the regression the coefficients 

become statistically insignificant. In all regressions without a constant CO2 has a 

negative sign. We believe that the short sample size has some effect on these results 

and one should be careful interpreting them. That said, the constant term must be 

accounting for some other explanatory variables.   
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The last panels report the results of the Phillips – Loreatn (1991) dynamic-OLS in 

levels to estimate the coefficients. The small sample size restricted our ability to 

search for the optimal lag length. Therefore, we fixed the lag-lead length to be one 

lag. None of the coefficients is significant, except for    , methane. The regressions 

of the global temperature in column (g) and (h), without and with a constant, have 

insignificant coefficient estimates, except for methane, which has a coefficient of 0.03 

and statistically significant. The regression in column (i) has all the coefficient 

estimates insignificant. Adding a constant term to it in column (j) makes all the 

coefficients significant, improves the adjusted R-squared to 0.88, but the magnitude 

of CO2 coefficients is too large to make sense, 0.31. For the Southern Hemisphere 

temperature, both regressions in column (k) and (l), without and with a constant 

term are insignificant.  

 

The results in table (12) are not robust to specifications and methods. The sample 

size is too small perhaps. The Phillips-Loretan Dynamic OLS is restricted to one 

lag/lead because of the small sample and that might have affected the estimates. One 

thing remains clear; a constant in the regression makes a difference and is likely to be 

telling us that there are any other explanatory variables missing.  

 

Finally, we examine the short-run dynamics by estimating a VAR, which has the 

variables in this order       ;       ;    CO2 and trend-adjusted global 

temperature. The sample is 1998 – 2019 because the first variable is only available 

from 1998 to 2019. Table (13) reports the variance decomposition. These are based on 

Cholesky, degree-of-freedom adjusted, and 1000 Monte Carlo generated standard 

error. The variance of global temperature due to    is negligible, only slightly more 

is due to methane   , but now more variations in temperature is attributed to CO2 

than in the previous VAR, about 55 percent. Keep in mind that this VAR has a much 

shorter sample. The order of the variables did not seem to influence the outcome.  
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We re-estimate the VAR with the growth rate of fossil fuel consumption in addition 

to the four other greenhouse variables. The VAR is ordered as follows, growth rate 

of fossil fuel consumption, followed by       ;       ;    CO2 and trend-adjusted 

global temperature. The results change significantly because of the inclusion of fossil 

fuel consumption growth. They might have affected by the short sample too. Table 

(14) reports the variance decomposition, with the variance of temperature due to 

CO2 now dropped to less than 10 percent of total variation. More than 10 percent is 

due to methane, and more than 30 percent is due to fossil fuel consumption. 

Greenhouse gasses do not seem to explain much of the dynamic of global 

temperature. 

 

Tables (15) and (16) report the variance decompositions of the Northern and 

Southern hemisphere temperatures. The variance of temperature due to CO2, 

however, remains small, but it doubled in the South compared with the North. The 

variance of temperature due to fossil fuel consumption growth tripled in the 

Southern hemisphere compared with the North. These results are significantly 

different from what have seen before adding the other two greenhouse gasses 

   and   , and make less sense because we expect more influence in the Northern 

hemisphere than the South. This dynamic must be influenced by the short sample 

we have now and the loss of the degrees of freedom to estimate the dynamics.    

 

10. Summary and conclusions  

 

There is a global acceptance among people that CO2 and global temperature are 

correlated. Some people suggest causation from the former to the latter. It is rather 

very difficult to argue otherwise. Greenhouse effects, global warming, and climate 

change are very important contemporary issues to governments, businesses, and 

people. There is a pressure on governments to adopt policies to reduce or eliminate 
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CO2, fossil fuel, and other greenhouse gasses, which is a costly endeavor. The 

International Renewable Energy Agency (IRENA) estimates to achieve a zero carbon 

world and to keep global temperature at 1.5 Celsius by 2050 are huge. It says, “Major 

economies have announced economic stimulus packages that will pump 

approximately USD 4.6 trillion directly into carbon-relevant sectors such as 

agriculture, industry, waste, energy and transport, but less than USD 1.8 trillion is 

green.” Stimulus is either tax-financed or borrowing, which could have significant 

economic consequences. Then it goes on saying, “By contrast, energy transition 

investment will have to increase by 30% over planned investment to a total of USD 

131 trillion between now and 2050, corresponding to USD 4.4 trillion on average 

every year. Socio-economic benefits will be massive; investing in transition will 

create close to three times more jobs than fossil fuels, for each million dollars of 

spending. To address concerns about a fair and just transition, IRENA’s Outlook 

calls for a holistic and consistent overall policy framework.”  

 

Most scientists agree that policy should be evidence-based. The first step is to make 

sure that CO2 and temperature are correlated in a statistical sense, and that the 

correlation is stable over time, which is something that seems to have been assumed 

and taken for granted. The objective of this paper is simple. We test the statistical 

significance of the association, e.g., correlation, long run common trend, long run co 

variation, common cycles, etc., between CO2 and temperature. 

 

We began by showing Jouzel, J. et al. (2007) graphical correlation between    and 

global temperature over a period of 800,000 years. On the X-axis, age, which is years 

before present, and on the main vertical axis is temperature, and on the RHS vertical 

axis is CO2. Most importantly, both variables are in levels. So, 800,000 years ago, 

500,000 years ago…etc. The correlation between these two variables is remarkable. 

We thought that this graph would be a scientifically sufficient proof for the existence 

of correlation between CO2 and temperature. However, given the significant 

https://www.irena.org/newsroom/pressreleases/2021/Mar/Fast-Track-Energy-Transitions--to-Win-the-Race-to-Zero
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correlation between CO2 and temperature for 800,000 years, obviously not all 

greenhouse gasses have been manmade, not even 30,000 years ago. Second, the 

relationship shows rising and falling CO2 and temperature 100,000 years ago and 

now look the same, even less now. Third, there are prolonged periods of low 

CO2 and low temperature levels, so what caused CO2 level to fall without any 

interventionist policy? However, most importantly for this paper is that both 

CO2 and temperature are measured in levels and have trends. Trend in the data could 

render the correlation between the levels spurious. This paper focuses on the time 

series analysis of trend, and on how to calculate and estimate meaningful 

associations between CO2 and temperature. 

