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We consider a next generation neural field model which describes the dynamics of a network of
theta neurons on a ring. For some parameters the network supports stable time-periodic solutions.
Using the fact that the dynamics at each spatial location are described by a complex-valued Riccati
equation we derive a self-consistency equation that such periodic solutions must satisfy. We deter-
mine the stability of these solutions, and present numerical results to illustrate the usefulness of this
technique. The generality of this approach is demonstrated through its application to several other
systems involving delays, two-population architecture and networks of Winfree oscillators.

INTRODUCTION

The collective behaviour of large networks of neurons
is a topic of ongoing interest. One of the simplest forms
of behaviour is a periodic oscillation, which manifests it-
self as a macroscopic rhythm created by the synchronous
firing of many neurons. Such oscillations have relevance
to rhythmic movement [36], epilepsy [20, 38], schizophre-
nia [57] neural communication [50] and EEG/MEG mod-
elling [9], among others. In different networks, oscilla-
tions may arise from mechanisms such as synaptic de-
lays [14], the interaction of excitatory and inhibitory
populations [7, 52], having sufficient connectivity in an
inhibitory network [58], or the finite width of synaptic
pulses emitted by neurons [49]. The modelling and simu-
lation of such networks is essential in order to investigate
their dynamics.

Among the many types of model neurons used when
studying networks of neurons, theta neurons [16], Win-
free oscillators [2] and quadratic integrate-and-fire (QIF)
neurons [34] are some of the simplest. These three
types of model neurons have the advantage that their
mathematical form often allows infinite networks of such
neurons to be analysed exactly using the Ott-Antonsen
method [44, 45]. We continue along those lines in this
paper.

Here we largely consider a spatially-extended network
of neurons, in which the neurons can be thought of as
lying on a ring. Such ring networks have been stud-
ied in connection with modelling head direction [61] and
working memory [18, 60], for example, and been stud-
ied by others [17, 22, 24]. We consider a network of
theta neurons. The theta neuron is a minimal model
for a neuron which undergoes a saddle-node-on-invariant-
circle (SNIC) bifurcation as a parameter is varied [16].
The theta neuron is exactly equivalent to a quadratic
integrate-and-fire (QIF) neuron, under the assumption
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of infinite firing threshold and reset values [4, 15, 37].
The coupling in the network is nonlocal synaptic cou-
pling, implemented using a spatial convolution with a
translationally-invariant coupling kernel.
We studied such a model in the past [40], concentrating

on describing spatially-uniform states and also station-
ary “bump” states in which there is a spatially-localised
group of active neurons while the remainder of the net-
work is quiescent. We determined the existence and sta-
bility of such states and also found regions of parameter
space in which neither of these types of states were sta-
ble. Instead, we sometimes found solutions which were
periodic in time. In this paper we study such periodic
solutions using a recently-developed technique [39, 43]
which is significantly faster than the standard approach.
This technique was successfully applied to describe

traveling and breathing chimera states in nonlocally cou-
pled phase oscillators [39, 43]. In this paper, we general-
ize this technique to neural models and illustrate its pos-
sibilities with several examples. We start with a ring net-
work of theta neurons and consider periodic bump states
there. We describe a continuation algorithm, perform
linear stability analysis of such states and derive some
useful formulas, for example, for average firing rates. We
show that the same approach works in the presence of
delays and for two-population models. Finally, we show
that Winfree oscillators are also treatable by the pro-
posed technique.
The structure of the paper is as follows. In Sec. I we

present the discrete network model and its continuum-
level description. The bulk of the paper is in Sec II,
where we show how to describe periodic states in a self-
consistent way, and show numerical results from imple-
menting our algorithms. Other models are considered in
Sec. III and we end in Sec. IV. The Appendix contains
useful results regarding the complex Riccati equation.

I. THETA NEURON NETWORK MODEL

The model we consider first is that in [25, 31, 40], which
we briefly present here. The discrete network consists of
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N synaptically coupled theta neurons described by

dθj
dt

= 1− cos θj + (1 + cos θj)(ηj + κIj), j = 1, . . . , N,

(1)
where each θj ∈ [0, 2π] is an angular variable. The con-
stant κ is the overall strength of coupling within the
network, and the current entering the jth neuron is κIj
where

Ij(t) =
2π

N

N∑
k=1

KjkPn(θk(t)) (2)

where

Pn(θ) = an(1− cos θ)n

is a pulsatile function with a maximum at θ = π (when
the neuron fires) and an is chosen according to the nor-
malization condition∫ 2π

0

Pn(θ)dθ = 2π.

Increasing n makes Pn(θ) “sharper” and more pulse-
like. The excitability parameters ηj are chosen from a
Lorentzian distribution with mean η0 and width γ > 0

g(η) =
γ

π

1

(η − η0)
2 + γ2

.

The connectivity within the network is given by the
weights Kjk which are defined by Kjk = K(2π(j−k)/N)
where the coupling kernel is

K(x) =
1

2π
(1 +A cosx) (3)

for some constant A. Note that the form of coupling im-
plies that the neurons are equally-spaced around a ring,
with periodic boundary conditions. Such a network can
support solutions which are — at a macroscopic level —
periodic in time; see Fig. 3 in [40]. Such solutions are
unlikely to be true periodic solutions of (1), since for a
typical realisation of the ηj , one or more neurons will
have extreme values of this parameter, resulting in them
not frequency-locking to other neurons.

