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Abstract

We investigate the impact of mining pollution on the likelihood of reporting illness by linking

geocoded soil pollution information with five rounds of Mongolian Household Socio-Economic

Survey data. Using perceived property rent as an instrument, our probit regression results in-

dicate that doubling the distance between a person’s residence and nearest mine reduces their

probability of feeling unwell by around 7.4 percentage points on average. Individuals also increase

their medical expenditure as a result of increased illness. We observe mining pollution to dis-

proportionately hurt younger children. Artisanal and small-scale mines have stronger effects on

human health than medium and large-scale mines. Gold mines were observed to be worst, com-

pared to the mines extracting other types of minerals. Our findings suggest that environmental

regulations to control/mitigate mining pollution can reduce short- to long-term health risks of the

people living near mines.
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1. Introduction

Mining and processing of minerals release toxic substances that affect not only the people working

in mines but also those living nearby (Graff Zivin and Neidell, 2013; Von der Goltz and Barnwal,

2019). A significant number of studies have been undertaken on the health impacts of mining that

primarily rely on the mining-induced air and water pollution or distance from mines (e.g., Cardoso,

2015; Aragón and Rud, 2016; Hendryx et al., 2020; Levasseur et al., 2021). However, empirical

evidence on the impacts of mining activity employing precise soil pollution location data remains

limited. Using location-specific soil pollution information, we investigate the impact of mining

activities on the likelihood of reporting illnesses at the individual level. In particular, using the

case of mines in Mongolia, we document that individuals close to a polluted mining site experience a

higher probability of feeling ill. It, therefore, increases their health expenditures. We subsequently

investigate how types and level of heavy metal soil pollution affect reported illness, and conclude

that distance from the nearest mine is the salient determining factor of mining activity on reporting

illness.

We focus on mines located in Mongolia for three reasons. First, as a developing country with a

large mining industry (Li et al., 2017; Baatarzorig et al., 2018; Doojav and Luvsannyam, 2019) and a

limited regulatory environment (Greenstone and Hanna, 2014), Mongolia presents an ideal place to

study adverse effects of mining pollution on health outcomes. At the same time, people living near

mines typically benefit from the increased economic activity created by mining (Tolonen, 2019).

Thus, analyzing Mongolia’s situation can provide potential costs and benefits of mining on health:

relevant to low-income resource-rich countries. Second, mining activities in small, medium, and

large-scale mines are geographically very common, covering jointly around 5 percent of Mongolia’s

territory. Of that, more than 60,000 miners and their dependents rely on artisanal and small-scale

mines (ASMs) for their livelihood in Mongolia (SDC, 2018). This widespread use of mining provides

for a large dataset that will limit the effects outliers have on studies of smaller samples of mines. It

simultaneously allows us to compare the effects of ASMs and large-scale mines (similar to Bazillier

and Girard (2020) in Burkina Faso). Third, the availability and accessibility of precise soil pollution

location data for mines in Mongolia strengthens our empirical analysis.
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The use of precise mining-related soil pollution data allows us to estimate precisely the effect

of soil pollution on human health - our key contribution. While the effects of distance from mines

on general health have been studied previously (e.g., Rau et al., 2015; Currie et al., 2015; Von der

Goltz and Barnwal, 2019), ours is the first study to capture the precise distance of an individual

household from the polluting mine site. Many previous studies on the impact of mines rely on

air and water pollution from mining, with a few studying the effects of toxic emissions and heavy

metal pollution (e.g., Currie et al., 2015; Von der Goltz and Barnwal, 2019). The lack of precise

information limits the current economic literature, despite biological evidence linking soil pollution

to the deterioration in human health (Rodrigues and Römkens, 2018; Cachada et al., 2018).

Graff Zivin and Neidell (2013) note that the distance from a polluted site is a critical factor that

influence health outcomes from pollution. However, a key problem - including in our estimation -

is that distance (hence the level of pollution that residents are exposed to) can be endogenous due

to well-documented avoidance or residential sorting behaviour.1 Another source of endogeneity in

the model of pollution on illness is residential sorting, as some households choose to relocate to a

cleaner area to avoid pollution exposure (Currie, 2011; Graff Zivin and Neidell, 2013; Von der Goltz

and Barnwal, 2019; Marcus, 2021). On the other hand, city-level amenities attract highly skilled

individuals who make extra investments in their health to address the impacts of potential pollution

in the city. To control for the endogeneity and estimate the average biological effect of pollution,

our instrumental variable approach uses households’ perceived property rent as an instrument for

distance to the nearest mine.

In our IV-probit model, distance to the pollution source significantly increases the likelihood

of reporting illness. Our estimated “local average treatment effect” (LATE) of mines implies that

the reported illness incidence declines by 7.4 percentage points when an individual doubles the

distance of their residence from the nearest mine, on average. The finding is robust to the choice of

methods, models and employed data. We corroborate this key result with an auxiliary regression

which establishes that private medical expenditures on health decline significantly with the distance

from the mine sites.

1See e.g., Neidell (2004); Graff Zivin and Neidell (2012); Burke et al. (2021); Currie (2011); Graff Zivin and
Neidell (2013); Von der Goltz and Barnwal (2019); Marcus (2021).

3



We next study the adverse effects of soil pollution on health outcomes by age and type of

illness. Although the estimated effect of pollution is high for older people, the probability of illness

increases most significantly for younger children. There are no significant differences across a variety

of reported illnesses (respiratory, cardiovascular, digestive, and other body systems). Consistent

with some previous literature (Tolonen, 2019; Greenstone and Jack, 2015), we find that small-scale

mines increase the likelihood of illness more than medium- and large-scale mines. Finally, consistent

with Aragón and Rud (2016) and Von der Goltz and Barnwal (2019), we find that gold mines have

a higher impact on the probability of feeling ill compared to the mines extracting other minerals.

With our findings, we contribute to the literature by providing a more general and precise impact

of mining pollution on illness that complements to the previous studies like Von der Goltz and

Barnwal (2019) who find negative impact of mining on the women and children health.

The rest of the paper proceeds as follows. Section 2 presents the effects of heavy metal pollution

on human health and briefly discusses relevant studies along with the background information on

Mongolia. Section 3 describes the empirical strategy and the data employed in the paper. The

results from our analysis, including a bunch of robustness checks we conducted, are presented in

Section 4. Section 5 discusses the findings, including their policy implications. Section 6 concludes.

2. Background

2.1. Pollution and human health

The mining industry can raise income and consumption and positively affect health outcomes. At

the same time, it can exert significant negative externalities on the local communities (Tolonen,

2019). In particular, mining can substantially increase the health risk of the local population by

contaminating soil, water, and air. Mining and processing of minerals release numerous types of

harmful pollutants to the environment, including lead, cadmium, mercury, and nickel (Facchinelli

et al., 2001; Li et al., 2014).2

2For example, each kilogram of gold extraction releases around 1.3 kilograms of mercury into the environment
(Harada et al., 1999). Around 40 percent of the mercury goes to tailings, soils, stream sediments, lakes, and rivers
during the initial stage of gold and mercury amalgamation. The remaining 60 percent of the lost mercury enters into
the atmosphere during the amalgam burning process used to extract gold (Van Straaten, 2000).
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Mercury is a dangerous neurotoxin that is harmful to people, especially developing fetuses and

young children. Mercury increases the risks of damaging brain and nervous system development and

function (Landrigan et al., 2018). Symptoms such as swollen gingiva, fever, dry cough, shortness

of breath, dyspnoea, abdominal pain, nausea, vomiting, and diarrhea occur after acute exposure

to mercury vapor (Solis et al., 2000). The inhalation of mercury vapor can affect the body in

three phases, with different symptoms occurring in each phase (Lim et al., 1998).3 In addition,

chronic mercury exposure through dietary intake can cause Minamata disease, renal, pulmonary,

reproductive, and cardiovascular toxicity and have neurotoxic effects (Żukowska and Biziuk, 2008).

Arsenic is another toxic heavy metal that poses significant health risks to people exposed for a

long time. Mining and smelting are the primary sources of arsenic pollution in air, water and soil

(Duker et al., 2005; Ongley et al., 2007; Lee et al., 2008). Breathing air with high arsenic levels can

cause shortness of breath, chest pain, and cough. Arsenic intake can also affect several organs such

as skin, gastrointestinal, peptic, neurological, and respiratory systems (ATSDR, 2007). Arsenic is a

known toxin related to mining activities in developing countries in particular. For example, in Latin

American countries where mining operations are prevalent, exposure to anthropogenic sources of

arsenic have been found to be associated with increased risks of cancer, cardio-respiratory diseases,

reproductive outcome, and cognitive effects in adults and children (Khan et al., 2020; Bundschuh

et al., 2021). The weathering processes of untreated tailing from an abandoned tungsten mine

in China has posed public health threats to the local population through food consumption and

environmental exposure caused by arsenic pollution in water and soil (Liu et al., 2010).

Acute exposure to the different heavy metal vapor and intoxication may have similar symp-

toms. For example, acute exposure to other heavy metals such as nickel and lead also results in

nausea, vomiting, and diarrhea (Järup, 2003; WHO, 2018). However, chronic exposure to arsenic,

cadmium, and nickel can cause cancer, and long-term exposure to mercury and lead can damage

the neurological systems, affecting human motor function, IQ level, and short-term memory (Järup,

2003). The danger of the heavy metals remains over the long run as they do not decompose over

time (Facchinelli et al., 2001). Over time, chronic illnesses and cancer can develop as leading causes

3Initially, flu-like symptoms occur in 1-3 days after exposure. Later, the patient can develop chronic bronchiolitis
similar to symptoms of metal fume fever (Offermann and Finley, 1992). In the intermediate stage, diseases related
to pulmonary infections and complications develop due to severe pulmonary toxicity (Rowens et al., 1991). The late
phase of toxicity causes insomnia, short-term memory loss, anxiety, and depression (Solis et al., 2000).
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of death in mining regions (Cordier et al., 1983; Hendryx and Ahern, 2009).4 However, despite the

known harmful effects of heavy metals, the monitoring of mining pollution to protect human health

is inadequate in developing countries (Greenstone and Hanna, 2014; Greenstone and Jack, 2015).

2.2. Mining and health in Mongolia

Mongolia is a lower-middle-income country heavily reliant on the mining of minerals such as coal,

copper, gold, and iron ore.5 It is one of the 45 countries where mercury is the dominant pollutant

at ASM sites (Caravanos et al., 2013). Illegal mercury use is common among the artisanal placer

gold miners as it is cheaper to use than the alternative gravitational methods (Dore et al., 2006).

Among others, Mongolia’s largest copper-molybdenum mine Erdenet releases chemicals like copper,

molybdenum, and mercury during the processing and tailing of materials. The contamination in

soil spread outside the mining area through wind-driven dust (Battogtokh et al., 2014).

The large, medium, and small-scale mining operations in Mongolia have already caused water

quality deterioration, air pollution, increased waste-rock piles and tailing repositories, and threats

to natural habitat and biodiversity (Dore et al., 2006). Some mining operations have permanently

altered landscapes and landforms, reducing pasture availability for traditional livestock herding

and, in some cases, leading to the cessation of farming and herding activities (Cane et al., 2015).

Yet, precise empirical evidence on the impacts of mining pollution on human health is scarce in

Mongolia.6 Only a few field studies from small-scale mining activities report the adverse health im-

pacts of mining operations on a sub-sample of resident population. For example, an environmental

epidemiological study examining 200 human urine, blood, and hair samples finds high mercury body

burden among gold miners and elevated levels of mercury among the residents around small-scale

gold mines in Mongolia (Steckling et al., 2011). In addition, adults face higher risks of suffering from

asthma and tuberculosis, and children have an increased prevalence of respiratory illness around

ASMs in Mongolia (HRC and SDC, 2012).

4Chronic conditions such as cancer from exposure to heavy metals are not diagnosed as quickly as acute symptoms
because chronic illnesses take longer to develop. Although determining the presence of heavy metals in the body uses
human tissue samples (e.g., hair, blood, and urine), it does not assist in the diagnoses of the symptoms of chronic
conditions without proper clinical examinations (Solis et al., 2000).

5The country received a substantial amount of foreign direct investment (FDI) into the extractive industries
at the onset of the commodity price boom in the early 2000s, accounting for more than 75 percent of FDI during
2011-2016 (National Statistics Office, 2016).

6Health impact assessments of Mongolian mines have not been carried out widely as it is not part of the mandatory
environmental impact assessments (Pfeiffer et al., 2017).
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High concentrations of arsenic in surface, ground, drinking water, and soils are commonly found

in Mongolia. The elevated level of arsenic in these media is attributable to gold mining activities

(Pfeiffer et al., 2015).7 However, there is no comprehensive soil pollution analysis related to the

mining sector. We bridge a number of the aforementioned gaps in our study by utilizing location-

specific soil pollution data linked with nationally representative household-level survey data.

3. Methodology

3.1. Model specification

We model an individual’s likelihood of reporting illness on the shortest distance of the individual’s

residence from a mine. The choice of distance is motivated by the fact that it can capture the

impact of all types of pollution –air, water, and land and have been used in many earlier studies

(e.g., Rau et al., 2015; Currie et al., 2015). We primarily employ the following specification:

yi = α+ β ln(distancei) + γXi + λs + ηt + εi, (1)

where, for each individual i, the outcome variable y takes the value of one if the individual has

been ill in the past month and zero otherwise. The primary variable of interest, distance, measures

the distance from an individual’s residential area to the nearest mine and is a proxy to exposure

to mining pollution. Note that the heavy metal contaminants originated from the same mine

are highly correlated, and therefore distance will capture the combined impact of all the heavy

metals on illness. Furthermore, mines pollute soil, water, and air simultaneously, so our measure

of pollution exposure will also tap the impact of all types of pollution.

The vector X includes a person’s age, gender, education, household size, (household) consump-

tion, and housing characteristics, to control for the factors affecting illness. The term λ indicates

province fixed effects to account for possible omitted location variables and the time-invariant dif-

ferences in provinces that could affect illness. We also include survey year fixed effects η, to capture

7Specifically, the gold mines at the Zaamar site were estimated to increase the arsenic load of the major river
Tuul by 30 tons a year. Another gold mine, Gatsuurt, had arsenic levels reaching 121 µg/L in its artificial ponds
(Thorslund et al., 2012; Gandoljin et al., 2013). Drinking water and river samples also contain arsenic levels above
the Word Health Organization (WHO) maximum permissible limit of 10 µg/L (Pfeiffer et al., 2015). Similarly, the
average concentration of arsenic is 1.4 times higher than the maximum permissible level around the largest coal mine,
Tavan Tolgoi, and copper-gold mine, Oyu Tolgoi, in Southgobi province, Mongolia (Ragchaa et al., 2018).
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the impact of duration of exposure. It will also control for the overtime change in illness that are

originated from different time-varying events. Finally, ε is the independently and identically dis-

tributed error term. We restrict our focus on mines within five km of individuals’ residences. The

choice of our distance cutoff follows Von der Goltz and Barnwal (2019), who uses a five km cutoff

to determine the effect of lead contamination on health outcomes.8

Our dataset contains information about seven different types of heavy metals at the mining

sites. Therefore, a natural extension of Equation (1) is to modify the model to capture the impact

of seven different contaminants (heavy metals), as given below:

yi = α+ βj

7∑
j=1

ln(distancej,i) + γXi + λs + ηt + εi, (2)

where everything is the same as Equation (1), but distancej now captures the distance from an

individual’s residence to the sample point where the highest level of heavy metal j is recorded.