 

We used a shorter sample that covers a more realistic period of greenhouse gas, 

which is more appropriate to examine for policy purposes. NOAA and NASA report 

data from 1959 to 2020, a sample more logical to investigate. This period includes 

increased industrialization, at least in the Northern Hemisphere, global population 

growth, marked increases in fossil fuel production and consumption, vast 

mechanized agriculture, more power generation, more cars, more planes, and many 

other harmful practices that exploded during the past 60 years.  Crippa. M. Solazzo, 

E., Guizzardi, D. et al. (2021) show that “food systems” were responsible for 34 

percent of all human caused greenhouse gas emissions in 2015.  

 

In our sample, we can visually identify positive trends in CO2 and temperature, 

globally and in Northern and Southern hemispheres. Any correlation between the 

levels of these variables is, therefore, spurious, unless they are cointegrated. All the 

moments are functions of time, hence, uninformative unless, these two variables are 

cointegrated (i.e., share a common long-run trend). In order to make sense of the 

relationship between CO2 and temperature, we have to, first, identify the nature of 

the trend, and second, remove it.  
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We run a number of OLS regressions of temperature (global, Northern Hemisphere, 

and Southern Hemisphere) on CO2 from 1959 to 2020 in the levels. In global 

temperature, we found no correlation whatsoever, and the residuals were 

significantly serially correlated. Then we repeated the regressions by adding a 

constant term. This regression changed significantly, the fit increased significantly 

and the residuals became white noise. This suggests that the constant term is 

accounting for something missing that explains temperature. In the Northern and 

Southern Hemispheres, the fit also increased significantly, but the residuals 

remained serially correlated, which is a sure sign of spurious regression.   

 

Since we have sufficient evidence that the trend in the data affects the correlation 

between temperature and CO2, we investigated the nature of the trend in the data. 

The trend is either linear or stochastic. We used a variety of commonly used and 

well-know statistical tests to test for unit root (i.e., stochastic trend) conditional on 

linear time trend. When testing, we used different specifications, and many different 

Information Criteria to determine the lag length. At the end, the results are quite 

significant. We rejected the unit root hypothesis in temperature, but not in CO2. The 

rejection of the unit root in temperature by already known weak statistical tests is a 

significant result because the power of the test in this case is irrelevant, i.e., the null 

has been rejected already. Therefore, CO2 is probably a unit root process, hence, it is 

difference-stationary but temperature is trend-stationary. As a matter of fact the 

association between temperature and CO2 completely disappears if we assume that 

temperature is difference-stationary too.  

 

We proceeded with these conclusions to investigate the correlation between the 

trend-adjusted data. First, we found weak positive correlation between the two 

variables as indicated by the Chi-squared 95% confidence interval. Second, the 

variance of the log-differenced CO2 is 100 times smaller than the variance of the 
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trend-adjusted temperature, thus CO2 could not possibly explain temperature. 

Third, widely used nonparametric methods indicate no long-run significant 

covariance in these data. Fourth, a series of tests for a bivariate cointegration, i.e., 

whether CO2 and temperature share a common long-run trend, indicated that we 

could not reject the hypothesis that there is “no cointegration”. Temperature and 

CO2 do not share a long-run common trend. Phillips et al. (2020) found a similar 

result essentially. Fifth, because there is no statistical evidence of a cointegrating 

vector, we fail to test for common cycles. However, sixth, we decomposed the time 

series into noise, trend, and cycles, removed the noise and the trend and examined 

the correlation between the cyclical CO2 and cyclical temperature. We computed the 

correlation to be 0.53, which is very small indeed. Seventh, our final exercise 

involved estimating a number of unrestricted VARs to examine whether there is a 

dynamic relationship between CO2 and temperature. In other words, we examine 

whether past information in CO2 has predictive power of current temperature. 

 

We found that temperature responds positively to CO2 shock. The variance of 

temperature due to the growth in CO2 is small, less than 20 percent in global 

temperature, about 30 percent in the Northern hemisphere and the Southern 

hemisphere. To the extent that such VAR is too small and omitted variables might 

play a significant role in explaining the dynamic of temperature in such atheoretical 

exercise, we also estimated VARs that include global fossil fuel consumption in 

addition to CO2 and temperature. We added population growth is an exogenous 

variable too. No significant change in the results that we obtained earlier from 

smaller VARs is found. Most importantly, only up to about 40 percent of the 

variations in Northern hemisphere temperature is due to CO2, less than 30 percent 

in Southern hemisphere, and less than 20 percent in global temperature. For fossil 

fuel consumption, less than 20 percent of the variations in temperature are due to 

fossil fuel consumption. 
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These stylized statistical facts are inconsistent with widely held views and openly 

expressed opinions of scientific communities, governments, and people at large. The 

temperature’s variance is 100 times larger than the variance of the supposedly 

explanatory variable, CO2. Thus, it cannot explain the variation in temperature.  

 

We attempted to examine the effects of the other greenhouse gasses, such as 

methane, Oxide, and Sulfur Hexafluoride along with CO2, on temperature in a 

multivariate analysis. Unfortunately, we do not find anything significant. 

 

Our results are consistent across the various tests that we ran in this paper. The 

variation in temperature cannot be explained by that of CO2, and there is a lot of 

explaining that needs to be done before policymakers take actions. Our results were 

derived from straightforward statistical methods, which are easily reproducible. The 

sources of the data we used are referenced and the data are readily available online. 

We also put the data we used in the appendix.  

 

That said, policy based on the weak statistical relationship between trend-adjusted 

CO2 and temperature is a questionable policy. However, we believe that it is 

probably prudent for policy to provide incentives to invest in greener energy, where 

profit opportunities are available. Indeed, data show that investment in non fossil 

fuel has been increasing worldwide, see Bloomberg NEF Clean Energy Investment 

Trends (2020).  
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Table (1) 

OLS Regression 
                 

Sample 1959-2020 

 

 1 2 3 4 5 6 

 Global Temp(i) Northern Hem Temp(ii) Southern Hem Temp(iii) 

  - -3.14 - -4.5 - -2.4 

 - (0.0000) - (0.0000) - (0.0000) 
  0.001 0.009 0.001 0.013 0.0008 0.007 

 (0.8486) (0.0000) (0.4973) (0.0000) (0.3145) (0.0000) 
   0.15 0.77 0.15 0.88 0.18 0.85 
   0.53 1.92 0.16 1.22 0.22 1.28 

Correlation Weak Strong Weak Spurious Weak Spurious 
(i) HAC Standard errors & covariance, Bartlett Kernel, prewhitening with lag =3, from AIC 

maximum lag=3, Newey-West fixed bandwidth=4 

(ii) HAC Standard errors & covariance, Bartlett Kernel, prewhitening with lag =2, from AIC 

maximum lag=3, Newey-West fixed bandwidth=4 

(iii) HAC Standard errors & covariance, Bartlett Kernel, prewhitening with lag =1, from AIC 

maximum lag=3, Newey-West fixed bandwidth=4 

(iv) P values are in parentheses.  
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Table (2)  

                   

 

   

         

   Unit Root 

Augmented Dickey – Fuller 

Estimator: OLS  

Standard errors are HAC – Newey-West with df Adj. 