Note that the model we study here has only one neuron
at each spatial position, and for A > 0 the connections
between nearby neurons are more positive than those be-
tween distant neurons. For A > 1 neurons on opposite
sides of the domain inhibit one another, as the connec-
tions between them are negative, giving a “Mexican-hat”
connectivity. For A < 0 connections between neurons on
opposite sides of the domain are more positive than those
between nearby neurons. Such a model with one popu-
lation of neurons and connections of mixed sign can be
thought of as an approximation of a network with popu-
lations of both excitatory and inhibitory neurons [17, 48].

Using the Ott/Antonsen ansatz [44, 45], one can show
that in the limit N → ∞, the long-term dynamics of the
network (1) can be described by

∂z

∂t
=

(iη0 − γ)(1 + z)2 − i(1− z)2

2

+ κ
i(1 + z)2

2
KHn(z), (4)

where

(Kφ)(x) =
∫ 2π

0

K(x− y)φ(y)dy (5)

is the convolution of K and φ and

Hn(z) = an

[
C0 +

n∑
q=1

Cq (z
q + zq)

]
,

where

Cq =

n∑
k=0

k∑
m=0

δk−2m,q(−1)kn!

2k(n− k)!m!(k −m)!
.

For our computations we set n = 2, so that

H2(z) = (2/3)[3/2− (z + z̄) + (z2 + z̄2)/4]

where overline indicates the complex conjugate. Periodic
solutions like those studied below were also found with
n = 5, for example, so the choice of n is not critical. The
wider question of the effects of pulse shape and duration
is an interesting one [47].
Eq. (4) is an integro-differential equation for a

complex-valued function z(x, t), where x ∈ [0, 2π] is po-
sition on the ring. z(x, t) is a local order parameter and
can be thought of as the average of eiθ for neurons in a
small neighbourhood of position x. The magnitude of z is
a measure of how synchronised the neurons are, whereas
its argument gives the most likely value of θ [25]. Using
the equivalence of theta and QIF neurons, one can also
provide a relevant biological interpretation of z. Namely,
defining W ≡ (1− z)/(1 + z), one can show [27, 37] that
π−1ReW is the flux through θ = π or the instantaneous
firing rate of neurons at position x and time t. Similarly,
if Vj = tan(θj/2) is the voltage of the jth QIF neuron, the
mean voltage at position x and time t is given by ImW .
Note that physically relevant solutions of Eq. (4) must
assume values |z| ≤ 1. In other words, we are interested
only in solutions z ∈ D, where

D = {z ∈ C : |z| < 1}

is the unit disc in the complex plane.
Equations of the form (4)–(5) are sometimes referred to

as next generation neural field models [8, 11] as they have
the form of a neural field model (an integro-differential
equation for a macroscopic quantity such as “activ-
ity” [1, 33]) but are derived exactly from a network
like (1), rather than being of a phenomenological nature.
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II. PERIODIC STATES

In this paper we focus on states with periodically os-
cillating macroscopic dynamics. For the mean field equa-
tion (4) these correspond to periodic solutions

z = a(x, t)

where a(x, t + T ) = a(x, t) for some T > 0. The fre-
quency corresponding to T is denoted by ω = 2π/T . An
example of a periodic solution is shown in Fig. 1, pan-
els (a) and (b). Fig. 1 (c) shows a realization of the same
solution in the discrete network (1). We note that this
solution has a spatio-temporal symmetry: it is invariant
under a time shift of half a period followed by a reflec-
tion about x = π. However, we do not make use of this
symmetry in the following calculations.

The appearance of periodic solutions in this model is in
contrast with classical one-population neural field models
for which they do not seem to occur [32]. This is another
example of next generation neural field models showing
more complex time-dependent behaviour than classical
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FIG. 1. A typical periodic solution of Eq. (4). (a):
arg (z(x, t)). (b): |z(x, t)|. (c) A realization of this solution
in a network of N = 4096 theta neurons described by Eq. (1).
θj is shown in color. Parameters: A = −5, η0 = −0.7, κ = 1,
γ = 0.01.

ones [31].
A straight-forward way to study a periodic orbit like

that in Fig. 1 would be discretise Eq. (4) on a spatially-
uniform grid and approximate the convolution using ma-
trix/vector multiplication or otherwise, resulting in a
large set of coupled ordinary differential equations. The
periodic solution of these could then be studied using
standard techniques [25], but note that the computa-
tional complexity of this would typically scale as ∼ N2,
where N is the number of spatial points used in the grid.
Instead we propose here an alternative method based on
the ideas from [39, 43], which allows us to perform the
same calculations with only ∼ N operations. The main
ingredients of this method are explained in Sections IIA
and IIB. They include the description of the properties of
complex Riccati equation and the derivation of the self-
consistency equation for periodic solutions of Eq. (4). In
Section IIC we explain how the self-consistency equation
can be solved in the case of coupling function (3). Then
in Section IID we report some numerical results obtained
with our method. In addition, in Section II E we perform
a rigorous linear stability analysis of periodic solutions of
Eq. (4) by considering the spectrum of the corresponding
monodromy operator. Finally, in Section II F, we show
how the mean field equation (4) can be used to predict the
average firing rate distribution in the neural network (1).