Since most heavy metals originate from the same source, including all seven distances in a single

model creates multicollinearity. Therefore, to compare the estimated coefficients for each heavy

metal, we estimate Equation (2) separately for every single pollutant.9

We further extend our model to account for the level of each heavy metal pollution in the

model. The model below controls for the impact of heavy metal contamination level that are above

the permissible level set by the Mongolian Agency for Standardization and Meteorology (MASM,

2019):

yi = α+

7∑
j=1

ln(distance
βj

ji × level
δj
ji ) + γXi + λs + ηt + εi

= α+
7∑

j=1

βj ln(distanceji) +

7∑
j=1

δj ln(levelji) + γXi + λs + ηt + εi

= α+ β ln(distancei) +

7∑
j=1

δj ln(levelji) + γXi + λs + ηt + εi, (3)

8There is no consensus in the literature on the exact distance buffer. For example, Aragón and Rud (2016);
Parker et al. (2016); De Haas and Poelhekke (2019) use 20 km distance for Ghana, Democratic Republic of Congo,
Colombia and several resource-rich countries, respectively, to examine the health and economic impacts of mining.
On the other hand, Tolonen (2019); Bazillier and Girard (2020) use 10 km buffer in African countries.

9For some heavy metals, the highest level of pollution within five km is below permissible levels.
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where, the last step follows Equation (1) and include only distance from the nearest mine to avoid

multicollinearity. As evident, compared to Equation (1), Equation (3) additionally includes the

(logarithm of) heavy metal level at the nearest sites. Since the contamination level for only arsenic

and mercury exceed the value, we drop heavy metal levels for the other contaminants from our

regressions.

A final specification considers that the causal link between pollution and illness can be non-

linear. Thus, following Currie et al. (2009), we include dummy variables for the heavy metals that

are above the permissible levels as given below:

yi = α+ β ln(distancei) +
7∑

j=1

δjDj + γXi + λs + ηt + εi, (4)

where, in addition to the notations defined earlier, Dj takes the value of one for individuals exposed

to heavy metal pollution j (in the nearest mine) if its level is above the critical value and zero

otherwise. For the reason stated earlier, we include the dummies for arsenic and mercury only.

3.2. Endogeneity issues

The problem with the above models is that distance may suffer from endogeneity for several reasons.

First, pollution is endogenous due to the avoidance behavior of residents (Neidell, 2004; Graff Zivin

and Neidell, 2012, 2013; Burke et al., 2021). Public announcements on outdoor air quality and the

visibility of the pollution allow people assess the level of pollution and take steps to avoid it. For

example, people reduce their outdoor activities and use air filters in their residence when exposed

to air pollution. Such actions may limit their exposure to pollution (Neidell, 2004; He et al., 2022).

People affected by pollution might not be aware of the potential hazards if they cannot observe

the pollution, or local authorities do not inform them (Graff Zivin and Neidell, 2013). For example,

mercury vapor is odorless and colorless, making it difficult to see and smell during the mercury

and gold amalgamation process until the human body reacts adversely to the vapor evaporation

(Solis et al., 2000). Similarly, most inorganic arsenic compounds are white or colorless powders
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with no smell or taste (ATSDR, 2007).10 Therefore, deliberate avoidance behavior is limited when

public information about pollution is unavailable, or when the heavy metals in soil are not readily

observable (Graff Zivin and Neidell, 2013).

Nevertheless, residents usually have some understanding of local pollution, if not directly from

the public offices, then indirectly from social interaction or by observing increased incidence of

illness among the people living nearby. They may, therefore, attempt to avoid pollution. The

avoidance behavior is an ex-post decision, and excluding this action from the empirical model

would give us a lower-bound of the average biological effect of pollution. Since the variable of

interest in our study is the biological effect of pollution, it will be underestimated by the extent to

which avoidance behavior can mitigate the adverse health effects (Currie et al., 2014).

The second source of endogeneity in our model may arise from residential sorting. Households

choose to relocate to a cleaner area to permanently avoid their exposure to pollution (Graff Zivin

and Neidell, 2013; Von der Goltz and Barnwal, 2019). Educated people, informed about the adverse

impacts of pollution, are the primary drivers of residential sorting (Currie, 2011; Marcus, 2021).

These higher-income earners are most likely to relocate away from polluted areas than the finan-

cially more constrained households. Greater employment opportunities in cities attract high skilled

workers. These individuals may make extra investments in their health to address the potential

health impacts of pollution in the city (Graff Zivin and Neidell, 2013). Residential sorting, there-

fore, may make health outcomes endogenous to socio-economic status and skill level (Graff Zivin

and Neidell, 2013; Currie et al., 2014).

In developing countries, residential sorting is further limited by labor market frictions and

mismatch between skills and jobs (Banerjee and Duflo, 2019). Attachment to the community,

economic and job opportunities provided by polluting industries affect households’ decision to

emigrate from or immigrate into polluted areas (Banzhaf and Walsh, 2008), further limit residential

sorting. Nevertheless, even with indirect and circumstantial information about local pollution

and illness, residential sorting presents a potential challenge to our empirical identification and

10Inorganic arsenic is found in minerals and ores that contain copper or lead. During the smelting of these minerals,
most arsenic enters into the atmosphere as fine colorless, tasteless, and odorless dust.
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specification.11 Omitting the residential sorting in our empirical model would yield an average

effect of pollution that under-estimates the direct biological effect.

Several other omitted variables complicate our causal inference. For example, prevailing winds,

water flows, differences in altitude, changes in seasonal temperatures, and other allergens in the

environment may affect illness and can correlate with pollution (Graff Zivin and Neidell, 2013;

Anderson, 2020). The inclusion of location fixed effects in the models are likely to account for a

significant part of the time-invariant permanent differences among the provinces, such as altitude

and water flows. They will also account for unobserved spatial amenities such as public goods that

can affect households’ decisions to stay or move away (Banzhaf and Walsh, 2008). We also control

for survey-year effects to account for time-varying characteristics of households that may affect a

person’s likelihood of feeling unwell. To account for the seasonality of illness, we have added survey

quarter (or month) fixed effects. See Subsection 4.7 for more discussions on this issue.

To address endogeneity concerns due to avoidance behavior and residential sorting, we follow

an instrumental variable approach. We employ perceived property rent of a household-owned

residential property as the instrument for distance to the nearest mine, the endogenous variable

capturing exposure to pollution in our analysis. Pollution significantly affects property prices (e.g.,

Currie et al., 2015; Lavaine, 2019) and thus rents. On the other hand, property value can also affect

the location of disamenities like an incinerator (Kiel and McClain, 1995). The same can also be

true for mines, especially when they are small in scale. Therefore, perceived property rents should

be highly correlated with the endogenous proxy for pollution, making our instrument relevant.

The instrument satisfies the exclusion restriction as it is likely to be correlated with illness

solely through its correlation with distance. In other words, the instrument is uncorrelated with

the error in the outcome equation. This is particularly true as we have controlled for consumption

and housing characteristics in the model. Otherwise, perceived property rent could be correlated

with the error term in the outcome model, through its correction with income and socio-economic

status and the direct effect of housing condition on illness, as found in some earlier studies (Adams

et al., 2003; Billings and Schnepel, 2017; Palacios et al., 2021).

11Interestingly, in our estimation sample, the educational attainment of the residents above 15 years remained
stable during the period 2008-2018. Education level rose slightly to above 11 years in the last two survey waves
2016-2018. Educational attainment of the population above 15 years who live further away than five km increased
over the same period. However, the average educational attainment is 10 years, slightly lower than the population
living closer to the mining sites.

11



3.3. Data

3.3.1. Individual morbidity, socioeconomic and demographic data

We use individual morbidity data from the most recent five rounds of the Household Socio-Economic

Survey (HSES), a nationally representative cross-sectional survey conducted every two years by the

National Statistics Office of Mongolia. The survey uses a stratified two-stage sample design based on

population figures obtained from local governments’ administrative records. The first stage stratifies

the capital city, Ulaanbaatar, and the 21 provinces. The second stage divides the 21 provinces into

two substrata: urban, comprising the provincial capitals, and rural, consisting of small towns and

the countryside (National Statistics Office, 2018). Our analysis includes 2008, 2010, 2014, 2016,

and 2018 rounds and exclude the 2012 round of the HSES, as it has missing geographic coordinates

of the households. The data on households’ geographic coordinates are crucial as we construct the

exposure variable - distance to the nearest mine - based on the information.

The five rounds of survey data employed in this study included 265,049 individuals in 71,449

households. We drop 32,657 households who live in sub-provinces with no mines, leaving us with

38,792 households with 140,773 individuals. Then we drop 133,091 individuals who live further

than five km away from any mine –the cutoff we selected based on earlier literature. Thus, our

final analysis sample size is 7,682 individuals, with 739 in 2008, 1,042 in 2010, 2,028 in 2014, 2,060

in 2016, and 1,813 in the 2018 survey rounds. In the final sample, we replace the income of three

individuals with their consumption as they report zero income. Also, 250 individuals did not report

their health status, which is likely due to the confusion between missing and zero values during

data entry. As a result, we treat them as not being ill in the past month. Finally, a total of 155

individuals also did not report their education. Assuming that people in the lower education group

are not comfortable reporting their education, we treat their years of schooling as zero.

The HSES asks participants what type of health problem they had in the last month before the

survey interview.12 The illnesses reported by individuals fall into the following categories of body

systems: (i) respiratory, (ii) digestive, and (iii) external impact and other illnesses, including cardio-

vascular disease, damage, or intoxication by external impact. The survey also provides information

12The HSES questionnaires and the primary datasets are publicly available from the NSO Census and Survey data
catalog: http://web.nso.mn/nada.
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about individuals’ expenditure on medication, transportation, hospitalization, and other medical

services in the prior 12 months. Table 1 Panel A presents the summary statistics of the outcome

variables. About eight percent of the analysis sample reported illness in the previous month. When

disaggregated by illness type, we find that about one percent of all individuals experience digestive

illnesses, two percent have respiratory illnesses, and four percent suffer from other types of illnesses.

The monthly average medical expense per person is MNT13,510 in the 2010 price level.

[Table 1]

Panel B in the table reports the illness levels for three age groups and individuals’ exposure

to different mines, their sizes, and the mineral types. While 17 percent of the people above the

age of 50 have been ill in the past one month, the rate is much lower for other groups – about

seven percent of younger children and six percent of the economically active population have been

ill in the same period. Individuals exposed to small-scale mines are more likely to be ill than

those exposed to larger mines that mining license holders usually operate. Finally, nine percent

of individuals living near gold mining sites felt unwell in the previous month compared to the six

percent of individuals living near mines extracting other minerals. The summary statistics indicate

that the scale of mining activities and mineral types may affect illnesses disproportionately.

Table 2 reports the summary statistics for the pollution exposure variable, the instrument and

other control variables. The primary variable of interest that captures the exposure to mining

pollution is the distance from an individual’s residence to the nearest mine. The average distance

to the nearest mining site is about 2.5 km. The distances are roughly similar when compared to

the mines that release specific heavy metals beyond some threshold level.

[Table 2]

To address the endogeneity issues in the primary model discussed in Subsection 3.2, we employ

an instrumental variable approach using household-level information. The survey asks households

how much they would charge for a month if they leased their dwelling to someone. We use this

perceived rental rate as the instrument for the endogenous distance variables. In the HSES data,

the mean perceived rent is around MNT60,000 in the 2010 price level. As we expect, the perceived

property rent usually increases with the proximity to the mining sites (data not presented).
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The individual-specific control variables in our data include residents’ gender, age, and years

of schooling. The household-related control variables are family size, logarithm of household-level

monthly consumption, type of wall and roof materials of residential property (house/flat/yurt), and

household urban/rural status.13 Their mean values and standard deviations in Table 2 indicate

that the control variables are reasonably stable.

3.3.2. Contamination data

We use geo-referenced soil pollution data from mining sites in Mongolia, accessed from the Geo-

Database on Ecological Health (GDEH), the Ministry of Environment and Green Development.

The database records a total of 1,315 soil samples from 262 mining sites in 95 sub-provinces across

17 provinces for the period 2002-2019.14 As we limit the mines examined in the study to those

located within five km of a residential area, our final sample consists of 33 mining sites in 32

sub-provinces across 13 provinces. The level of heavy metal pollution at these mining sites was

examined during 2011-2012.15 We exclude the samples taken before 2011 or after 2012 as only a

few site samples were taken during the period. Moreover, the morbidity data from the household

survey does not exist for the years prior to 2008.

The database records the presence of heavy metals across mines extracting different minerals

such as gold, coal, limestone, and wolfram. The level of mercury, arsenic, lead, zinc, cadmium,

copper and nickel contamination in soil samples is recorded at each mine site sample point. Each

mine has around four sample points where soil samples are taken. To assess the heavy metal

pollution level, we consider the following three values set by MASM (2019): precaution, trigger,

and action.16 Our analysis only considers the levels of mercury and arsenic as, in our data, only

their levels sometimes exceed the action and precaution values, respectively.

13Household income and expenditure can be endogenous in our models as sickness can affect them. As a result,
we predicted household expenditure using all the control variables along with the share of working age members and
employed the predicted value in our models. Our conclusions remain unaffected with their exclusion from the models.

14There were 3,222 mining and exploration licenses issued to 2,063 mining companies in Mongolia between 1995
and 2019. The total area covered by mining licenses comprises 4.75 percent of the country’s territory (EITIM, 2020).

15The Geo-ecological Institute, the Central Geological Laboratory, and the Laboratory of National Agency for Me-
teorology and Environmental Monitoring examine soil samples in Mongolia using the atomic absorption spectrometry
method (GDEH, 2012). The method detects heavy metals in solid samples by applying characteristic wavelengths of
electromagnetic radiation from a light source. Individual metals absorb wavelengths differently, and this absorbance
is measured against the standards set to analyze the level of heavy metals (Thermo Fisher Scientific, 2021).

16A value above the precaution value indicates heavy metal soil pollution. A value exceeding the trigger value
implies the pollution level causes harm to the living organisms and water body. A value over the action value requires
immediate action to neutralize the soil, stop current land uses, and relocate the affected population MASM (2019).

14



We use each soil sample point’s longitude and latitude, along with a household’s residential

area coordinates, to calculate the distance from a household residential area to the sample point.

We calculate the great-circle distance from the interior centroid of the location (i.e., residential

area) to the closest interior centroid of a soil sample point using the Haversine formula employed

in Gradstein and Klemp (2020). As a mining site has several sampling points for heavy metals,

we calculate the distance from a household residential area to each sample point and then use the

shortest distance in the analysis. The residential area in this context is a subdistrict, which is

the second smallest administrative unit in Mongolia. Each subdistrict has its zip code assigned.17

Following Neidell (2004) and Currie and Neidell (2005) who assign air pollution to each individual

from their zip code centroid to the air pollution monitoring stations within 20 miles of a zip code

radius, we assign pollution from the soil sample point to each individual’s residential area. As

an example, Figure 1 below shows the geographic distribution of household residential areas and

mercury contamination at mining sites. It appears that the mining sites and the households are

distributed throughout the country.