  : Temperature 

 Information Criteria Modified Information Criteria  

 Lag AIC 

 

SIC 

 

HQ 

 

Lag AIC SIC 

 

HQ 

  0 -0.12 

(0.0104) 

= = 3 -0.12 

(0.0418) 

= = 

   0.015 

(0.0000) 

= =  0.012 

(0.0000) 

= = 

   -0.92 

(0.0000) 

= =  -0.67 

(0.0062) 

= = 

     0.44 = =   = = 
   0.16 = =   = = 
    2.00    1.98   

Unit 

Root 

 NO NO NO  NO NO NO 

 

  : CO2 

 Information Criteria Modified Information Criteria  

 Lag AIC 

 

SIC 

 

HQ 

 

Lag AIC SIC 

 

HQ 

  2 0.41 

(0.9391) 

= = 0 0.57 

(0.9070) 

= = 

   0.03 

(0.2421) 

= =  0.03 

(0.2816) 

= = 

   0.001 

(0.9283) 

= =  0.0005 

(0.9760) 

= = 

     0.54 = =  0.55 = = 
   0.45 = =  0.45 = = 
    1.93 = =  2.04 = = 

Unit 

Root 

 YES YES YES  YES YES YES 

Augmented Dickey-Fuller is Said – Dickey test statistic. P values are in parentheses. = means 

that the results are the same. 
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Table (3) 

                   

 

   

         

   Unit Root 

Phillips – Perron 

 Standard errors are HAC – Newey-West with d.f. Adj. 

  : Temperature 

  Spectral Estimation Method 

  

 

Bartlett 

and 

Parzen 

Quadratic AR (OLS) AR (OLS  

de trended) 

AR (GLS  

de-trended) 

  -0.12 

(0.0104) 

= = = = = 

  0.014 

(0.0000) 

= = = = = 

  -0.92 

(0.0000) 

= = = = = 

    0.44 = = = = = 
  0.16 = = = = = 
   1.89      

Band Width/Lag 4 8 4.38 /0 /0 /0 

Unit Root NO NO NO NO NO NO 

  : CO2 

  Spectral Estimation Method 

  Bartlett 

and 

Parzen 

Quadratic AR (OLS) AR (OLS  

de trended) 

AR (GLS  

de-trended) 

  0.57 

(0.9070) 

= = = = = 

  0.03 

(0.2816) 

= = = = = 

  0.0004 

(0.9760) 

= = = = = 

    0.55 = = = = = 
  0.45 = = = = = 
   2.04 = = = = = 

Band 

Width/Lag 

2 3 1.79 /0 /3 /7 

Unit Root YES YES YES YES YES YES 
P values are in parentheses.  For AR (OLS), AR (OLS detrended) and AR (GLS deterended) the 

Information Criteria are AIC, SIC, and HQ and the results do not change. 
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Table (4) 

Elliott – Rothenberg – Stock (GLS – ADF Test) 

Temperature 

 Information Criteria Modified Information Criteria 

 AIC SIC HQ AIC SIC HQ 

ERS -2.26  

(2) 

-5.99  

(0) 

-2.26  

(2) 

-1.18  

(3) 

-1.18  

(3) 

-1.18  

(3) 

Unit Root YES No YES YES YES YES 

 

 

CO2 

 Information Criteria Modified Information Criteria 

 AIC SIC HQ AIC SIC HQ 

ERS -1.08 

(7) 

-0.79 

(4) 

-0.79 

(4) 

-0.79 

(4) 

-0.56 

(3) 

-0.79 

(4) 

Unit Root YES YES YES YES YES YES 
We test at the 5% level, where the critical value is -3.16120 – Elliott-Rothenberg-Stock (1996) 

table (1). Parentheses include the number of lags. The estimator is GLS. 
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Table (5a) 

Testing for Unit Root with Break in the Intercept and the Trend 

Temperature Information Criteria Modified Information Criteria 

Test AIC SIC HQ AIC SIC HQ 

Min ADF  -8.15 

[<0.01] 

(0) 

-8.15 

[<0.01] 

(0) 

-8.15 

[<0.01] 

(0) 

-7.9 

[<0.01] 

(0) 

-7.9 

[<0.01] 

(0) 

-7.9 

[<0.01] 

(0) 

Break  2007 2007 2007 2010 2010 2010 

Type innovation innovation innovation Innovation innovation innovation 

Unit Root No No No No No No 
Lag length in parentheses, P values are Vogelsang (1993) asymmetric on-sided in squared brackets, no 

change in results when the break type is an additive outlier. The trend is significant.  

Table (5b) 

Temperature  Information Criteria Modified Information Criteria 

Test AIC SIC HQ AIC SIC HQ 

Min t-trend 

Break t-stat  

-6.88 

[<0.01] 

(0) 

* 

* 

* 

* 

* 

* 

-1.73 

[0.8819] 

(3) 

* 

* 

* 

* 

* 

* 

Break  1985 * * 1982 * * 

Type innovation * * Innovation * * 

Unit Root No No No Yes Yes Yes 
Lag length is in parentheses. Asterisk means the results do not change. Vogelsang (1993) asymptotic 

one-sided P values are in squared brackets, no change in results when the break type is an additive 

outlier.  Number of lags reduced the power of the test, hence increases the chance of non-rejection of 

the null hypothesis. The trend is significant. 

Table (5c) 

Temperature Information Criteria Modified Information Criteria 

Test AIC SIC HQ AIC SIC HQ 

Max t-trend 

Break t-stat  

-8.30 

[<0.01] 

(0) 

* 

* 

* 

* 

* 

* 

-2.43 

[0.6688] 

(4) 

* 

* 

* 

* 

* 

* 

Break  2007 * * 1982 * * 

Type Additive * * Additive * * 

Unit Root No No No Yes Yes Yes 
Lag length is in parentheses. Asterisk means the results do not change. Vogelsang (1993) asymmetric 

one-sided P values are in squared brackets, no change in results when the break type is an additive 

outlier.  Number of lags reduced the power of the test; hence increase the chance of non-rejection of 

the null hypothesis. The trend is always statistically significant.
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Table (6) 

Sample: 1959 2020 

Trend-Adjusted Stationary Data 

          

 CO2 Temp Northern Hemp Temp 

Southern Hemp 

Temp 

          
 Mean  0.004439 -0.004456  0.007033  0.010459 

 Median  0.004623 -0.012650 -0.002000  0.006000 

 Maximum  0.008443  0.341050  0.373000  0.178000 

 Minimum  0.001313 -0.383940 -0.307000 -0.190000 

 Std. Dev.  0.001640  0.163817  0.169711  0.085500 

 Skewness  0.127377 -0.027184  0.255654 -0.016708 

 Kurtosis  2.580262  2.629405  2.570077  2.238257 

     

 Jarque-Bera  0.612744  0.356587  1.134272  1.477646 

 Probability  0.736113  0.836697  0.567148  0.477676 

     

 Sum  0.270767 -0.271790  0.429000  0.638000 

 Sum Sq. Dev.  0.000161  1.610161  1.728114  0.438611 

     

 Observations  61  61  61  61 
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Table (7a) 

OLS regressions 
                   

                          

Variable 

Coefficien

t Std. Error t-Statistic P value  

  -3.15 0.30 -10.1 0.0000  

  0.01 0.0008 11.4 0.0000  

      
Adjusted R-squared 0.76     S.D. dependent var. 0.33  

S.E. of regression 0.16     Akaike info criterion -0.81  

Sum squared res. 1.50     Schwarz criterion -0.74  

Log likelihood 27.20     Hannan-Quinn criterion -0.78  

F-statistic 199.6     Durbin-Watson stat 1.92  

Prob. (F-statistic) 0.000     Wald F-statistic 129.2  

Prob. (Wald F-statistic) 0.000     
HAC standard errors & covariance (Prewhitening with lags = 0 from AIC 

Maximum lags = 3, Bartlett kernel, Newey-West fixed bandwidth = 4. 

                       

 

   

 

Lag Length: 3 (Automatic - based on AIC, maximum lag=10) 

   t-Statistic   Prob.* 

     Augmented Dickey-Fuller test statistic  0.207819  0.9709 

Test critical 

values: 5% level  -2.912631  

     *MacKinnon (1996) one-sided p-values. Modified AIC gives a similar result.   

Table (7c) 

Error Correction 
                         

Variable 

Coefficien

t Std. Error t-Statistic Prob.    

      Constant -0.17 0.083   -2.034 0.0466  

  36.57 15.913 2.30 0.0252  

  -0.046 0.0843 -0.55 0.5853  

R-squared 0.11     Mean dependent variable -0.004  

Adjusted R-squared 0.08     S.D. dependent variable   0.16  

S.E. of regression 0.15     Akaike info criterion -0.82  

Sum squared res. 1.42     Schwarz criterion -0.71  

Log likelihood  28.0  Hannan-Quinn criterion -0.78  

F-statistic 3.74     Durbin-Watson stat 1.57  

Prob. (F-statistic) 0.029     Wald F-statistic 2.69  

Prob. (Wald F-statistic) 0.076     

            is trend-adjusted. HAC standard errors & covariance, with lag=1, from AIC 

maximum lag=3, Bartlett kernel, and Newey-West fixed bandwidth=4.   
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Table (8) 

Long-Run Covariance Matrix 

Pre-whitening with lag=1. Max. Lags =3, Bartlett Kernel with Newey-West 

Bandwidth=4 

 CO2 

Global 

Temp Northern H Temp Southern H Temp 

CO2 5.56E-06 9.33E-05 0.000231 5.51E-05 

Global Temp 9.33E-05 0.036636 0.033947 0.010704 

Northern H 0.000231 0.033947 0.082385 -0.003650 

Southern H 5.51E-05 0.010704 -0.003650 0.011986 
Using other methods to estimate the kernel does not seem to alter the results. 
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Table (9a) 

The Engle-Granger Tests for Cointegration between 

Global Temperature and Methane 

OLS regressions 
                 

                          

Sample 1984 - 2019 

Variable Coefficient Std. Error t-Statistic P value 

       -5.05 0.92 -5.45 0.0000 

  0.003 0.00053 5.98 0.0000 

     R-squared 0.55 Mean dependent var. 0.54 

Adjusted R-squared 0.54 S.D. dependent var. 0.23 

S.E. of regression 0.16 Akaike info criterion -0.78 

Sum squared res. 0.86 Schwarz criterion -0.69 

Log likelihood 16.04 Hannan-Quinn criterion -0.75 

F-statistic 42.07 Durbin-Watson stat 1.93 

Prob.  (F-statistic) 0.0000 Wald F-statistic 35.7 

Prob. (Wald F-statistic) 0.000001    
HAC standard errors & covariance (Prewhitening with lags = 0 from AIC, max lag=3, Bartlett Kernel, Newey-

West fixed bandwidth=4  

Table (9b) 

Test the Residuals for Unit Root – ADF – Engle-Granger 

                       

 

   

 

 

   t-Statistic P value 

     AIC, lag=0 -5.69 0.0000 

Modified AIC, lag=2 -2.74 0.0785 
All other Information Criteria give similar results  

Table (9c) 

Error Correction 
                        

Variable Coefficient Std. Error t-Statistic P value  

  1.82 4.76 0.38 0.7051  

  -0.02 0.20 -0.09 0.9288  

R-squared -0.005 Mean dependent variable -0.014  

Adjusted R-squared -0.035 S.D. dependent variable 0.158  

S.E. of regression 0.1613 Akaike info criterion -0.754  

Sum squared res. 0.8594 Schwarz criterion -0.665  

Log likelihood 15.207 Hannan-Quinn criterion -0.724  

Durbin-Watson stat 1.91     
      is trend-adjusted . Constant term not reported. HAC standard errors & covariance (Pre 

whitening with lags = 0 from AIC. Max lags = 3, Bartlett kernel, Newey-West fixed bandwidth =4. 
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Table (10a) 