[Figure 1]

Table 3 reports the extent of soil heavy metal contamination and individual exposure to the

pollution. Almost all individuals are exposed to mercury pollution, significantly affecting living

organisms (columns 4 and 5). More importantly, about 49 percent of them are exposed to mercury

pollution that exceeds the action value requiring soil cleansing and relocating the inhabitants (col-

umn 6). On the other hand, around 35 percent of individuals are exposed to arsenic pollution. In

our data, only very few people are exposed to lead, zinc, and cadmium pollution. The other heavy

metals, such as copper, and nickel, do not pollute the soil as they are within the permissible level.

[Table 3]

17We use the residential area geographic coordinates data from the National Statistics Office. However, when there
are missing geographic coordinates, we use the zip code coordinates from the Communication Regulatory Commission
https://bit.ly/3Iz5aN3.
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4. Results

4.1. Main results

We estimate Equation (1) to examine whether the distance to the nearest mine affects the likelihood

of reporting illness (Table 4). We estimate the model initially with OLS, i.e., employ a linear

probability model (LPM). First, we estimate Model (1) excluding the individual and household-

specific controls. The results in Column 1 indicate an expected protective effect of distance that is

significant at the 10 percent level, indicating that proximity to mines increases the level of reported

illness. Next, we add the control variables and survey-year fixed effects in the model to estimate the

full Model (1). We again find a similar effect that is significant at the 5 percent level (Column 2);

our results indicate that moving away from mines in a way that will double the distance from the

nearest mine reduces reported illness by 1.5 percentage points.18

[Table 4]

Due to the issue of constant marginal effects and implausible predicted probability values associ-

ated with the LPM, we employ a probit model and estimate the marginal effects (MEs). Estimated

MEs from the model without individual and household level controls indicate a slightly lower impact

than the comparable LPM (Column 3). Next, we add the control variables to the probit model.

MEs evaluated at the mean values of other covariates reveal a slightly lower but similar impact as

the comparable LPM (Column 4).

To address the issue of endogeneity in Model (1), that we have discussed in detail in Subsec-

tion 3.2, we estimate the model using perceived property rent as an instrument for distance to the

nearest mine. Results from the models without individual and household level controls indicate

the relevance of the instrument (Column 5); the F-statistics far exceeds the threshold level 10,

the selection criteria for strong instruments, as suggested in Stock et al. (2002). The Durbin-Wu-

Hausman test of endogeneity rejects the null hypothesis at a 5 percent significance level, indicating

that the distance variable is endogenous (Hayashi, 2000). As we guessed, the impact of distance is

now much higher - moving away from mines by doubling the distance reduces reported illness by

18We follow the same analysis pattern, clustering, and significance level throughout the study.
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7.1 percentage points. We observe similar results when we include individual and household level

controls in the model (Column 6).

Finally, we employ an instrumental variable approach with the probit model (IV-Probit).

Marginal effects from the basic IV-Probit model, presented in Column 7, are similar to the compa-

rable IV model results. The effects also remain comparable when we add individual, and household

level controls to the specification (Column 8). In this preferred specification, ‘distance to the nearest

mine’ has a statistically significant impact on the reported illness of surveyed individuals. The ME

indicates that if an individual moves in a way that doubles the distance between her/his residence

and nearest mine, the reported illness will reduce by 7.4 percentage points. The Wald test of the

exogeneity of the instrumented variable shows that we reject the null hypothesis of no endogeneity

at the 5 percent significance level.

Our finding is similar to some previous studies. For example, Von der Goltz and Barnwal (2019)

find that heavy metal toxicity increases anemia among women and stunting in young children by

ten and five percentage points, respectively. Similarly, Levasseur et al. (2021) also report that

living in polluted mining and industrial areas increases the likelihood of suffering from any chronic

disease by 7.7 percentage points for working-age adults.

The estimated impact of distance indicates that the coefficients would be biased and underes-

timated without adequately addressing the endogeneity of pollution in our model. However, the

coefficient appears to be a little high, particularly for individuals closer to mines. Let us consider

the case of the people living within one kilometre of the mines who have a reported illness level of

11.36 percent. Our estimate implies that moving one km further from the mines will reduce their

reported illness level to 3.96 percent. This, however, does not provide a comparable number as,

in our data, the reported illness is 9.17 percent for people living between 1–2 km away from gold

mines.

The finding of a higher than expected impact is a known problem of the instrumental variable

estimation. For example, estimates of returns to schooling in studies using institutional changes

in the education system as instruments are 20–40% higher than the corresponding OLS estimates.

The higher impact is partly because the marginal returns to schooling for specific subgroups are

higher than the average returns in the population as a whole, and IV captures the effect only for the

population whose education has been affected by the instrument (Card, 1999). In other words, the

17



higher estimate with the IV approach is because it identifies the “local average treatment effect”

(LATE) rather than the “average treatment effect” (ATE).

The instrument in our analysis, the perceived property rent, is more closely associated with

properties near the mines where pollution impact is significant. Our instrument thus identifies

the LATE of pollution that is higher than its ATE. This means that the true average marginal

impact, a more policy-relevant quantity, lies somewhere between the ME estimated by probit and

the IV-Probit models. Therefore, for the rest of the analysis, we focus less on the coefficient size

and more on the impact’s direction.

The marginal effect of other covariates in this preferred model also appears to be sensible and in

line with the findings of some earlier studies. Higher level of reported illness is associated with gen-

der (Gove, 1984), age (Ross and Wu, 1996) and education (Winkleby et al., 1992). Household size

significantly increases illness possibly due to the crowding of family members, which increases the

probability and risks of infections within a household (Burström et al., 1999). Household consump-

tion has a significant protective effect on illness as found studies such as Winkleby et al. (1992).

While previous literature finds housing type and characteristics (Palacios et al., 2021) important for

illness, their marginal effects (at the mean values of other covariates) are not statistically significant

in our model. The coefficients of year fixed effects are mostly significant, indicating that illness

can be affected by many other factors associated with time but not explicitly controlled for in the

model.

Next, we examine whether distance to the nearest mines releasing different types of heavy

metals significantly affects illness as given by Model (2). This model uses the distance to the

mining site with the highest heavy metal contamination level instead of the shortest distance to

a mine. As discussed earlier, the seven heavy metals coexist at most locations resulting in high

multicollinearity in our model. Therefore, we estimate the model, each time including only one

distance in the model.19 Table 5 presents the results from each model. The coefficient estimates

are negative and statistically significant at the 5 percent level. The coefficients are also sometimes

a little different, which can be due to the change in the sample. However, all of the model results

indicate that, even if we consider only a single heavy metal for our analysis, proximity to mines is

dangerous for people’s health.

19Since not all sites report each the heavy metals, the number of observations differs in each analysis.
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[Table 5]

In the previous analysis, we have not considered the effect of heavy metal released into the

soil that can adversely affect the nearby residents. We now examine the issue by including the

level of pollution based on the three threshold values discussed in Subsection 3.3.2 and estimate

Model (3). As we have seen in Table 3, more than 40 percent of individuals reside in areas with high

levels of mercury pollution that require actions, such as cleansing the soil and relocating exposed

households. Also, nearly 40 percent of the sample population is exposed to mild arsenic pollution.

As a result, we include arsenic and mercury contamination levels (in logarithm) in Model (3).

The results in Table 6, both when we exclude individual level controls (Column 1) or not

(Column 2), indicate that mercury pollution level does not have a statistically significant effect on

reported illness, but arsenic pollution has a significant effect. This can be due to strong association

in mercury and arsenic pollution in our data and the assumption of constant ME of the (logarithm

of) pollution level in the model. Importantly, the coefficient of our primary variable of interest -

distance to the nearest mine - remains similar to the earlier estimates.

[Table 6]

Up to this point of our analysis, we assumed that the (log of) pollution level has a linear effect

on illness while the true impact can be non-linear. To examine whether addressing the case changes

our findings, we use the threshold values reported in MASM (2019) and follow Currie et al. (2009)

to construct indicator variables for heavy metals that exceed the action value. In our setting,

it implies including a dummy variable controlling for individuals exposed to mercruy level above

the action value and estimate Model (4). Results in Table 6 indicate that the pollution threshold

indicator do not significantly affect reported illness, regardless of including individual and household

level controls (Column 3 and 4). Again, the impact of distance, which is an essential indicator of

exposure to pollution, remains qualitatively similar to our earlier estimates.

The results from Tables 4-6 confirm that being close to mines that release environmental pol-

lution increases a person’s likelihood of reporting illnesses. The results are in line with Hill (2018)

and Marcus (2021) who find adverse effects of shale gas well and petroleum leakage, respectively, on

infant health. The findings also support Aragón and Rud (2016) and Von der Goltz and Barnwal
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(2019), who report that mining activities deteriorate health outcomes of communities exposed to

mining pollution. Our individual-level survey data, that only records self-reported illnesses rather

than clinical records, do not allow us to examine long-term chronic illnesses and cancer. Never-

theless, our thorough analysis, along with extensive robustness checks discussed in Subsection 4.7,

indicate that the community near mining activities is susceptible to environmental pollution, and

their likelihood of reporting illness increases as they live closer to mines.

4.2. Medical expenses

Since living closer to mines increases the level of reported illness, it is also likely to increase the

out-of-pocket medical expenses of those individuals unless they report illnesses for other reasons.

We, therefore, examine the issue by estimating Model (1) but now use (logarithm of) medical

expenditure as the dependent variable. As the medical expenditure is a continuous variable, we now

use the linear IV model as our preferred approach.20 The estimated model outputs are presented

in Table 7. The results in the baseline model (Column 1) indicate a significant negative effect of

proximity on medical expenditure. When we add other individual and household level controls in

the model (Columns 2 and 3), the statistical significance of distance drops significantly, particularly

when we add controls for housing construction materials (Column 3). However, the coefficient of

distance in the preferred specification is still large, indicating that medical expenses decline by 31

percent as a person doubles the distance to the nearest mine. Overall, the analysis with medical

expenses further supports our argument that mining has negative externalities that can affect the

nearby residents’ health.

[Table 7]

4.3. Effect of mining pollution on different age groups

Understanding that Equation (1) is sufficient to capture the effect of exposure to pollution, we

next investigate whether pollution from mining affects different age groups disproportionately.

Children and older people are more vulnerable and susceptible to experiencing adverse health

impacts because of their sensitive immune systems (Landrigan et al., 2018). In particular, children

20We again use the same instrument to address the endogeneity of the endogenous variable, distance.
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below the age of 14 undergo significant development changes that can have lasting effects on their

well-being throughout their adulthood. Also, children are more vulnerable because their body size

is smaller than adults, and their exposure to pollution may have more severe effects (Currie et al.,

2014; Rau et al., 2015; Komisarow and Pakhtigian, 2022).

On the other hand, older people are likely to experience a more substantial impact, compared

to their working-age counterparts, as they may have been exposed to pollution for a long time

or because of their age-related vulnerability (Power et al., 2011; Chen et al., 2017). Finally, the

working-age population runs the risk of occupational exposure to heavy metal pollution (Golden-

berg et al., 2010; Graff Zivin and Neidell, 2013). They range from miners to smelters, gold refiners,

and people working in the auxiliary sectors such as trade, services, and transportation. There-

fore, examining the effect of mining pollution separately by age groups can provide interesting

perspectives.

Using our preferred approach (IV-Probit), we now estimate Equation (1) separately with each

age group-specific sub-sample. Results in Table 8 indicate a negative effect of distance on reported

illness for all age groups. As expected, the impact is most pronounced for younger children. The

coefficient estimates for age groups 0-14-year-old (columns 1 and 2) are relatively higher than what

we found in the analysis that combines all age groups.

[Table 8]

Compared to younger children, pollution affects the working-age population to a lesser extent,

and the estimated impacts are not statistically significant (columns 3 and 4). The effect of pollution

for people above 50 years is also very high in our models (columns 5 and 6). Unfortunately, the

number of older people in the data set is low, which is likely to be responsible for the statistical

insignificance of the distance coefficient. Thus, our analysis provides support to the hypothesis

that mining pollution exerts a significant negative externality that affects the health of the young

children as observed in Currie et al. (2014) and Rau et al. (2015).

4.4. Response of different body systems to mining pollution

Next, we test whether exposure to mining pollution affects various body systems. Using our

preferred approach, we estimate Equation (1) but now the dependent variables are the illnesses
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related to different types of body systems (Table 9). Column 1 results indicate that exposure to

pollution increases the likelihood of reporting respiratory system illness. This is in line with the

findings that mining activities produce a substantial amount of dust in the air (Li et al., 2014).

Some field surveys on artisanal and small-scale mining in Mongolia also find higher risks of suffering

from asthma and tuberculosis among adults and increased prevalence of respiratory illnesses among

children (HRC and SDC, 2012). The effect, however, is not significant at the conventional level. We

also observe negative but insignificant effects of pollution on digestive illness (Column 2). However,

there is a larger negative impact of exposure to pollution on other illnesses that also includes

cardiovascular diseases and external impact (Column 3). Such an outcome can be due to injuries

and accidents related to mining activities, but the effect is only marginally significant at the 10

percent level. Thus our overall analysis with different body systems provides limited support to

the hypothesis that mining can affect body systems differently.

[Table 9]

4.5. Effect of mine scale on morbidity

For many reasons, the impact of large and medium-scale mines on human health can be different

from those of ASMs. The small-scale miners are either unlicensed individuals or a group of individ-

uals partnered under one mining license to extract minerals from the same land (HRC and SDC,

2012). They usually operate on public land, and many miners mine at the same time resulting

in an outcome similar to the ‘tragedy of the commons’ (Bazillier and Girard, 2020). They also

suffer from financial and technical constraints. Thus, the incentive to care for the environmental

footprints may be weaker for small-scale miners.21

On the other hand, medium- and large-scale mining takes place with official mining licenses that

designate private land to extract minerals. These official license-holding mining entities are likely

to enforce safety standards for their workers and adhere to environmental regulations.22 Thus,

it appears likely that the severity of the negative impact of mining on health is higher for ASM,

compared to the license holding mines. At this point, we examine whether it is the case.

21ASM is the single largest buyer of mercury in the world, consuming around 1,400 tonnes in 2011 and releasing
17 percent of annual mercury emissions to the atmosphere (Telmer and Stapper, 2012).

22Although, the extent they pollute the environment can be considerable due to the scale of operation.
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The results from our analysis that estimates Equation (1) for two sub-samples – official license

holders and small scale mines – are presented in Table 10. The baseline model without individual

and household level controls indicates a significant negative impact of official license holding mines

on reported illness (Column 1). However, when we add other controls, the size of the impact

becomes smaller and statistically insignificant (Column 2). In contrast, the estimated impacts for

small-scale mines appear slightly smaller than license holders in the baseline model (Column 3).

However, as soon as we add other controls, the coefficient becomes much larger and statistically

significant at the conventional level (Column 4). Together, these results support our hypothesis

that the severity of the negative impact of mining on health is higher for small-scale mines than

their licensed counterpart.