The Engle-Granger Tests for Cointegration between  

Global Temperature and Sulfur Hexafluoride 

OLS regressions 
                  

                          

Sample 2001- 2019 

Variable Coefficient Std. Error t-Statistic P value  

  0.20 0.16 1.30 0.2087  

  0.07 0.20 2.94 0.0095  

      R-squared 0.22     Mean dependent variable    0.68  

Adjusted R-squared 0.22     S.D. dependent variable   0.21  

S.E. of regression 0.18     Akaike info criterion -0.46  

Sum squared res. 0.62     Schwarz criterion -0.419  

Log likelihood 5.46     Hannan-Quinn criterion -0.461  

Durbin-Watson stat 1.76     

      HAC standard errors and covariance (pre whitening, lag=0, from AIC with maximum  

lag=2, Bartlett kernel, Newey-West with fixed bandwidth=3 

 

Table (10b) 

Test the Residuals for Unit Root – ADF – Engle-Granger 

                       

 

   

 

   t-Statistic   Prob.* 

     AIC, lag=0 -3.78  0.0116 

Modified AIC, lag=2 -1.80 0.3601 
MacKinnon (1996) critical values are computed from sample of 20 observations, thus 

maybe inaccurate for this smaller sample. Test critical value at the 5% level is -3.040391 

  

Table (10c) 
                        

 Coefficient Std. Error t-Statistic Prob. 

  -0.49 12.7 -0.04 0.9694 

  0.06 0.307 0.19 0.8443 
     R-squared 0.004     Mean dependent variable  0.006 

Adjusted R-squared 0.13     S.D. dependent variable  0.188 

S.E. of regression 0.20     Akaike info criterion -0.223 

Sum squared res. 0.60     Schwarz criterion -0.074 

Log likelihood 5.0     Hannan-Quinn criterion -0.202 

F-statistic 0.03     Durbin-Watson stat  1.866 

Prob.(F-statistic) 0.97     Wald F-statistic  0.025 

Prob.(Wald F-statistic) 0.97    

HAC standard errors and covariance (pre whitening, lag=0, from AIC with    maximum 

Lag=2, Bartlett kernel, Newey-West with fixed bandwidth=3. 
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Table (11) 

Johansen’s ML Test Results for “no” Cointegration 

Sample 2001-2019 

Trend assumption: Linear deterministic trend (restricted)  

Series: GTEMP CO2 CH4 SF6     

Lags interval (in first differences): 1 to 1   

      Unrestricted Cointegration Rank Test (Trace)   

      Hypothesized  Trace 0.05   

No. of CE(s) Eigenvalue Statistic Critical Value P value**  

      None *  0.942719  105.5181  63.87610  0.0000  

At most 1 *  0.745019  51.18212  42.91525  0.0061  

At most 2  0.611558  25.21733  25.87211  0.0601  

At most 3  0.317244  7.250726  12.51798  0.3191  

       Trace test indicates 2 cointegrating eqn(s) at the 0.05 level  

 * denotes rejection of the hypothesis at the 0.05 level  

 **MacKinnon-Haug-Michelis (1999) p-values   

      

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)  

      Hypothesized  Max-Eigen 0.05   

No. of CE(s) Eigenvalue Statistic Critical Value P value**  

            
None *  0.942719  54.33602  32.11832  0.0000  

At most 1 *  0.745019  25.96479  25.82321  0.0479  

At most 2  0.611558  17.96660  19.38704  0.0794  

At most 3  0.317244  7.250726  12.51798  0.3191  

            
 Max-eigenvalue test indicates 2 cointegrating eqn(s) at the 0.05 level  

 * denotes rejection of the hypothesis at the 0.05 level  

 **MacKinnon-Haug-Michelis (1999) p-values   
 We don’t report the results, but we also carried out the tests with different assumptions about trend 
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Table (12) 

Greenhouse gases effect on Temperature 

 OLS (i) Dynamic OLS ii 

Dependent 

variable=> 

Global Temp Northern Hemp Southern Hemp Global Temp Northern Hemp Southern Hemp 

 a b c d e f g h i j k l 

CO2 -0.016 

(0.3180) 

0.25 

(0.0000) 

-0.005 

(0.6958) 

0.14 

(0.0003) 

-0.005 

(0.1349) 

0.03 

(0.2127) 

-0.05 

(0.2624) 

0.18 

(0.2536) 

0.02 

(0.6314) 

0.31 

(0.0057) 

0.00 

(0.9556) 

0.03 

(0.6259) 

CH4 0.003 

(0.3020) 

0.02 

(0.0000) 

0.001 

(0.6754) 

0.012 

(0.0006) 

0.001 

(0.1018) 

0.004 

(0.0949) 

0.01 

(0.2502) 

0.03 

(0.0484) 

-0.004 

(0.6501) 

0.01 

(0.0353) 

-0.00 

(0.9811) 

0.009 

(0.0715) 

SF6 0.137 

(0.0646) 

-2.30 

(0.0000) 

0.13 

(0.0452) 

-1.12 

(0.0007) 

0.07 

(0.0000) 

-0.24 

(0.2783) 

0.25 

(0.1776) 

-1.89 

(0.1726) 

0.15 

(0.3709) 

-2.5 

(0.0094) 

0.06 

(0.0686) 

-0.43 

(0.3982) 

Cons - -124.9 

(0.0000) 

- -67.4 

(0.0003) 

- -16.25 

(0.1685) 

- -108.03 

(0.1293) 

- -132.2 

(0.0071) 

- -25.66 

(0.3277) 
    0.29 0.50 0.71 0.77 0.64 0.63 0.31 0.33 0.67 0.82 0.69 0.73 

DW 1.94 2.4 1.36 1.72 1.78 1.89 - - - - - - 
  0.17 0.15 0.12 0.10 0.07 0.07 0.17 0.17 0.12 0.08 0.07 0.05 
  - - - - - - 0.025 0.01 0.02 0.003 0.004 0.001 
i-The sample is 1998 – 2019 (22 observations). The sample is 2000-2018 for the Dynamic OLS. a-HAC standard errors and covariance (pre-whitening with lags=0 AIC, max 

lag=2, Bartlett kernel, Newey-West bandwidth 2.8103, lag length=2.  b-HAC standard errors and covariance (pre-whitening with lags=2 AIC, max lag=2, Bartlett kernel, 