[Table 10]

4.6. The impact of different types of minerals mined on illness

The final investigation looks at the impacts of different minerals mined. The motivation for this

investigation is that previous studies examined the impact of pollution on human health by the

types of minerals mined. For example, the investigation of Tolonen (2019) focused only on the gold

mines while Datt et al. (2020) focused only on the coal mines. The magnitudes of the impacts in

those two studies are not comparable. Gold, spar, and coal are the primary minerals within five km

of the household residence in our analysis sample. In particular, gold mines are the most frequent

mines in our data, and many previous studies focused on them. As a result, for our analysis, we

divide the mines in our sample into three categories – gold, coal and spar, and other types of mines

and then estimate Equation (1) separately.

The results from the analysis are reported in Table 11. The baseline model for the gold mines,

without individual level controls, indicates a significant negative impact of those mines on reported

illness (Column 1). The negative impact remains similar when other controls are added (Column 2).

Coal and spar mines also negatively impact illness significantly but the effect is much lower than

that of gold mines (Columns 3 and 4). On the other hand, the estimated impacts for the mines

extracting minerals other than gold, coal, and spar are large but statistically insignificant in the

baseline model (Column 5). The results remain the same with other controls added to the model
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(Column 6). Together these results show that gold, coal, and spar mines drive the severity of the

negative impact of mining on health.

[Table 11]

4.7. Robustness checks

We undertake additional robustness checks to confirm that the methods, models, and data used in

the analysis do not drive the results. First, to check whether the method matters for our conclusions,

we repeat the entire analysis using OLS (LPM), probit, logit, and IV-LPM approaches. As we have

seen in Table 4, OLS and probit approaches provide much smaller but highly significant results than

the IV-Probit estimates. On the other hand, coefficients from the IV-LPM approach are largely

comparable to the IV-Probit estimates that we have employed throughout the study. Although the

magnitude of pollution impact differs, depending on whether we use the IV approach or not, our

overall conclusions remain similar in all the cases.23

Second, to capture the exposure to pollution, we have relied on the logarithm of distance from

the nearest mine as the exposure variable. We repeat Table 4 by using distance in km and arrive

at a similar conclusion (Table A.1). However, we only present the results from our semi-elasticity

models as they can more realistically reflect the pattern of changes in property prices, the employed

instrument in our analysis.

Third, to examine the case of the very localized impact of mines, we compare the illness of

people living between 1–5 km distance from mines (as the reference group) against the group living

within 1 km of mines. We find that living closer significantly increases the probability of reporting

illness. Additional exercise of comparing the illness of people residing within 2–5 km of mines to

those living within 2 km of mines provide similar results (Table A.2).

Fourth, as an alternative strategy to find a causal effect of proximity to mines, we conduct

a propensity score (PS) matched analysis. Such analysis addresses the concern that individuals

living closer to mines are systematically different from those living away. Our investigation repeats

the previous analysis with distance dummies, but now only with PS-matched individuals. We

match both groups of individuals based on individual-specific control variables. In all cases, the

23All robustness check results are available from the authors unless provided here or in the online appendix.
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final matched sample consists of a lower number of treatment and control properties with no

statistically significant difference in their age, gender, household size, and consumption. Our PS

matched analysis again provides a conclusion that is similar to the main analysis (Table A.3).

Fifth, we use the principal component analysis (PCA) technique to capture the effect of various

heavy metals in Model (3). The advantage of using PCA in our analysis is to reduce the number

of heavy metals when we include their levels in the model. The method does so by creating new

uncorrelated variables principal components with the highest variance from a large dataset (Jolliffe

and Cadima, 2016). We reduce the levels of seven types of heavy metals into three components,

each component grouping specific heavy metals together. An analysis with a principal component

containing mercury and arsenic provides similar results to the primary analysis (Table A.4).

Sixth, we repeat the main analysis with mine fixed effects added to the model. The exercise is

to address the concern that some mines can have stronger effects for some location-specific factors

that may drive our results. The results reveal that our findings are robust to the inclusion of mine

fixed effects (Table A.5).

Seventh, we repeat our analysis adding the interaction of province and year fixed effects in

the model. The approach addresses the concern that some provinces may experience time-varying

effects that can affect the results. Despite the inclusion of province and year fixed effects, the

effects remain large and statistically significant in all the specifications employed in our earlier

investigations (Table A.6). Adding quarter fixed effects, to control for seasonality and quarterly

factors and events, provide comparable results (Table A.7). Controlling for the seasonality in illness,

by adding month fixed effects, also generate similar results (Table A.8).

Eighth, we redo the analysis with job sector fixed effects and mine numbers in Model (1). Job

fixed effects address the concern that the negative effect of distance on illness can come exclusively

through the mining workers who are disproportionately exposed to the mining pollution due to

their job nature. On the other hand, adding mine numbers to the model relaxes the assumption

that mines located further away from people’s place of living, other than the nearest mine, do not

affect illness. Our analysis indicates that, while both job types and the number of mining in the

vicinity can have some effect on illness, they only affect our estimates marginally (Table A.9).

Finally, we employ different forms of control variables. This includes categorical controls for

age (Table A.10) and education (Table A.11), and the use of equivalized consumption (with OECD
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scale or Square Root of Family Size scale) or household income or their logarithm in the models

(Tables A.12–A.15). We also repeat the analysis by excluding some missing values that we currently

include in the analysis sample (Table A.16). Our results appear to be robust in all the cases.

Thus our overall analysis indicates that pollution from mining activities adversely and signifi-

cantly affects the health of nearby communities. As a result of the increased illness, people increase

their expenditure on health. Younger children living within five km of a mine site are seemingly

more prone to illness. However, our analysis provides limited support to the hypothesis that the

respiratory system is more affected by mining pollution than the other types of illness. We observe

that ASMs have a larger negative impact on health than medium and larger mines. We also find

that gold mines have a higher and more significant impact on the reported illness than the mines

extracting other minerals. The results in this analysis are robust to applying different methods,

models, and data.

5. Discussion and policy implications

We document extractive industry’s negative health externalities stemming from the soil pollution

caused by mining, refining, and processing of minerals. We find that the exposure to pollution,

measured by the distance to the nearest mine, significantly increases the likelihood of illness. Sec-

ond, although the effect of pollution is large for above the age of 50, the probability of illness

increases most significantly for younger children aged 0–14 years.

This higher negative impact on children is concerning because early life exposure to neurotoxins

such as mercury and arsenic has been shown to lower their cognitive abilities, disrupt concentration

and behavior, and lead to lifetime earnings loss (Landrigan et al., 2018; Von der Goltz and Barnwal,

2019). These damages are irreversible and cause inter-generational loss of well-being of residents

exposed to mining pollution, as well as lower future productivity and earnings. Higher sickness

levels of the affected people lead to higher health expenditures, indicating significant direct costs

of pollution exposure.

We also find that smaller-scale mining activities have more significant negative health effects

than medium- and large-scale mines. This is likely caused by medium- and large-scale mines

typical operation on private lands, as well as the better management needed to manage larger
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mines, and possibly stronger shareholder scrutiny of negative externalities in general.24 Small-scale

mines suffer from the tragedy of commons problems, as they operate on public lands and exist for

shorter periods, complicating the enforcement of the environmental protection and rehabilitation

responsibilities (HRC and SDC, 2012; Bazillier and Girard, 2020).

Of all the mines we study, gold mines have the worst impact on the probability of feeling ill. This

is because gold is extracted using mercury and cyanide, which are known to have acute and long-

term toxic effects on the respiratory system, on children’s cognitive abilities, and on motor functions

among those occupationally exposed to mercury (Kristensen et al., 2014). This finding is in line

with Aragón and Rud (2016) who report that pollution from gold mining reduces productivity and

contributes to the increased poverty in rural areas in Ghana.

The adverse personal and societal effects of ill health have been well documented in the lit-

erature. Illness deteriorates human physical and emotional well-being, lowering labor supply and

productivity (Graff Zivin and Neidell, 2013; Hanna and Oliva, 2015; Wang et al., 2022). It leads

to school absences and lower performance in the short-term for young children, and a loss in life-

time earnings in the long-term (Neidell, 2004; Rau et al., 2015; Chen et al., 2018; Komisarow and

Pakhtigian, 2022). Pollution-related illnesses and diseases disrupt family stability due to loss in

years of life (Landrigan et al., 2018). These costs, while difficult to measure in aggregate, have a

potential to significantly outstrip the economic benefits of mining activities. Our findings highlight

the need for the regulation of mining to achieve more favourable societal health outcomes.

Our findings that exposure reduction to pollution by moving further away from mines sub-

stantially benefits the resident population has obvious policy implications. Significant additional

health, social and economic benefits can be realized by implementing appropriate environmental

policies and regulations to reduce pollution and therefore the health risks in resource-rich developing

countries.

6. Conclusion

We examined the impact of mining pollution on the residents’ likelihood of reporting illness by

linking five rounds of Mongolian household socio-economic survey data to the soil pollution data.

24On the other hand, medium- and large-scale mining companies release larger absolute amounts of toxins and
waste into the environment due to the scale of their operations.
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Using distance to the nearest mine as the proxy to pollution exposure, we find that exposure to

mining pollution significantly increases a person’s probability of feeling unwell. The closer a person

lives from a mine, the higher the chances of being ill and the corresponding increase in health

expenditures. Although the adverse impact of pollution is also high for older people, children bear

the burden of environmental pollution on their health most significantly. Living nearby artisanal

and small-scale mining operations and gold mines increases the likelihood of becoming unwell more

significantly.

The study is the first to use detailed soil pollution information and a novel instrument to provide

new empirical evidence on the negative externalities of the extractive industry, which may offset

the economic gains they can bring to the local communities. Our results indicate the importance

of controlling and mitigating the pollution generated by the mining activities. Policies that curb

environmental pollution and mitigate their adverse impact will significantly lower the health risks

to the local population and enhance the social and economic benefits of the extractive industry,

especially in the long run.
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Figure 1: Geographic distribution of household residential areas and mercury contamination at mining sites
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Tables

Table 1: Summary statistics of outcome variables

Variable name Mean N

Panel A: Overall illness
Ill in the past month 0.08 7,682

(0.27)
Respiratory system illness 0.02 7,682

(0.15)
Digestive system illness 0.01 7,682

(0.09)
External impact & other illness 0.04 7,682

(0.19)
Household medical expenditures 13.51 7,682

(26.69)
Panel B: Illness level for sub-samples
Age group: 0–14 years 0.07 2,148

(0.25)
Age group: 15–50 years 0.06 4,354

(0.23)
Age group: 50+ years 0.17 1,180

(0.37)
Individuals exposed to license holders 0.07 4,022

(0.25)
Individuals exposed to small-scale mines 0.09 3,660

(0.29)
Individuals exposed to gold mines 0.09 3,944

(0.29)
Individuals exposed to coal & spar mines 0.06 1,387

(0.24)
Individuals exposed to other minerals 0.06 2,351

(0.24)

Notes: Standard deviations are reported in the parentheses. The
mean of monthly medical expenses are reported in thousand Tugrik
(MNT) and adjusted for 2010 price level. The exchange rate was
US$1≈MNT1,257 at the end of 2010.
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Table 2: Summary statistics of independent
variables

Variable name Mean SD

Distance to the nearest mine (km) 2.50 1.47

Distance to the nearest mine emitting mercury 2.70 1.56

Distance to the nearest mine emitting arsenic 2.69 1.55

Distance to the nearest mine emitting lead 2.94 1.43

Distance to the nearest mine emitting zinc 3.13 1.40

Distance to the nearest mine emitting cadmium 2.89 1.44

Distance to the nearest mine emitting copper 3.15 1.42

Distance to the nearest mine emitting nickel 3.07 1.45

Perceived monthly rent rate 60.07 60.78

Individual is female 0.51 0.50

Individual’s age (years) 28.79 19.33

Individual’s education (years) 7.76 5.54

Number of household members 4.32 1.58

Ln(household consumption) 13.10 0.26

Brick/wood wall 0.42 0.49

Asphalt/metal roof 0.41 0.49

Household lives in rural area 0.56 0.50

Number of observations 7,682

Notes: The mean of household monthly income is reported in thousand
Tugrik (MNT) and adjusted for 2010 price level. The exchange rate was
US$1≈MNT1,257 at the end of 2010.
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Table 3: Proportion of households exposed to different contamination level

Percentage of individuals living within
Lower limit for 5 km of a mine with pollution level >

Precaution Trigger Action Precaution Trigger Action
value value value value value value

Heavy metal (1) (2) (3) (4) (5) (6)

Mercury (Hg) 2 10 20 0.96 0.90 0.49
Arsenic (As) 20 50 100 0.35 0.11 0.03
Lead (Pb) 100 500 1,200 0.02 0.01 0.01
Zinc (Zn) 300 500 1,000 0.02 0.01 0.00
Cadmium (Cd) 3 10 20 0.02 0.00 0.00
Copper (Cu) 100 500 1,000 0.01 0.00 0.00
Nickel (Ni) 150 600 1,000 0.00 0.00 0.00

N 7,682 7,682 7,682

Notes: All values for the precaution, trigger and action levels are in mg/kg unit. The sample consists
of households living within 5 km of a mining site. They are distributed among 33 mining sites.
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Table 4: The effect of mining pollution on illness

Variable name (1) (2) (3) (4) (5) (6) (7) (8)

Ln(distance to the nearest mine) -0.009∗ -0.015∗∗ -0.008∗ -0.013∗∗∗ -0.071∗∗ -0.074∗∗ -0.066∗∗ -0.074∗∗

(0.006) (0.006) (0.005) (0.005) (0.028) (0.029) (0.028) (0.031)
Individual is female 0.019∗∗∗ 0.018∗∗∗ 0.019∗∗∗ 0.018∗∗∗

(0.006) (0.005) (0.006) (0.006)
Individual’s age (years) 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000)
Individual’s education (years) 0.001 0.001 0.002 0.001

(0.001) (0.001) (0.001) (0.001)
Number of household members 0.023∗∗∗ 0.014∗∗ 0.025∗∗∗ 0.016∗∗

(0.008) (0.006) (0.008) (0.007)
Ln(household consumption) -0.306∗∗∗ -0.202∗∗∗ -0.320∗∗∗ -0.225∗∗∗

(0.076) (0.057) (0.079) (0.066)
Brick/wood wall 0.003 0.003 0.007 0.007

(0.010) (0.008) (0.010) (0.009)
Asphalt/metal roof 0.002 0.003 -0.010 -0.009

(0.010) (0.008) (0.011) (0.010)
Household lives in rural area 0.022∗∗ 0.018∗ 0.008 0.005

(0.011) (0.010) (0.014) (0.013)
2010 0.156∗∗∗ 0.110∗∗∗ 0.167∗∗∗ 0.125∗∗∗

(0.035) (0.027) (0.037) (0.032)
2014 0.159∗∗∗ 0.101∗∗∗ 0.160∗∗∗ 0.104∗∗∗

(0.047) (0.036) (0.048) (0.040)
2016 0.097∗∗∗ 0.054∗∗ 0.094∗∗∗ 0.052∗

(0.035) (0.027) (0.036) (0.030)
2018 0.156∗∗∗ 0.106∗∗∗ 0.154∗∗∗ 0.108∗∗∗

(0.039) (0.030) (0.040) (0.033)