Newey-West bandwidth 1.9982, lag length=2. c-HAC standard errors and covariance (pre-whitening with lags=2 AIC, max lag=2, Bartlett kernel, Newey-West bandwidth 

2.2124, lag length=2. d-HAC standard errors and covariance (pre-whitening with lags=2 AIC, max lag=2, Bartlett kernel, Newey-West bandwidth 1.1849, lag length=2. e-HAC 

standard errors and covariance (pre-whitening with lags=2 AIC, max lag=2, Bartlett kernel, Newey-West bandwidth 1.2698, lag length=2. f- HAC standard errors and 

covariance (pre-whitening with lags=2 AIC, max lag=2, Bartlett kernel, Newey-West bandwidth 1.6634, lag length=2. g, h, I, j, k, and l- Fixed lag=lead=1, long-run variance 

estimate includes pre-whitening, Bartlett kernel, Newey-West bandwidth fixed=3. ii-fixed lags and leads=1. Pre-whitening with lag=1, Bartlett kernel, Newey-West fixed 

bandwidth = 3. P values are in parentheses.   is the standard error of the regression and   is the long-run variance. 
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Table (13) 

Variance Decomposition of Global Temperature 

 Period S.E.    SF6    CH4    CO2 

Trend-adjusted 

Temperature 

            
 1  0.236795  0.030674  2.476814  58.28683  39.20568 

   (7.39166)  (8.08993)  (14.1119)  (13.0130) 

 2  0.241270  2.131906  3.229579  56.81478  37.82374 

   (12.1137)  (10.6268)  (14.4931)  (12.3727) 

 3  0.244424  2.383563  4.689667  55.43510  37.49167 

   (14.0016)  (11.7295)  (14.2587)  (12.5337) 

 4  0.244800  2.442591  4.821598  55.26749  37.46832 

   (14.4288)  (12.1398)  (14.1431)  (12.2748) 

 5  0.245527  2.637693  4.828121  55.24373  37.29046 

   (14.7702)  (12.4129)  (14.2589)  (12.2768) 

 6  0.245980  2.816144  4.920739  55.10326  37.15986 

   (15.5282)  (12.9027)  (14.4321)  (12.5087) 

 7  0.246031  2.823351  4.929198  55.09583  37.15162 

   (16.3114)  (13.2672)  (14.5023)  (12.6993) 

 8  0.246091  2.853454  4.932172  55.07628  37.13809 

   (17.1307)  (13.5717)  (14.7595)  (12.9287) 

 9  0.246241  2.934683  4.959746  55.01017  37.09540 

   (17.6784)  (13.9406)  (14.9645)  (13.0507) 

 10  0.246331  2.973532  4.971177  54.97996  37.07533 

   (18.2617)  (14.2735)  (15.1808)  (13.3016) 
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Table (14) 

Variance Decomposition of Global Temperature 

 

 Period S.E. 

Fossil fuel 

growth 

rate    SF6    CH4    CO2 

Trend-adjusted 

Temperature 

              
 1  0.187967  0.053653  1.732646  15.14369  15.34214  67.72787 

   (8.32800)  (10.5581)  (13.1705)  (11.3110)  (15.4309) 

 2  0.241854  30.53246  10.02299  9.251383  9.277542  40.91563 

   (17.9747)  (13.3192)  (11.1544)  (7.80495)  (12.9214) 

 3  0.248600  31.24406  9.493994  8.759872  9.000673  41.50141 

   (16.3244)  (11.7002)  (12.4046)  (6.87794)  (11.3502) 

 4  0.252693  30.24314  9.415166  11.40362  8.767874  40.17020 

   (15.0044)  (10.3668)  (13.5127)  (6.22119)  (10.7994) 

 5  0.259701  32.07307  9.135137  10.98669  8.430248  39.37485 

   (15.7756)  (10.7418)  (13.4952)  (6.15082)  (11.5816) 

 6  0.263012  31.52398  9.697861  10.95134  8.245082  39.58174 

   (15.5607)  (11.9583)  (13.1147)  (5.86024)  (11.0049) 

 7  0.265332  31.80558  9.739780  10.86688  8.124656  39.46311 

   (14.9419)  (13.0516)  (14.0147)  (5.63982)  (11.0574) 

 8  0.265868  31.70846  9.720572  11.02949  8.141462  39.40001 

   (15.0379)  (14.2863)  (14.1229)  (5.79997)  (10.9845) 

 9  0.266695  31.82086  9.672300  11.13047  8.158770  39.21760 

   (15.7584)  (15.9432)  (13.9012)  (5.88292)  (11.5821) 

 10  0.267697  31.61276  9.907188  11.17639  8.127355  39.17631 

   (15.4627)  (17.0779)  (14.7270)  (5.84513)  (11.8342) 
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Table (15) 

Variance decomposition of Northern hemisphere temperature 

 Period S.E. 

Fossil fuel 

growth 

rate    SF6    CH4    CO2 

Trend-adjusted 

Temperature 

       
        1  0.117170  8.016926  3.712420  17.07571  6.034037  65.16090 

   (13.2481)  (9.76967)  (13.5215)  (8.34940)  (16.5440) 

 2  0.162640  19.71743  15.52897  9.056645  3.622128  52.07483 

   (17.9387)  (14.5820)  (10.4056)  (6.15033)  (15.9073) 

 3  0.164544  19.98890  15.24164  9.720973  3.696593  51.35189 

   (17.8770)  (13.4788)  (12.4004)  (5.39707)  (14.9991) 

 4  0.168619  19.22421  16.26656  10.01850  3.525038  50.96569 

   (17.4944)  (14.0730)  (12.4299)  (4.88194)  (14.3568) 

 5  0.179030  17.61522  18.60861  13.15459  3.324177  47.29740 

   (17.8327)  (14.7541)  (12.9154)  (4.64329)  (14.1406) 

 6  0.182755  17.16337  20.07363  13.27285  3.264060  46.22609 

   (18.0378)  (15.6088)  (13.0292)  (4.50480)  (13.8289) 

 7  0.185000  17.75507  20.92907  12.96373  3.185629  45.16650 

   (18.2754)  (16.3890)  (13.0835)  (4.44336)  (13.8368) 

 8  0.186155  17.53605  21.83087  12.86499  3.148727  44.61936 

   (19.0722)  (17.3864)  (13.3739)  (4.34207)  (13.9248) 

 9  0.187454  17.53440  22.60061  12.75111  3.107100  44.00678 

   (19.2969)  (18.0005)  (13.5342)  (4.31492)  (13.9582) 

 10  0.188980  17.27415  23.51253  12.76654  3.058255  43.38853 

   (19.6587)  (18.6416)  (14.0953)  (4.27284)  (14.0795) 
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Table (16) 

Variance decomposition of the Southern hemisphere temperature 

 

 Period S.E. 