Model LPM LPM Probit Probit IVreg IVreg IVprobit IVprobit
Province fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
R2/Pseudo R2/First-stage F-stat 0.01 0.04 0.02 0.07 61.16 50.08 61.16 50.08
Hausman/Wald test of exogeneity (0.02) (0.03) (0.02) (0.03)
N 7,682 7,682 7,682 7,682 7,682 7,682 7,682 7,682

Notes: Standard errors, clustered at the household level, are presented in the parentheses. * p <0.10, ** p <0.05, *** p <0.01. The
reference group is male individuals, living in houses with cement, stone and other wall, and tile and other roof, and living in urban areas.
Columns 1,3,5 and 7 run the basic models with province and survey year fixed effects. Columns 2,4,6 and 8 add individual–specific
controls to the specification, including wall and roof type of residence and rural status. Marginal effects are calculated at the mean
values of all other covariates.
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Table 5: IV estimate of the effect of mining pollution on illness: using distance from the nearest
mine with particular types of heavy metal contamination

Variable name (1) (2) (3) (4) (5) (6) (7)

Ln(distance to highest Mercury level) -0.058∗∗

(0.026)
Ln(distance to highest Arsenic level) -0.058∗∗

(0.026)
Ln(distance to highest Lead level) -0.135∗∗

(0.062)
Ln(distance to highest Zinc level) -0.136∗∗

(0.067)
Ln(distance to highest Cadmium level) -0.084∗∗

(0.037)
Ln(distance to highest Copper level) -0.094∗∗

(0.042)
Ln(distance to highest Nickel level) -0.117∗∗

(0.058)
Individual is female 0.012∗ 0.013∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.020∗∗∗ 0.022∗∗∗ 0.026∗∗∗

(0.006) (0.006) (0.008) (0.009) (0.008) (0.008) (0.008)
Individual’s age (years) 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Individual’s education (years) 0.002∗ 0.002 0.003 0.002 0.003∗ 0.003 0.002

(0.001) (0.001) (0.002) (0.002) (0.001) (0.002) (0.002)
Number of household members 0.024∗∗∗ 0.023∗∗∗ 0.028∗∗∗ 0.024∗∗ 0.029∗∗∗ 0.027∗∗∗ 0.022∗∗

(0.007) (0.008) (0.011) (0.010) (0.009) (0.010) (0.010)
Ln(household consumption) -0.307∗∗∗ -0.296∗∗∗ -0.368∗∗∗ -0.324∗∗∗ -0.370∗∗∗ -0.343∗∗∗ -0.308∗∗∗

(0.069) (0.071) (0.103) (0.099) (0.087) (0.093) (0.094)
Brick/wood wall 0.008 0.007 0.004 -0.012 0.008 0.009 -0.008

(0.009) (0.009) (0.012) (0.015) (0.011) (0.011) (0.014)
Asphalt/metal roof -0.007 -0.007 -0.031∗ -0.023 -0.018 -0.025∗ -0.020

(0.010) (0.010) (0.016) (0.014) (0.012) (0.014) (0.013)
Household lives in rural area 0.003 0.003 -0.022 -0.026 0.009 0.032∗ 0.001

(0.018) (0.018) (0.034) (0.039) (0.025) (0.018) (0.022)

Province fixed effects Yes Yes Yes Yes Yes Yes Yes
First-stage F-stat 64.40 64.13 25.46 23.71 48.82 41.94 27.53
Wald test of exogeneity (0.06) (0.06) (0.02) (0.03) (0.04) (0.04) (0.05)
N 6,346 6,109 4,864 4,590 4,967 4,611 4,691

Notes: Standard errors, clustered at the household level, are presented in the parentheses. * p <0.10, ** p <0.05, *** p <0.01. The
reference group is male individuals, living in houses with cement, stone and other wall, and tile and other roof, and living in urban
areas. All columns run the the preferred models with province and survey year fixed effects, individual–specific controls, including wall
and roof type of residence and rural status. Marginal effects are calculated at the mean values of all other covariates.
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Table 6: IV estimate of the effect of mining pollution on
illness: including the level of pollution in the model

Pollution level Non-linear form

Variable name (1) (2) (3) (4)

Ln(distance to the nearest mine) -0.067∗∗ -0.074∗∗ -0.089∗∗ -0.089∗∗

(0.029) (0.031) (0.043) (0.040)
Ln(Mercury pollution level) 0.002 0.000

(0.005) (0.005)
Ln(Arsenic pollution level) -0.021∗∗ -0.024∗∗

(0.009) (0.012)
Mercury above action value -0.059 -0.062

(0.037) (0.038)
Individual is female 0.018∗∗∗ 0.018∗∗∗

(0.006) (0.006)
Individual’s age (years) 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000)
Individual’s education (years) 0.001 0.001

(0.001) (0.001)
Number of household members 0.016∗∗ 0.015∗∗

(0.007) (0.007)
Ln(household consumption) -0.222∗∗∗ -0.226∗∗∗

(0.065) (0.067)
Brick/wood wall 0.006 0.011

(0.009) (0.010)
Asphalt/metal roof -0.008 -0.007

(0.010) (0.010)
Household lives in rural area 0.035∗∗ 0.033∗

(0.016) (0.017)
2010 0.125∗∗∗ 0.129∗∗∗

(0.031) (0.033)
2014 0.107∗∗∗ 0.103∗∗

(0.040) (0.041)
2016 0.057∗ 0.053∗

(0.030) (0.031)
2018 0.108∗∗∗ 0.107∗∗∗

(0.033) (0.034)

Province fixed effects Yes Yes Yes Yes
First-stage F-stat 65.25 54.48 50.31 52.63
Wald test of exogeneity (0.03) (0.03) (0.02) (0.02)
N 7,682 7,682 7,682 7,682

Notes: Standard errors, clustered at the household level, are presented in the paren-
theses. * p <0.10, ** p <0.05, *** p <0.01. The reference group is male individuals,
living in houses with cement, stone and other wall, and tile and other roof, and living
in urban areas. Columns 1 and 3 run the basic models with province and survey year
fixed effects. Columns 2 and 4 add individual–specific controls to the specification,
including wall and roof type of residence and rural status. Marginal effects are cal-
culated at the mean values of all other covariates.
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Table 7: IV estimate of the effect of mining pollution on
monthly individual medical expenses

ln(medical expenses)

Variable names (1) (2) (3)

Ln(distance to the nearest mine) -0.832∗∗∗ -0.610∗∗ -0.307
(0.263) (0.259) (0.270)

Individual is female 0.036 0.037
(0.023) (0.023)

Individual’s age (years) 0.011∗∗∗ 0.011∗∗∗

(0.002) (0.002)
Individual’s education (years) -0.009 -0.011

(0.009) (0.009)
Number of household members 0.014 0.011

(0.069) (0.066)
Ln(household consumption) 0.628 0.664

(0.597) (0.576)
Household lives in rural area -0.342∗∗∗ -0.248∗

(0.126) (0.128)
2010 0.439 0.396

(0.281) (0.272)
2014 0.465 0.470

(0.374) (0.361)
2016 0.954∗∗∗ 0.982∗∗∗

(0.293) (0.282)
2018 1.262∗∗∗ 1.277∗∗∗

(0.317) (0.306)
Brick/wood wall 0.114

(0.082)
Asphalt/metal roof 0.132

(0.093)

Province fixed effects Yes Yes Yes
First-stage F-stat 61.16 58.69 50.08
Hausman test of exogeneity (0.00) (0.02) (0.33)
N 7,682 7,682 7,682

Notes: Standard errors, clustered at the household level, are presented in the
parentheses. * p <0.10, ** p <0.05, *** p <0.01. The reference group is male
individuals, living in houses with cement, stone and other wall, and tile and
other roof, and living in urban areas. Column 1 runs the basic model with
province and survey year fixed effects. Columns 2 adds individual–specific
controls to the specification, including rural status of residence. Columns 3
further adds wall and roof type to the model.
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Table 8: IV estimate of the effect of mining pollution on illness for different
age groups

Age: 0-14 years Age: 15-50 years Age: 50+ years

Variable names (1) (2) (3) (4) (5) (6)

Ln(distance to the nearest mine) -0.168∗∗∗ -0.151∗∗ -0.032 -0.020 -0.046 -0.103
(0.063) (0.067) (0.024) (0.024) (0.112) (0.135)

Individual is female 0.009 0.013∗∗ 0.019
(0.012) (0.006) (0.020)

Individual’s education (years) -0.009∗∗∗ 0.006∗∗∗ 0.003
(0.003) (0.001) (0.004)

Number of household members -0.012 0.022∗∗∗ 0.031∗

(0.023) (0.007) (0.019)
Ln(household consumption) 0.029 -0.268∗∗∗ -0.381∗∗

(0.213) (0.067) (0.149)
Brick/wood wall -0.000 -0.000 0.035

(0.018) (0.008) (0.034)
Asphalt/metal roof -0.013 0.004 -0.056

(0.021) (0.010) (0.037)
Household lives in rural area -0.018 0.022∗ 0.012

(0.027) (0.012) (0.041)
2010 0.148 0.112∗∗∗ 0.182∗∗

(0.106) (0.030) (0.081)
2014 0.065 0.110∗∗∗ 0.172∗

(0.138) (0.042) (0.102)
2016 0.048 0.060∗ 0.054

(0.107) (0.032) (0.081)
2018 0.086 0.108∗∗∗ 0.165∗

(0.115) (0.034) (0.086)

Province fixed effects Yes Yes Yes Yes Yes Yes
First-stage F-stat 33.87 30.48 66.74 54.77 13.18 9.94
Wald test of exogeneity (0.00) (0.00) (0.34) (0.77) (0.66) (0.48)
N 2,148 2,148 4,354 4,354 1,180 1,180

Notes: Standard errors, clustered at the household level, are presented in the parentheses. * p <0.10, **
p <0.05, *** p <0.01. The reference group is male individuals, living in houses with cement, stone and
other wall, and tile and other roof, and living in urban areas. Columns 1,3 and 5 run the basic models
with province and survey year fixed effects. Columns 2,4 and 6 add individual–specific controls to the
specification, including wall and roof type of residence and rural status. Marginal effects are calculated at
the mean values of all other covariates.
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Table 9: IV estimate of the effect of mining pollution on
different types of illness

Respiratory Digestive Other illnesses
Variable name (1) (2) (3)

Ln(distance to the nearest mine) -0.011 -0.010 -0.035∗

(0.009) (0.014) (0.020)
Individual is female 0.004∗∗ 0.002 0.005

(0.002) (0.002) (0.004)
Individual’s age (years) -0.000∗∗∗ 0.000 0.001∗∗∗

(0.000) (0.000) (0.000)
Individual’s education (years) 0.000 0.000 0.000

(0.000) (0.000) (0.001)
Number of household members 0.004 0.001 0.003

(0.003) (0.001) (0.004)
Ln(household consumption) -0.061∗∗∗ -0.013 -0.054

(0.022) (0.009) (0.039)
Brick/wood wall 0.003 0.002 -0.001

(0.003) (0.003) (0.006)
Asphalt/metal roof -0.002 -0.002 -0.001

(0.004) (0.003) (0.006)
Household lives in rural area 0.005 -0.001 -0.003

(0.004) (0.005) (0.007)
2010 0.042∗∗∗ 0.007 0.027

(0.008) (0.006) (0.018)
2014 0.036∗∗ -0.001 0.026

(0.015) (0.008) (0.023)
2016 0.026∗∗ -0.003 0.003

(0.011) (0.007) (0.018)
2018 0.036∗∗∗ 0.002 0.032

(0.011) (0.006) (0.020)

Province fixed effects Yes Yes Yes
First-stage F-stat 50.83 45.19 57.76
Wald test of exogeneity (0.44) (0.28) (0.05)
N 7,682 7,682 7,682

Notes: Standard errors, clustered at the household level, are presented in the paren-
theses. * p <0.10, ** p <0.05, *** p <0.01. The reference group is male individuals,
living in houses with cement, stone and other wall, and tile and other roof, and living
in urban areas. All columns run the the preferred models with province and survey
year fixed effects, individual–specific controls, including wall and roof type of resi-
dence and rural status. Marginal effects are calculated at the mean values of all other
covariates.
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Table 10: IV estimate of the effect of mining pollution on illness:
effect by mining-scale

Mining license holders Small-scale miners

Variable name (1) (2) (3) (4)

Ln(distance to the nearest mine) -0.087∗ -0.062 -0.061∗ -0.144∗∗

(0.046) (0.040) (0.036) (0.060)
Individual is female 0.009 0.030∗∗∗

(0.007) (0.010)
Individual’s age (years) 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000)
Individual’s education (years) 0.001 0.001

(0.001) (0.002)
Number of household members 0.016∗ 0.016

(0.008) (0.013)
Ln(household consumption) -0.212∗∗∗ -0.251∗∗

(0.079) (0.120)
Brick/wood wall 0.015 -0.023

(0.012) (0.018)
Asphalt/metal roof -0.004 -0.014

(0.011) (0.020)
Household lives in rural area 0.017 -0.050

(0.019) (0.038)
2010 0.144∗∗∗ 0.109∗∗

(0.041) (0.054)
2014 0.134∗∗∗ 0.095

(0.051) (0.073)
2016 0.077∗∗ 0.042

(0.039) (0.056)
2018 0.129∗∗∗ 0.094

(0.043) (0.060)

Province fixed effects Yes Yes Yes Yes
First-stage F-stat 27.41 31.32 41.48 20.74
Wald test of exogeneity (0.04) (0.13) (0.13) (0.01)
N 4,022 4,022 3,660 3,660

Notes: Standard errors, clustered at the household level, are presented in the parentheses.
* p <0.10, ** p <0.05, *** p <0.01. The reference group is male individuals, living in
houses with cement, stone and other wall, and tile and other roof, and living in urban
areas. Columns 1 and 3 run the basic models with province and survey year fixed effects.
Columns 2 and 4 add individual–specific controls to the specification, including wall and
roof type of residence and rural status. Marginal effects are calculated at the mean values
of all other covariates.
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Table 11: IV estimate of the effect of mining pollution on illness: effect by mine
types on illness

Gold Coal & spar Other minerals

Variable name (1) (2) (3) (4) (5) (6)

Ln(distance to the nearest mine) -0.055∗∗ -0.054∗∗ -0.086∗∗ -0.038∗∗ -0.297 -0.297
(0.024) (0.024) (0.096) (0.077) (0.301) (0.313)

Individual is female 0.013 0.037 0.015
(0.009) (0.011) (0.010)

Individual’s age (years) 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗

(0.000) (0.000) (0.001)
Individual’s education (years) 0.001 -0.001 0.001

(0.002) (0.002) (0.002)
Number of household members 0.020∗∗ 0.013∗∗ -0.002

(0.010) (0.012) (0.014)
Ln(household consumption) -0.274∗∗∗ -0.175∗∗∗ -0.042

(0.091) (0.119) (0.131)
Brick/wood wall 0.009 -0.003 -0.017

(0.012) (0.019) (0.020)
Asphalt/metal roof -0.006 0.002 0.003

(0.012) (0.020) (0.017)
Household lives in rural area -0.104∗∗ 0.038∗∗ -0.458∗∗∗

(0.048) (0.062) (0.108)
2010 0.105∗∗ 0.110∗∗ 0.088∗

(0.042) (0.060) (0.050)
2014 0.134∗∗ 0.111∗∗ -0.017

(0.056) (0.079) (0.094)
2016 0.071∗ 0.035∗ -0.001

(0.043) (0.064) (0.059)
2018 0.151∗∗∗ 0.079∗∗∗ 0.005

(0.047) (0.071) (0.068)

Province fixed effects Yes Yes Yes Yes Yes Yes
First-stage F-stat 77.21 66.42 7.81 17.07 12.29 9.69
Wald test of exogeneity (0.04) (0.06) (0.28) (0.35) (0.13) (0.12)
N 3,944 3,944 1,387 1,387 2,351 2,351

Notes: Standard errors, clustered at the household level, are presented in the parentheses. * p <0.10, ** p
<0.05, *** p <0.01. The reference group is male individuals, living in houses with cement, stone and other
wall, and tile and other roof, and living in urban areas. Columns 1,3 and 5 run the basic models with province
and survey year fixed effects. Columns 2,4 and 6 add individual–specific controls to the specification, including
wall and roof type of residence and rural status. Marginal effects are calculated at the mean values of all other
covariates.
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Additional tables
Table A.1: The effect of mining pollution on illness: Using distance levels (km)

Variable name (1) (2) (3) (4) (5) (6) (7) (8)

Distance to the nearest mine (km) -0.005 -0.007∗∗ -0.004 -0.006∗∗ -0.050∗∗ -0.058∗∗ -0.049∗∗ -0.062∗∗

(0.003) (0.003) (0.003) (0.003) (0.021) (0.024) (0.022) (0.029)
Individual is female 0.020∗∗∗ 0.018∗∗∗ 0.019∗∗∗ 0.020∗∗∗

(0.006) (0.005) (0.006) (0.006)
Individual’s education (years) 0.002 0.001 0.002 0.001

(0.001) (0.001) (0.001) (0.001)
Individual’s age (years) 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000)
Number of household members 0.023∗∗∗ 0.013∗∗ 0.026∗∗∗ 0.018∗∗

(0.008) (0.006) (0.009) (0.008)
Ln(household consumption) -0.307∗∗∗ -0.203∗∗∗ -0.340∗∗∗ -0.260∗∗∗

(0.076) (0.057) (0.084) (0.081)
Brick/wood wall 0.003 0.003 0.011 0.011

(0.010) (0.008) (0.011) (0.011)
Asphalt/metal roof 0.002 0.002 -0.019 -0.020

(0.010) (0.008) (0.014) (0.015)
Household lives in rural area 0.021∗ 0.017∗ -0.013 -0.017

(0.011) (0.010) (0.020) (0.021)
2010 0.156∗∗∗ 0.109∗∗∗ 0.173∗∗∗ 0.139∗∗∗

(0.035) (0.027) (0.039) (0.039)
2014 0.160∗∗∗ 0.102∗∗∗ 0.170∗∗∗ 0.121∗∗

(0.047) (0.036) (0.051) (0.048)
2016 0.098∗∗∗ 0.055∗∗ 0.100∗∗∗ 0.062∗

(0.035) (0.028) (0.038) (0.035)
2018 0.157∗∗∗ 0.107∗∗∗ 0.161∗∗∗ 0.122∗∗∗

(0.039) (0.030) (0.042) (0.040)

Model LPM LPM Probit Probit IVreg IVreg IVprobit IVprobit
Province fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
R2/Pseudo R2/First-stage F-stat 0.01 0.04 0.02 0.07 31.98 22.43 31.98 22.43
Hausman/Wald test of exogeneity (0.02) (0.02) (0.02) (0.02)
N 7,682 7,682 7,682 7,682 7,682 7,682 7,682 7,682

Notes: Standard errors, clustered at the household level, are presented in the parentheses. * p <0.10, ** p <0.05, *** p <0.01. The
reference group is male individuals, living in houses with cement, stone and other wall, and tile and other roof, and living in urban areas.
Columns 1,3,5 and 7 run the basic models with province and survey year fixed effects. Columns 2,4,6 and 8 add individual–specific
controls to the specification, including wall and roof type of residence and rural status. Marginal effects are calculated at the mean
values of all other covariates.
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Table A.2: IV estimate of the effect of mining pollution on
sickness: using binary distance

Reference: 1-5 km Reference: 2-5 km

Variable name (1) (2) (3) (4)

Distance to a mine (0-1 km) 0.112∗∗ 0.113∗∗

(0.044) (0.044)
Distance to a mine (0-2 km) 0.166∗∗ 0.164∗∗

(0.068) (0.067)
Individual is female 0.019∗∗∗ 0.020∗∗∗

(0.006) (0.006)
Individual’s age (years) 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000)
Individual’s education (years) 0.001 0.002

(0.001) (0.001)
Number of household members 0.022∗∗∗ 0.027∗∗∗

(0.008) (0.009)
Ln(household consumption) -0.296∗∗∗ -0.330∗∗∗

(0.078) (0.082)
Brick/wood wall -0.002 0.017

(0.010) (0.012)
Asphalt/metal roof -0.000 -0.017

(0.010) (0.013)
Household lives in rural area 0.036∗∗∗ 0.011

(0.012) (0.014)
2010 0.154∗∗∗ 0.174∗∗∗

(0.035) (0.038)
2014 0.146∗∗∗ 0.165∗∗∗

(0.047) (0.050)
2016 0.083∗∗ 0.098∗∗∗

(0.035) (0.037)
2018 0.143∗∗∗ 0.168∗∗∗

(0.040) (0.043)

Province fixed effects Yes Yes Yes Yes
First-stage F-stat 91.96 81.37 33.97 30.46
Hausman test of exogeneity (0.02) (0.04) (0.01) (0.02)
N 7,682 7,682 7,682 7,682

Notes: Standard errors, clustered at the household level, are presented in the paren-
theses. * p <0.10, ** p <0.05, *** p <0.01. The reference group is male individuals,
living in houses with cement, stone and other wall, and tile and other roof, and living
in urban areas. Columns 1 and 3 run the basic models with province and survey year
fixed effects. Columns 2 and 4 add individual–specific controls to the specification,
including wall and roof type of residence and rural status. Marginal effects are cal-
culated at the mean values of all other covariates.
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Table A.3: IV estimate of the effect of mining pollution on
sickness: propensity-score matched analysis

Matched to: 1-5 km Matched to: 2-5 km

Variable name (1) (2) (3) (4)

Distance to a mine (0-1 km) 0.132∗∗ 0.137∗∗∗

(0.058) (0.052)
Distance to a mine (0-2 km) 0.251∗ 0.196∗∗

(0.130) (0.085)
Individual is female 0.016 0.028∗∗∗

(0.012) (0.010)
Individual’s age (years) 0.001∗∗ 0.001∗

(0.000) (0.000)
Individual’s education (years) 0.002 0.002

(0.002) (0.002)
Number of household members 0.030∗∗ 0.017

(0.015) (0.013)
Ln(household consumption) -0.372∗∗ -0.304∗∗

(0.148) (0.127)
Brick/wood wall 0.016 -0.008

(0.016) (0.015)
Asphalt/metal roof -0.012 0.010

(0.016) (0.016)
Household lives in rural area 0.046∗∗ 0.045∗∗

(0.020) (0.020)
2010 0.227∗∗∗ 0.176∗∗∗

(0.072) (0.060)
2014 0.201∗∗ 0.176∗∗

(0.091) (0.080)
2016 0.110 0.089

(0.068) (0.060)
2018 0.182∗∗ 0.199∗∗∗

(0.075) (0.068)

Province fixed effects Yes Yes Yes Yes
First-stage F-stat 57.29 69.59 10.57 19.47
Hausman test of exogeneity (0.05) (0.03) (0.03) (0.02)
N 2,526 2,526 3,302 3,302

Notes: Standard errors, clustered at the household level, are presented in the paren-
theses. * p <0.10, ** p <0.05, *** p <0.01. The reference group is male individuals,
living in houses with cement, stone and other wall, and tile and other roof, and living
in urban areas. Columns 1 and 3 run the basic models with province and survey year
fixed effects. Columns 2 and 4 add individual–specific controls to the specification,
including wall and roof type of residence and rural status. Marginal effects are cal-
culated at the mean values of all other covariates.
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Table A.4: IV estimate of the effect of mining
pollution on illness: principal component analysis

Variable name (1) (2)

Ln(distance to the nearest mine) -0.065∗∗ -0.074∗∗

(0.028) (0.031)
Principal component: Mercury & Arsenic 0.006 0.005

(0.005) (0.005)
Individual is female 0.018∗∗∗

(0.006)
Individual’s age (years) 0.001∗∗∗

(0.000)
Individual’s education (years) 0.001

(0.001)
Number of household members 0.016∗∗

(0.007)
Ln(household consumption) -0.223∗∗∗

(0.066)
Brick/wood wall 0.006

(0.009)
Asphalt/metal roof -0.009

(0.010)
Household lives in rural area 0.004

(0.013)
2010 0.124∗∗∗

(0.032)
2014 0.104∗∗∗

(0.040)
2016 0.052∗

(0.030)
2018 0.108∗∗∗

(0.034)
Province fixed effects Yes Yes
First-stage F-stat 62.62 50.40
Wald test of exogeneity (0.02) (0.03)
N 7,682 7,682

Notes: Standard errors, clustered at the household level, are presented
in the parentheses. * p <0.10, ** p <0.05, *** p <0.01. The reference
group is male individuals, living in houses with cement, stone and other
wall, and tile and other roof, and living in urban areas. Columns 1 runs
the basic models with province and survey year fixed effects. Columns 2
adds individual–specific controls to the specification, including wall and
roof type of residence and rural status. Marginal effects are calculated
at the mean values of all other covariates.
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Table A.5: The effect of mining pollution on illness: using mine-fixed effects

Variable name (1) (2) (3) (4) (5) (6) (7) (8)

Ln(distance to the nearest mine) -0.012∗ -0.017∗∗ -0.008∗ -0.012∗∗∗ -0.065∗∗ -0.063∗∗ -0.052∗∗ -0.052∗∗

(0.007) (0.007) (0.005) (0.004) (0.028) (0.026) (0.025) (0.022)
Individual is female 0.019∗∗∗ 0.015∗∗∗ 0.019∗∗∗ 0.015∗∗∗

(0.006) (0.005) (0.006) (0.005)
Individual’s age (years) 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000)
Individual’s education (years) 0.002 0.001 0.001 0.001

(0.001) (0.001) (0.001) (0.001)
Number of household members 0.024∗∗∗ 0.013∗∗ 0.024∗∗∗ 0.013∗∗

(0.008) (0.005) (0.008) (0.005)
Ln(household consumption) -0.319∗∗∗ -0.186∗∗∗ -0.312∗∗∗ -0.186∗∗∗

(0.076) (0.047) (0.077) (0.048)
Brick/wood wall 0.002 0.002 0.001 0.002

(0.010) (0.007) (0.010) (0.007)
Asphalt/metal roof -0.002 -0.001 -0.005 -0.004

(0.010) (0.007) (0.010) (0.007)
Household lives in rural area 0.058 0.045 0.139∗∗ 0.117∗∗

(0.038) (0.031) (0.056) (0.048)
2010 0.165∗∗∗ 0.103∗∗∗ 0.162∗∗∗ 0.103∗∗∗

(0.036) (0.022) (0.036) (0.022)
2014 0.171∗∗∗ 0.097∗∗∗ 0.164∗∗∗ 0.094∗∗∗

(0.047) (0.030) (0.047) (0.031)
2016 0.103∗∗∗ 0.052∗∗ 0.097∗∗∗ 0.047∗∗

(0.035) (0.023) (0.035) (0.024)
2018 0.162∗∗∗ 0.096∗∗∗ 0.156∗∗∗ 0.093∗∗∗

(0.039) (0.025) (0.039) (0.025)

Model LPM LPM Probit Probit IVreg IVreg IVprobit IVprobit
Mine fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
R2/Pseudo R2/First-stage F-stat 0.01 0.05 0.03 0.08 71.08 83.02 71.08 83.02
Hausman/Wald test of exogeneity (0.05) (0.07) (0.05) (0.05)
N 7,682 7,682 7,682 7,682 7,682 7,682 7,682 7,682

Notes: Standard errors, clustered at the household level, are presented in the parentheses. * p <0.10, ** p <0.05, *** p <0.01.
The reference group is male individuals, living in houses with cement, stone and other wall, and tile and other roof, and living
in urban areas. Columns 1,3,5 and 7 run the basic models with mine and survey year fixed effects. Columns 2,4,6 and 8 add
individual–specific controls to the specification, including wall and roof type of residence and rural status. Marginal effects are
calculated at the mean values of all other covariates.