Fossil fuel 

growth 

rate    SF6    CH4    CO2 

Trend-adjusted 

Temperature 

       
        1  0.070704  56.17321  5.802424  5.558556  18.36526  14.10054 

   (15.4827)  (7.64937)  (6.82489)  (9.16113)  (5.78022) 

 2  0.081120  57.04799  8.602236  8.801034  14.71535  10.83339 

   (15.9829)  (10.3430)  (10.6381)  (7.97124)  (4.81782) 

 3  0.083330  54.45555  8.957269  11.92328  13.96009  10.70380 

   (15.8577)  (11.2199)  (12.5427)  (7.59763)  (5.13591) 

 4  0.085976  53.61120  8.526886  14.68414  13.11468  10.06308 

   (16.1920)  (11.6180)  (12.9440)  (7.29741)  (4.90116) 

 5  0.088855  51.86729  12.35492  14.02817  12.27864  9.470983 

   (16.8286)  (12.5986)  (12.8827)  (7.20221)  (4.90914) 

 6  0.092117  50.12100  15.46873  13.13571  11.88057  9.393991 

   (17.3522)  (13.8748)  (13.4098)  (7.50797)  (5.16762) 

 7  0.092873  50.03039  15.82761  13.12547  11.73282  9.283701 

   (17.8113)  (14.4445)  (13.9344)  (7.81177)  (5.29569) 

 8  0.093064  49.91271  16.04199  13.10869  11.68527  9.251342 

   (18.1647)  (15.0926)  (14.3663)  (7.86838)  (5.36737) 

 9  0.093655  49.36446  16.94259  13.00322  11.53894  9.150793 

   (18.6952)  (15.8866)  (14.5478)  (8.04022)  (5.64798) 

 10  0.094252  48.78942  17.55280  13.10969  11.46177  9.086320 

   (19.1289)  (16.5267)  (15.1030)  (8.19411)  (5.65854) 
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Figure (1) 
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Figure (2) 
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Figure (3) 
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Figure (4a) 
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Figure (4b) 
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Figure (4c) 
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Figure (5a) 

 

 
 

 

 

Figure (5b) 
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Figure (6) 
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Figure (7) 
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Figure (8) 
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Figure (9) 
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Figure (10) 
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Figure (11a) 
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Figure (12a) 
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Figure (13a) 
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Figure (11b) 
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Figure (12b) 
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Figure (13b) 
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Figure (14) 

D denotes log differenced  
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Figure (15) 
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Figure (16) 

D denotes log-differenced 
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Figure (17) 
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Figure (18) 
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Figure (19a) 
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Figure (19b) 
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Figure (19c) 
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Figure (20a) 
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Figure (20b) 
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Figure (20c) 
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Figure (21) 
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Figure (22) 
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Data 

 