53



Table A.6: The effect of mining pollution on illness: using interaction of province and year
fixed effects

Variable name (1) (2) (3) (4) (5) (6) (7) (8)

Ln(distance to the nearest mine) -0.005 -0.008 -0.003 -0.006 -0.086∗∗∗ -0.111∗∗∗ -0.092∗∗∗ -0.120∗∗∗

(0.006) (0.006) (0.005) (0.005) (0.025) (0.026) (0.028) (0.031)
Individual is female 0.022∗∗∗ 0.020∗∗∗ 0.021∗∗∗ 0.021∗∗∗

(0.006) (0.006) (0.006) (0.006)
Individual’s age (years) 0.002∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.000) (0.000) (0.000) (0.000)
Individual’s education (years) -0.002∗∗∗ -0.002∗∗ -0.002∗∗ -0.002∗∗

(0.001) (0.001) (0.001) (0.001)
Number of household members -0.003 -0.004 -0.000 -0.002

(0.004) (0.003) (0.004) (0.004)
Ln(household consumption) -0.055∗ -0.041∗ -0.066∗ -0.056∗

(0.031) (0.022) (0.034) (0.030)
Brick/wood wall -0.003 -0.003 -0.001 -0.002

(0.010) (0.009) (0.011) (0.010)
Asphalt/metal roof 0.005 0.006 -0.010 -0.011

(0.010) (0.009) (0.011) (0.011)
Household lives in rural area -0.009 -0.015∗ -0.053∗∗∗ -0.071∗∗∗

(0.010) (0.009) (0.016) (0.019)

Model LPM LPM Probit Probit IVreg IVreg IVprobit IVprobit
Province x Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
R2/Pseudo R2/First-stage F-stat 0.01 0.04 0.02 0.06 82.27 79.08 80.73 81.68
Hausman/Wald test of exogeneity (0.00) (0.00) (0.00) (0.00)
N 7,682 7,682 7,682 7,682 7,682 7,682 7,682 7,682

Notes: Standard errors, clustered at the household level, are presented in the parentheses. * p <0.10, ** p <0.05, *** p <0.01.
The reference group is male individuals, living in houses with cement, stone and other wall, and tile and other roof, and living in
urban areas. Columns 1,3,5 and 7 run the basic models with the interaction of province and survey fixed effects. Columns 2,4,6
and 8 add individual–specific controls to the specification, including wall and roof type of residence and rural status. Marginal
effects are calculated at the mean values of all other covariates.
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Table A.7: The effect of mining pollution on sickness: using quarter-fixed effects

Variable name (1) (2) (3) (4) (5) (6) (7) (8)

Ln(distance to the nearest mine) -0.008 -0.013∗∗ -0.006 -0.011∗∗ -0.072∗∗∗ -0.072∗∗ -0.069∗∗ -0.074∗∗

(0.006) (0.006) (0.005) (0.004) (0.028) (0.029) (0.028) (0.031)
Individual is female 0.019∗∗∗ 0.017∗∗∗ 0.019∗∗∗ 0.017∗∗∗

(0.006) (0.005) (0.006) (0.006)
Individual’s age (years) 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000)
Individual’s education (years) 0.002 0.001 0.002 0.001

(0.001) (0.001) (0.001) (0.001)
Number of household members 0.024∗∗∗ 0.013∗∗ 0.025∗∗∗ 0.015∗∗

(0.008) (0.006) (0.008) (0.007)
Ln(household consumption) -0.318∗∗∗ -0.202∗∗∗ -0.330∗∗∗ -0.225∗∗∗

(0.076) (0.055) (0.079) (0.065)
Brick/wood wall 0.003 0.003 0.007 0.007

(0.010) (0.008) (0.010) (0.009)
Asphalt/metal roof 0.003 0.003 -0.009 -0.009

(0.010) (0.008) (0.011) (0.010)
Household lives in rural area 0.023∗∗ 0.017∗ 0.008 0.004

(0.011) (0.009) (0.013) (0.012)
2010 0.162∗∗∗ 0.109∗∗∗ 0.172∗∗∗ 0.124∗∗∗

(0.035) (0.026) (0.036) (0.031)
2014 0.169∗∗∗ 0.103∗∗∗ 0.169∗∗∗ 0.107∗∗∗

(0.047) (0.035) (0.048) (0.039)
2016 0.105∗∗∗ 0.057∗∗ 0.101∗∗∗ 0.055∗

(0.035) (0.026) (0.036) (0.030)
2018 0.169∗∗∗ 0.112∗∗∗ 0.166∗∗∗ 0.114∗∗∗

(0.039) (0.029) (0.040) (0.033)

Model LPM LPM Probit Probit IVreg IVreg IVprobit IVprobit
Province fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Quarter fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
R2/Pseudo R2/First-stage F-stat 0.01 0.05 0.03 0.08 62.47 50.33 62.47 50.33
Hausman/Wald test of exogeneity (0.02) (0.03) (0.01) (0.02)
N 7,682 7,682 7,682 7,682 7,682 7,682 7,682 7,682

Notes: Standard errors, clustered at the household level, are presented in the parentheses. * p <0.10, ** p <0.05, *** p <0.01.
The reference group is male individuals, living in houses with cement, stone and other wall, and tile and other roof, and living in
urban areas. Columns 1,3,5 and 7 run the basic models with province, quarter and survey year fixed effects. Columns 2,4,6 and 8
add individual–specific controls to the specification, including wall and roof type of residence and rural status. Marginal effects are
calculated at the mean values of all other covariates.
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Table A.8: The effect of mining pollution on sickness: using month-fixed effects

Variable name (1) (2) (3) (4) (5) (6) (7) (8)

Ln(distance to the nearest mine) -0.008 -0.012∗∗ -0.005 -0.010∗∗ -0.081∗∗ -0.082∗∗ -0.076∗∗ -0.084∗∗

(0.006) (0.006) (0.005) (0.004) (0.032) (0.035) (0.033) (0.038)
Individual is female 0.019∗∗∗ 0.017∗∗∗ 0.018∗∗∗ 0.017∗∗∗

(0.006) (0.005) (0.006) (0.006)
Individual’s age (years) 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000)
Individual’s education (years) 0.002 0.001 0.002 0.001

(0.001) (0.001) (0.001) (0.001)
Number of household members 0.024∗∗∗ 0.013∗∗ 0.026∗∗∗ 0.015∗∗

(0.008) (0.006) (0.008) (0.007)
Ln(household consumption) -0.319∗∗∗ -0.200∗∗∗ -0.336∗∗∗ -0.230∗∗∗

(0.076) (0.055) (0.080) (0.067)
Brick/wood wall 0.002 0.002 0.006 0.007

(0.009) (0.008) (0.010) (0.009)
Asphalt/metal roof 0.005 0.004 -0.009 -0.010

(0.010) (0.008) (0.012) (0.011)
Household lives in rural area 0.028∗∗∗ 0.021∗∗ 0.011 0.005

(0.011) (0.009) (0.015) (0.013)
2010 0.162∗∗∗ 0.108∗∗∗ 0.175∗∗∗ 0.127∗∗∗

(0.034) (0.025) (0.037) (0.033)
2014 0.168∗∗∗ 0.102∗∗∗ 0.172∗∗∗ 0.110∗∗∗

(0.046) (0.034) (0.049) (0.041)
2016 0.105∗∗∗ 0.057∗∗ 0.104∗∗∗ 0.058∗

(0.035) (0.026) (0.036) (0.031)
2018 0.170∗∗∗ 0.112∗∗∗ 0.170∗∗∗ 0.118∗∗∗

(0.039) (0.029) (0.040) (0.034)

Model LPM LPM Probit Probit IVreg IVreg IVprobit IVprobit
Province fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Month fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
R2/Pseudo R2/First-stage F-stat 0.02 0.05 0.03 0.08 47.62 36.70 47.62 36.70
Hausman/Wald test of exogeneity (0.02) (0.03) (0.02) (0.02)
N 7,682 7,682 7,682 7,682 7,682 7,682 7,682 7,682

Notes: Standard errors, clustered at the household level, are presented in the parentheses. * p <0.10, ** p <0.05, *** p <0.01.
The reference group is male individuals, living in houses with cement, stone and other wall, and tile and other roof, and living in
urban areas. Columns 1,3,5 and 7 run the basic models with province, month and survey year fixed effects. Columns 2,4,6 and 8
add individual–specific controls to the specification, including wall and roof type of residence and rural status. Marginal effects are
calculated at the mean values of all other covariates.
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Table A.9: The effect of mining pollution on illness: using job sector fixed effects & mine numbers

Variable name (1) (2) (3) (4) (5) (6) (7) (8)

Ln(distance to the nearest mine) -0.011∗ -0.017∗∗∗ -0.009∗∗ -0.016∗∗∗ -0.065∗∗ -0.073∗∗ -0.058∗∗ -0.068∗∗

(0.006) (0.006) (0.005) (0.005) (0.027) (0.029) (0.026) (0.030)
Individual is female 0.018∗∗∗ 0.017∗∗∗ 0.018∗∗∗ 0.018∗∗∗

(0.006) (0.006) (0.006) (0.006)
Individual’s age (years) 0.002∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000)
Individual’s education (years) 0.001 0.001 0.001 0.001

(0.001) (0.001) (0.001) (0.001)
Number of household members 0.013 0.006 0.013 0.007

(0.008) (0.007) (0.008) (0.007)
Ln(household consumption) -0.196∗∗ -0.125∗∗ -0.199∗∗ -0.132∗

(0.078) (0.062) (0.080) (0.068)
Brick/wood wall 0.004 0.004 0.008 0.008

(0.010) (0.008) (0.010) (0.009)
Asphalt/metal roof -0.002 -0.001 -0.014 -0.012

(0.010) (0.008) (0.011) (0.010)
Household lives in rural area 0.006 -0.002 -0.020 -0.025

(0.013) (0.012) (0.020) (0.019)
2010 0.112∗∗∗ 0.077∗∗∗ 0.118∗∗∗ 0.085∗∗∗

(0.035) (0.028) (0.036) (0.031)
2014 0.093∗ 0.054 0.088∗ 0.050

(0.048) (0.038) (0.049) (0.041)
2016 0.049 0.019 0.042 0.012

(0.036) (0.029) (0.036) (0.032)
2018 0.102∗∗ 0.067∗∗ 0.096∗∗ 0.063∗

(0.040) (0.032) (0.041) (0.034)
Number of mines within 5 km -0.014∗∗ -0.021∗∗ -0.025∗∗∗ -0.031∗∗∗

(0.006) (0.008) (0.008) (0.010)
Number of samples within 5 km -0.006∗∗ -0.008∗∗ -0.011∗∗∗ -0.012∗∗∗

(0.003) (0.003) (0.004) (0.005)

Model LPM LPM Probit Probit IVreg IVreg IVprobit IVprobit
Province fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Job sector fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
R2/Pseudo R2/First-stage F-stat 0.01 0.05 0.02 0.08 65.21 51.02 65.21 51.02
Hausman/Wald test of exogeneity (0.04) (0.05) (0.04) (0.05)
N 7,682 7,682 7,682 7,682 7,682 7,682 7,682 7,682

Notes: Standard errors, clustered at the household level, are presented in the parentheses. * p <0.10, ** p <0.05, *** p <0.01.
The reference group is male individuals, living in houses with cement, stone and other wall, and tile and other roof, and living in
urban areas. Columns 1,3,5 and 7 run the basic models with province, job sector and survey year fixed effects. Columns 2,4,6 and 8
add individual–specific controls to the specification, including wall and roof type of residence and rural status. Marginal effects are
calculated at the mean values of all other covariates.
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Table A.10: The effect of mining pollution on illness: using age group dummies

Variable name (1) (2) (3) (4) (5) (6) (7) (8)

Ln(distance to the nearest mine) -0.009∗ -0.015∗∗∗ -0.008∗ -0.013∗∗∗ -0.071∗∗ -0.071∗∗ -0.066∗∗ -0.068∗∗

(0.006) (0.006) (0.005) (0.005) (0.028) (0.029) (0.028) (0.030)
Individual is female 0.018∗∗∗ 0.017∗∗∗ 0.017∗∗∗ 0.017∗∗∗

(0.006) (0.005) (0.006) (0.006)
Individual’s education (years) 0.004∗∗∗ 0.004∗∗∗ 0.005∗∗∗ 0.004∗∗∗

(0.001) (0.001) (0.001) (0.001)
Age group: 15-49 years -0.017∗∗ -0.022∗∗∗ -0.017∗∗ -0.022∗∗

(0.008) (0.008) (0.008) (0.009)
Age group: 50+ years 0.064∗∗∗ 0.036∗∗∗ 0.067∗∗∗ 0.042∗∗∗

(0.014) (0.010) (0.014) (0.012)
Number of household members 0.027∗∗∗ 0.018∗∗∗ 0.029∗∗∗ 0.021∗∗∗

(0.008) (0.006) (0.008) (0.007)
Ln(household consumption) -0.337∗∗∗ -0.238∗∗∗ -0.351∗∗∗ -0.262∗∗∗

(0.073) (0.051) (0.076) (0.059)
Brick/wood wall 0.002 0.002 0.006 0.005

(0.010) (0.008) (0.010) (0.009)
Asphalt/metal roof 0.000 0.001 -0.011 -0.010

(0.010) (0.008) (0.011) (0.010)
Household lives in rural area 0.027∗∗ 0.023∗∗ 0.013 0.011

(0.011) (0.010) (0.013) (0.012)
2010 0.168∗∗∗ 0.122∗∗∗ 0.178∗∗∗ 0.137∗∗∗

(0.034) (0.025) (0.035) (0.029)
2014 0.175∗∗∗ 0.118∗∗∗ 0.177∗∗∗ 0.123∗∗∗

(0.045) (0.033) (0.046) (0.036)
2016 0.106∗∗∗ 0.064∗∗ 0.104∗∗∗ 0.064∗∗

(0.034) (0.025) (0.034) (0.028)
2018 0.167∗∗∗ 0.118∗∗∗ 0.166∗∗∗ 0.121∗∗∗

(0.038) (0.027) (0.038) (0.030)

Model LPM LPM Probit Probit IVreg IVreg IVprobit IVprobit
Province fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
R2/Pseudo R2/First-stage F-stat 0.01 0.04 0.02 0.07 61.16 50.30 61.16 50.30
Hausman/Wald test of exogeneity (0.02) (0.05) (0.02) (0.04)
N 7,682 7,682 7,682 7,682 7,682 7,682 7,682 7,682

Notes: Standard errors, clustered at the household level, are presented in the parentheses. * p <0.10, ** p <0.05, *** p <0.01. The
reference group is male individuals, under 15 years of age, living in houses with cement, stone and other wall, and tile and other roof,
and living in urban areas. Columns 1,3,5 and 7 run the basic models with province and survey year fixed effects. Columns 2,4,6 and
8 add individual–specific controls to the specification, including wall and roof type of residence and rural status. Marginal effects are
calculated at the mean values of all other covariates.
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Table A.11: The effect of mining pollution on illness: using education categories

Variable name (1) (2) (3) (4) (5) (6) (7) (8)

Ln(distance to the nearest mine) -0.009∗ -0.014∗∗ -0.008∗ -0.013∗∗∗ -0.071∗∗ -0.071∗∗ -0.066∗∗ -0.071∗∗

(0.006) (0.006) (0.005) (0.005) (0.028) (0.030) (0.028) (0.031)
Individual is female 0.019∗∗∗ 0.017∗∗∗ 0.019∗∗∗ 0.018∗∗∗

(0.006) (0.005) (0.006) (0.006)
Primary school 0.003 -0.001 0.006 0.002

(0.014) (0.011) (0.015) (0.012)
Secondary school -0.022∗∗ -0.018∗ -0.016 -0.014

(0.010) (0.010) (0.011) (0.011)
High school -0.013 -0.010 -0.014 -0.012

(0.010) (0.009) (0.010) (0.010)
Vocational degree 0.011 0.009 0.010 0.008

(0.021) (0.014) (0.021) (0.015)
Bachelor 0.013 0.012 0.013 0.011

(0.016) (0.014) (0.016) (0.014)
Master 0.017 0.012 0.008 0.002

(0.026) (0.023) (0.027) (0.025)
PhD 0.073 0.059 0.065 0.053

(0.121) (0.077) (0.123) (0.083)
Individual’s age (years) 0.002∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000)
Number of household members 0.017∗∗∗ 0.011∗∗ 0.017∗∗∗ 0.011∗∗

(0.006) (0.005) (0.006) (0.005)
Ln(household consumption) -0.243∗∗∗ -0.170∗∗∗ -0.245∗∗∗ -0.180∗∗∗

(0.054) (0.041) (0.055) (0.046)
Brick/wood wall 0.003 0.003 0.007 0.007

(0.010) (0.008) (0.010) (0.009)
Asphalt/metal roof 0.000 0.001 -0.010 -0.010

(0.010) (0.008) (0.011) (0.010)
Household lives in rural area 0.021∗ 0.018∗ 0.006 0.004

(0.011) (0.010) (0.014) (0.013)

Model LPM LPM Probit Probit IVreg IVreg IVprobit IVprobit
Province fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
R2/Pseudo R2/First-stage F-stat 0.01 0.04 0.02 0.07 61.16 48.84 61.16 48.84
Hausman/Wald test of exogeneity (0.02) (0.05) (0.02) (0.03)
N 7,682 7,682 7,682 7,682 7,682 7,682 7,682 7,682

Notes: Standard errors, clustered at the household level, are presented in the parentheses. * p <0.10, ** p <0.05, *** p <0.01. The
reference group is male individuals, have no education, living in houses with cement, stone and other wall, and tile and other roof,
and living in urban areas. Columns 1,3,5 and 7 run the basic models with province and survey year fixed effects. Columns 2,4,6 and
8 add individual–specific controls to the specification, including wall and roof type of residence and rural status. Marginal effects are
calculated at the mean values of all other covariates.
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Table A.12: The effect of mining pollution on illness: using OECD equivalence scale adjusted
consumption

Variable name (1) (2) (3) (4) (5) (6) (7) (8)

Ln(distance to the nearest mine) -0.009∗ -0.015∗∗ -0.008∗ -0.014∗∗∗ -0.071∗∗ -0.079∗∗∗ -0.066∗∗ -0.082∗∗

(0.006) (0.006) (0.005) (0.005) (0.028) (0.029) (0.028) (0.032)
Individual is female 0.016∗∗∗ 0.016∗∗∗ 0.015∗∗ 0.016∗∗∗

(0.006) (0.006) (0.006) (0.006)
Individual’s education (years) 0.008∗∗∗ 0.006∗∗ 0.009∗∗∗ 0.006∗∗

(0.003) (0.002) (0.003) (0.003)
Individual’s age (years) 0.002∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.000) (0.000) (0.000) (0.000)
Ln(adjusted consumption) -0.800∗∗∗ -0.553∗∗∗ -0.845∗∗∗ -0.627∗∗∗

(0.219) (0.171) (0.231) (0.200)
Brick/wood wall 0.004 0.003 0.008 0.007

(0.010) (0.008) (0.010) (0.009)
Asphalt/metal roof 0.002 0.002 -0.011 -0.011

(0.010) (0.008) (0.011) (0.011)
Household lives in rural area 0.045∗∗∗ 0.035∗∗∗ 0.031∗ 0.022

(0.015) (0.013) (0.016) (0.015)
2010 0.363∗∗∗ 0.257∗∗∗ 0.387∗∗∗ 0.294∗∗∗

(0.090) (0.071) (0.096) (0.084)
2014 0.482∗∗∗ 0.330∗∗∗ 0.503∗∗∗ 0.366∗∗∗

(0.138) (0.108) (0.144) (0.125)
2016 0.349∗∗∗ 0.232∗∗∗ 0.361∗∗∗ 0.254∗∗∗

(0.105) (0.082) (0.110) (0.095)
2018 0.429∗∗∗ 0.299∗∗∗ 0.444∗∗∗ 0.328∗∗∗

(0.115) (0.090) (0.121) (0.104)

Model LPM LPM Probit Probit IVreg IVreg IVprobit IVprobit
Province fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
R2/Pseudo R2/First-stage F-stat 0.01 0.04 0.02 0.06 61.16 50.56 61.16 50.56
Hausman/Wald test of exogeneity (0.02) (0.02) (0.02) (0.01)
N 7,682 7,682 7,682 7,682 7,682 7,682 7,682 7,682

Notes: Standard errors, clustered at the household level, are presented in the parentheses. * p <0.10, ** p <0.05, *** p <0.01. The
reference group is male individuals, living in houses with cement, stone and other wall, and tile and other roof, and living in urban areas.
Columns 1,3,5 and 7 run the basic models with province and survey year fixed effects. Columns 2,4,6 and 8 add individual–specific
controls to the specification, including wall and roof type of residence and rural status. Marginal effects are calculated at the mean
values of all other covariates.
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Table A.13: The effect of mining pollution on illness: using square root of family size adjusted
consumption

Variable name (1) (2) (3) (4) (5) (6) (7) (8)

Ln(distance to the nearest mine) -0.009∗ -0.015∗∗ -0.008∗ -0.014∗∗∗ -0.071∗∗ -0.079∗∗∗ -0.066∗∗ -0.082∗∗

(0.006) (0.006) (0.005) (0.005) (0.028) (0.029) (0.028) (0.032)
Individual is female 0.020∗∗∗ 0.018∗∗∗ 0.019∗∗∗ 0.019∗∗∗

(0.006) (0.006) (0.006) (0.006)
Individual’s education (years) 0.000 0.000 0.000 0.000

(0.001) (0.001) (0.001) (0.001)
Individual’s age (years) 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.000) (0.000) (0.000) (0.000)
Ln(adjusted consumption)) -0.258∗∗∗ -0.178∗∗∗ -0.273∗∗∗ -0.202∗∗∗

(0.071) (0.055) (0.075) (0.065)
Brick/wood wall 0.004 0.003 0.008 0.007

(0.010) (0.008) (0.010) (0.009)
Asphalt/metal roof 0.002 0.002 -0.011 -0.011

(0.010) (0.008) (0.011) (0.011)
Household lives in rural area 0.020∗ 0.017∗ 0.004 0.002

(0.011) (0.010) (0.013) (0.013)
2010 0.142∗∗∗ 0.104∗∗∗ 0.153∗∗∗ 0.121∗∗∗

(0.033) (0.026) (0.035) (0.031)
2014 0.136∗∗∗ 0.091∗∗∗ 0.137∗∗∗ 0.094∗∗

(0.044) (0.035) (0.046) (0.040)
2016 0.084∗∗ 0.049∗ 0.080∗∗ 0.046

(0.034) (0.027) (0.035) (0.031)
2018 0.139∗∗∗ 0.099∗∗∗ 0.137∗∗∗ 0.101∗∗∗

(0.037) (0.029) (0.039) (0.034)

Model LPM LPM Probit Probit IVreg IVreg IVprobit IVprobit
Province fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
R2/Pseudo R2/First-stage F-stat 0.01 0.04 0.02 0.06 61.16 50.56 61.16 50.56
Hausman/Wald test of exogeneity (0.02) (0.02) (0.02) (0.01)
N 7,682 7,682 7,682 7,682 7,682 7,682 7,682 7,682

Notes: Standard errors, clustered at the household level, are presented in the parentheses. * p <0.10, ** p <0.05, *** p <0.01. The
reference group is male individuals, living in houses with cement, stone and other wall, and tile and other roof, and living in urban areas.
Columns 1,3,5 and 7 run the basic models with province and survey year fixed effects. Columns 2,4,6 and 8 add individual–specific
controls to the specification, including wall and roof type of residence and rural status. Marginal effects are calculated at the mean
values of all other covariates.
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Table A.14: The effect of mining pollution on illness: using the level of household income

Variable name (1) (2) (3) (4) (5) (6) (7) (8)

Ln(distance to the nearest mine) -0.009∗ -0.013∗∗ -0.008∗ -0.012∗∗ -0.071∗∗ -0.070∗∗ -0.066∗∗ -0.071∗∗

(0.006) (0.006) (0.005) (0.005) (0.028) (0.031) (0.028) (0.033)
Individual is female 0.023∗∗∗ 0.020∗∗∗ 0.023∗∗∗ 0.021∗∗∗

(0.006) (0.005) (0.006) (0.006)
Individual’s education (years) -0.003∗∗∗ -0.002∗∗∗ -0.003∗∗∗ -0.003∗∗∗

(0.001) (0.001) (0.001) (0.001)
Individual’s age (years) 0.002∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.000) (0.000) (0.000) (0.000)
Number of household members -0.009∗∗∗ -0.008∗∗∗ -0.008∗∗∗ -0.007∗∗∗

(0.002) (0.002) (0.002) (0.002)
Household income 0.000∗ 0.000∗∗ 0.000 0.000

(0.000) (0.000) (0.000) (0.000)
Brick/wood wall 0.002 0.002 0.006 0.006

(0.010) (0.008) (0.010) (0.009)
Asphalt/metal roof -0.002 0.000 -0.011 -0.010

(0.010) (0.008) (0.011) (0.010)
Household lives in rural area 0.008 0.009 -0.006 -0.005

(0.010) (0.009) (0.014) (0.013)
2010 0.032∗ 0.027∗ 0.038∗∗ 0.034∗∗

(0.018) (0.014) (0.018) (0.016)
2014 -0.030∗∗ -0.026∗∗ -0.035∗∗ -0.032∗∗

(0.013) (0.012) (0.014) (0.013)
2016 -0.042∗∗∗ -0.039∗∗∗ -0.048∗∗∗ -0.048∗∗∗

(0.013) (0.012) (0.013) (0.014)
2018 0.001 0.002 -0.003 -0.003

(0.014) (0.012) (0.014) (0.013)

Model LPM LPM Probit Probit IVreg IVreg IVprobit IVprobit
Province fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
R2/Pseudo R2/First-stage F-stat 0.01 0.04 0.02 0.07 61.16 44.94 61.16 44.94
Hausman/Wald test of exogeneity (0.02) (0.06) (0.02) (0.04)
N 7,682 7,682 7,682 7,682 7,682 7,682 7,682 7,682

Notes: Standard errors, clustered at the household level, are presented in the parentheses. * p <0.10, ** p <0.05, *** p <0.01. The
reference group is male individuals, living in houses with cement, stone and other wall, and tile and other roof, and living in urban areas.
Columns 1,3,5 and 7 run the basic models with province and survey year fixed effects. Columns 2,4,6 and 8 add individual–specific
controls to the specification, including wall and roof type of residence and rural status. Marginal effects are calculated at the mean
values of all other covariates.
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Table A.15: The effect of mining pollution on illness: using the logarithm of household income

Variable name (1) (2) (3) (4) (5) (6) (7) (8)

Ln(distance to the nearest mine) -0.009∗ -0.014∗∗ -0.008∗ -0.012∗∗ -0.071∗∗ -0.071∗∗ -0.066∗∗ -0.071∗∗

(0.006) (0.006) (0.005) (0.005) (0.028) (0.030) (0.028) (0.032)
Individual is female 0.023∗∗∗ 0.021∗∗∗ 0.023∗∗∗ 0.021∗∗∗

(0.006) (0.005) (0.006) (0.006)
Individual’s education (years) -0.003∗∗∗ -0.002∗∗∗ -0.003∗∗∗ -0.003∗∗∗

(0.001) (0.001) (0.001) (0.001)
Individual’s age (years) 0.002∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.000) (0.000) (0.000) (0.000)
Number of household members -0.009∗∗∗ -0.008∗∗∗ -0.008∗∗∗ -0.008∗∗∗

(0.002) (0.002) (0.002) (0.002)
Ln(household income) 0.010∗ 0.009∗ 0.006 0.005

(0.005) (0.005) (0.005) (0.006)
Brick/wood wall 0.002 0.002 0.006 0.006

(0.010) (0.008) (0.010) (0.009)
Asphalt/metal roof -0.001 0.000 -0.011 -0.010

(0.010) (0.009) (0.011) (0.010)
Household lives in rural area 0.008 0.009 -0.006 -0.005

(0.010) (0.009) (0.013) (0.013)
2010 0.028 0.023 0.036∗ 0.032∗

(0.018) (0.014) (0.019) (0.016)
2014 -0.033∗∗ -0.030∗∗ -0.037∗∗∗ -0.035∗∗

(0.014) (0.013) (0.014) (0.014)
2016 -0.046∗∗∗ -0.044∗∗∗ -0.051∗∗∗ -0.051∗∗∗

(0.013) (0.013) (0.014) (0.014)
2018 -0.002 -0.002 -0.005 -0.006

(0.014) (0.012) (0.014) (0.013)

Model LPM LPM Probit Probit IVreg IVreg IVprobit IVprobit
Province fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
R2/Pseudo R2/First-stage F-stat 0.01 0.04 0.02 0.07 61.16 47.42 61.16 47.42
Hausman/Wald test of exogeneity (0.02) (0.05) (0.02) (0.04)
N 7,682 7,682 7,682 7,682 7,682 7,682 7,682 7,682

Notes: Standard errors, clustered at the household level, are presented in the parentheses. * p <0.10, ** p <0.05, *** p <0.01. The
reference group is male individuals, living in houses with cement, stone and other wall, and tile and other roof, and living in urban areas.
Columns 1,3,5 and 7 run the basic models with province and survey year fixed effects. Columns 2,4,6 and 8 add individual–specific
controls to the specification, including wall and roof type of residence and rural status. Marginal effects are calculated at the mean
values of all other covariates.
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Table A.16: The effect of mining pollution on illness: sample with missing illness values dropped

Variable name (1) (2) (3) (4) (5) (6) (7) (8)

Ln(distance to the nearest mine) -0.010∗ -0.015∗∗ -0.008∗ -0.014∗∗∗ -0.071∗∗ -0.077∗∗∗ -0.067∗∗ -0.077∗∗

(0.006) (0.006) (0.005) (0.005) (0.028) (0.029) (0.028) (0.032)
Individual is female 0.020∗∗∗ 0.019∗∗∗ 0.020∗∗∗ 0.019∗∗∗

(0.006) (0.006) (0.006) (0.006)
Individual’s education (years) 0.000 -0.000 0.000 -0.000

(0.001) (0.001) (0.001) (0.001)
Individual’s age (years) 0.002∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000)
Number of household members 0.019∗∗ 0.010 0.020∗∗ 0.012

(0.008) (0.006) (0.008) (0.007)
Ln(household consumption) -0.263∗∗∗ -0.168∗∗∗ -0.274∗∗∗ -0.185∗∗∗

(0.079) (0.060) (0.082) (0.068)
Brick/wood wall 0.004 0.003 0.007 0.007

(0.010) (0.009) (0.010) (0.009)
Asphalt/metal roof 0.002 0.003 -0.009 -0.009

(0.010) (0.009) (0.011) (0.011)
Household lives in rural area 0.020∗ 0.016 0.004 0.001

(0.011) (0.010) (0.014) (0.013)
2010 0.139∗∗∗ 0.097∗∗∗ 0.149∗∗∗ 0.110∗∗∗

(0.036) (0.028) (0.038) (0.032)
2014 0.134∗∗∗ 0.081∗∗ 0.133∗∗∗ 0.081∗∗

(0.048) (0.037) (0.050) (0.041)
2016 0.079∗∗ 0.039 0.074∗∗ 0.035

(0.036) (0.028) (0.037) (0.031)
2018 0.137∗∗∗ 0.091∗∗∗ 0.134∗∗∗ 0.091∗∗∗

(0.040) (0.031) (0.041) (0.034)

Model LPM LPM Probit Probit IVreg IVreg IVprobit IVprobit
Province fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
R2/Pseudo R2/First-stage F-stat 0.01 0.04 0.02 0.07 62.74 52.13 62.74 52.13
Hausman/Wald test of exogeneity (0.02) (0.03) (0.02) (0.02)
N 7,432 7,432 7,432 7,432 7,432 7,432 7,432 7,432

Notes: Standard errors, clustered at the household level, are presented in the parentheses. * p <0.10, ** p <0.05, *** p <0.01. The
reference group is male individuals, living in houses with cement, stone and other wall, and tile and other roof, and living in urban areas.
Columns 1,3,5 and 7 run the basic models with province and survey year fixed effects. Columns 2,4,6 and 8 add individual–specific
controls to the specification, including wall and roof type of residence and rural status. Marginal effects are calculated at the mean
values of all other covariates.
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