CO2 CO2_BP Temperature North Hem. Temp South Hem. Temp Fossil Population 

1959 315.98 NA 0.16 0.12 -0.06 NA NA 

1960 316.91 NA 0.04 0.08 -0.13 NA 3.03E+09 

1961 317.64 NA 0.13 0.09 0.03 NA 3.09E+09 

1962 318.45 NA 0.12 0.13 -0.07 NA 3.15E+09 

1963 318.99 NA 0.06 0.14 -0.03 NA 3.21E+09 

1964 319.62 NA 0.01 -0.19 -0.21 NA 3.27E+09 

1965 320.04 11207.7 -0.07 -0.14 -0.07 753.69 3.34E+09 

1966 321.37 11725.3 -0.05 -0.02 -0.09 815.86 3.41E+09 

1967 322.18 12084.7 -0.09 0.03 -0.08 870.43 3.48E+09 

1968 323.05 12743.1 -0.2 -0.07 -0.09 944.71 3.55E+09 

1969 324.62 13530.9 -0.09 -0.03 0.14 1032.26 3.63E+09 

1970 325.68 14312.9 0.14 -0.04 0.09 1119.06 3.7E+09 

1971 326.32 14788.4 0.01 -0.15 -0.02 1191.82 3.78E+09 

1972 327.46 15495.5 -0.24 -0.18 0.2 1257.22 3.85E+09 

1973 329.68 16345.1 0.28 0.1 0.23 1319.19 3.93E+09 

1974 330.19 16255.8 -0.19 -0.18 0.03 1345.44 4E+09 

1975 331.12 16281.7 0.11 -0.06 0.02 1346 4.08E+09 

1976 332.03 17173.1 -0.02 -0.21 0.01 1425.29 4.15E+09 

1977 333.84 17739.3 0.13 0.12 0.24 1472.14 4.23E+09 

1978 335.41 18016.1 0.16 0.02 0.12 1530.68 4.3E+09 

1979 336.84 18596.5 0.15 0.08 0.25 1618.6 4.38E+09 

1980 338.76 18433.6 0.33 0.17 0.35 1626.97 4.46E+09 

1981 340.12 18202.3 0.51 0.37 0.27 1639.11 4.54E+09 

1982 341.48 18022.4 0.14 0.05 0.23 1643.39 4.62E+09 

1983 343.15 18185.1 0.53 0.25 0.38 1668.35 4.7E+09 

1984 344.85 18852.4 0.3 0.04 0.27 1794.46 4.79E+09 

1985 346.35 19249.9 0.22 0 0.23 1834.09 4.87E+09 

1986 347.61 19579.1 0.31 0.13 0.23 1854.61 4.96E+09 

1987 349.31 20186.5 0.32 0.25 0.41 1946.66 5.06E+09 

1988 351.69 20863 0.56 0.37 0.4 2034.4 5.15E+09 

1989 353.2 21242.6 0.17 0.27 0.27 2115.75 5.24E+09 

1990 354.45 21331.5 0.36 0.53 0.37 2177.31 5.33E+09 

1991 355.7 21338.6 0.43 0.41 0.4 2225.6 5.42E+09 

1992 356.54 21433.7 0.46 0.14 0.31 2236.72 5.5E+09 

1993 357.21 21488.9 0.36 0.19 0.28 2256.49 5.59E+09 

1994 358.96 21709.9 0.27 0.37 0.26 2272.25 5.67E+09 

1995 360.97 21982.9 0.56 0.58 0.32 2346.34 5.75E+09 

1996 362.74 22598.7 0.25 0.26 0.39 2457.33 5.83E+09 

1997 363.88 22749.9 0.34 0.52 0.41 2447.99 5.91E+09 

1998 366.84 22819.7 0.6 0.7 0.51 2488.54 5.99E+09 

1999 368.54 23127.8 0.51 0.48 0.28 2555.62 6.07E+09 

2000 369.71 23676.4 0.34 0.5 0.29 2653.13 6.15E+09 
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2001 371.32 24010.3 0.47 0.64 0.43 2689.17 6.22E+09 

2002 373.45 24544.5 0.71 0.71 0.54 2766.6 6.3E+09 

2003 375.98 25767.5 0.72 0.75 0.49 2849.18 6.38E+09 

2004 377.7 27077.5 0.61 0.66 0.42 2961.31 6.46E+09 

2005 379.98 28186.5 0.65 0.86 0.5 3045.18 6.54E+09 

2006 382.09 29074 0.51 0.82 0.46 3125.17 6.62E+09 

2007 384.03 30095.9 0.92 0.85 0.48 3249.85 6.71E+09 

2008 385.83 30378.4 0.27 0.68 0.4 3320.41 6.79E+09 

2009 387.64 29745.2 0.6 0.73 0.59 3253.58 6.87E+09 

2010 390.1 31085.5 0.73 0.9 0.54 3485 6.96E+09 

2011 391.85 31973.4 0.47 0.75 0.46 3570.34 7.04E+09 

2012 394.06 32273.5 0.44 0.82 0.48 3658.03 7.13E+09 

2013 396.74 32795.6 0.62 0.8 0.56 3717.46 7.21E+09 

2014 398.87 32804.7 0.7 0.92 0.57 3741.29 7.3E+09 

2015 401.01 32787.2 0.83 1.18 0.62 3819.05 7.38E+09 

2016 404.41 32936.1 1.12 1.31 0.72 3901.41 7.47E+09 

2017 406.76 33279.5 0.98 1.18 0.67 4003.93 7.55E+09 

2018 408.72 34007.9 0.76 1.04 0.66 4201.94 7.63E+09 

2019 411.66 34169 0.94 1.22 0.75 4280.09 NA 

2020 414.24 NA 1.15 1.36 0.68 NA NA 

 

 

                                                           
i Furthermore, the time series can be fractionally integrated, whereby   in          is less than one. 

If      ,    is said to be long-memory stationary and if it is > 0.5, it is said to be long-memory non-

stationary. We could still make inference in regressions if the two time series have unit roots, but 

cointegrated, i.e., have a common trend. Further, similarly if they are fractionally integrated and 

fractionally cointegrated. Such findings may indicate that temperature and CO2 share a long –run 

common trend. We do not pursue this test because we will show that CO2 is I (1). 

 
ii BLUE is Best, Linear, Unbiased Estimator. 
  
iii The bandwidth parameter is   for the kernel-based estimators of   , which is the Newey-West (1994). 

They use AR1. So we choose the lag length   to minimize these criteria AIC -  
 

 
      ); the SIC 

   
 

 
          ; HQ    

 

 
               . The modifications add  to every   and   

       
 

    
   

  
iv The Ng – Perron (2001) test, which is a modified Phillips – Perron, two test statistics    and   , 

Bhargava (1986). These last two tests reject the unit root in the temperature data with two lags in the 

model, spectral GLS – de-trended AR based on AIC with maximum lag of 10.  Different methods of 

estimating the spectral do not alter the results. 
 
v We estimated and SVAR. Estimating an SVAR does not alter the results, therefore, we do not report 

the result. The results are available on request. The observed residuals   have a covariance 
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matrix      . The structural VAR model is        , where   is a matrix of unobserved shocks, 

which we want to identify. This matrix has an identity covariance matrix         . Different 

methods can be used to identify shocks, but the orthogonality of the shocks implies that the 

identifying restrictions on   and   are of the form         . Since the matrices on both sides of the 

equality sign are symmetrical, we have          restrictions on the     unknown elements in   and 

 . To identify   and  , additional             identifying restrictions are needed. We use short-

run restrictions on  . These restrictions imply that CO2 growth is unaffected by temperature, and it is 

a function of its own past only. Temperature, however, depends on its own lags and lagged CO2 

growth rate. 

 
vi Tests for the lag structure are based on a Wald – Chi Squared test. We run a 6-year lag VAR, but we 

find 3 to 2 lags to be significant. The joint P values indicate non-rejections. The lag-length tests include 

sequential modified LR statistics at 5% level; final prediction error, AIC, SIC, and HQ information 

Criteria. We choose 2 lags because temperature is volatile and affects the variance decompositions. 

The F stats for the equations in all VARs reject the hypothesis that the coefficients are insignificant. 

The residuals are tested for serial correlation using LM test, which cannot reject the null hypothesis of 

“no serial correlation” at lag 1 to 4. 

 
vii Cooley and LeRoy (1985) famous article criticizing the atheoretical VAR method seems like a logical 

criticism.  
 
 
ix Assume the following model 

                     (1) 

and, 

                     (2) 

Let            
    and assume that   is stationary and Gaussian with zero mean and spectral 

density 
  
    with 

  
     .  The cointegration relation (1) can be efficiently estimated by an 

empirical leads and lags regression of the following type: 
 

 
 
          

                      (3) 

The lag and lead truncation parameter   satisfies   , and       as the sample size. Phillips and 
Loretan (1991) note that, in practice, it is useful to augment regression formulation in (3) with lagged 

equilibrium relation regressors that help to whiten the error term tu0  in (1) with respect to its own 

history.  This leads to an empirical leads and lags and equilibrium lags regression equation: 
 

 
 
        

 
         

 
  

   
       

 
   

 
             (4)  
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