A. Periodic complex Riccati equation and Möbius
transformation

By the time rescaling u(x, t) = z(x, t/ω) we can rewrite
Eq. (4) in the form

ω
∂u

∂t
=

(iη0 − γ)(1 + u)2 − i(1− u)2

2

+ κ
i(1 + u)2

2
KHn(u), (6)

such that the above T -periodic solution of Eq. (4) cor-
responds to a 2π-periodic solution of Eq. (6). Then, di-
viding (6) by ω and reordering the terms we can see that
Eq. (6) is equivalent to a complex Riccati equation

∂u

∂t
= i

(
W (x, t) + ζ − 1

2ω

)
+ 2i

(
W (x, t) + ζ +

1

2ω

)
u

+ i

(
W (x, t) + ζ − 1

2ω

)
u2, (7)

with the 2π-periodic in t coefficient

W (x, t) =
κ

2ω
KHn(u) (8)

and

ζ =
η0 + iγ

2ω
. (9)

In [43] it was shown (see also Proposition 2 and Remark 2
in the Appendix for additional details) that independent
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of the choice of the real-valued periodic functionW (x, t),
parameters ζ ∈ Cup = {z ∈ C : Im z > 0} and ω > 0,
for every fixed x ∈ [0, 2π] Eq. (7) has a unique stable 2π-
periodic solution U(x, t) that lies entirely in the open unit
disc D. Denoting the corresponding solution operator by

U : Cper([0, 2π];R)× Cup × (0,∞) → Cper([0, 2π];D),

we can write the 2π-periodic solution of interest as

U(x, t) = U
(
W (x, t),

η0 + iγ

2ω
, ω

)
. (10)

Note that Cper([0, 2π];R) here denotes the space of all
real-valued continuous 2π-periodic functions, while the
notation Cper([0, 2π];D) stands for the space of all com-
plex continuous 2π-periodic functions with values in the
open unit disc D. Importantly, the variable x appears
in formula (10) as a parameter so that the function
W (x, ·) ∈ Cper([0, 2π];R) with a fixed x is considered
as the first argument of the operator U .
As for the operator U , although it is not explic-

itly given, its value can be calculated without resource-
demanding iterative methods by solving exactly four ini-
tial value problems for Eq. (7). The rationale for this
approach can be found in [43, Section 4] and is repeated
for completeness in Remark 3 in Appendix. Below we
describe its concrete implementation in the case of for-
mula (10).

We assume that the spatial domain [0, 2π] is discretised
with N points, xj , j = 1, 2, . . . N and that the functions
U(x, t) and W (x, t) are replaced with their grid counter-
parts uj(t) = U(xj , t) and wj(t) =W (xj , t), respectively.
Then, given a set of functions wj(t), we calculate the cor-
responding functions uj(t) by performing the following
four steps.

(i) We (somewhat arbitrarily) choose three initial con-
ditions u1j (0) = −0.95, u2j (0) = 0, u3j (0) = 0.95 and solve
Eq. (7) with these initial conditions to obtain solutions
ukj (t), j = 1, . . . N ; k = 1, 2, 3. In [43] (see also Proposi-
tion 2 in the Appendix) it is shown that for γ > 0 these
solutions lie in the open unit disc D.

(ii) Since at each point in space the Poincaré map
of Eq. (7) with 2π-periodic coefficients coincides with a
Möbius map M(u) (see [43] for detail), we can use the
relations ukj (2π) = Mj(u

k
j (0)), k = 1, 2, 3, to reconstruct

these maps Mj , j = 1, . . . N . The corresponding formu-
las are given in [43, Section 4].

(iii) Now that the Möbius maps Mj(u) are known,
their fixed points can be found by solving u∗j = Mj(u

∗
j )

for each j. This equation is equivalent to a complex
quadratic equation, therefore in general it has two so-
lutions in the complex plane. For γ > 0, only one of
these solutions lies in the unit disc D.

(iv) Using the fixed points u∗j ∈ D of the Möbius maps
Mj(u) as an initial condition in Eq. (7) (i.e. setting
u(xj , 0) = u∗j ) and integrating (7) for a fourth time to
t = 2π we obtain the grid counterpart of a 2π-periodic
solution, U(x, t), that lies entirely in the unit disc D.

We now use this result to show how to derive a self-
consistency equation, the solution of which allows us to
determine a 2π-periodic solution of Eq. (6).

B. Self-consistency equation

Supposing that Eq. (6) has a 2π-periodic solution, then
using formula (8) we can calculate the corresponding
function W (x, t). On the other hand, using formula (10)
we can recover u(x, t). Then the new and the old expres-
sions of u(x, t) will agree with each other if and only if
the function W (x, t) satisfies a self-consistency equation

W (x, t) =
κ

2ω
KHn

(
U
(
W (x, t),

η0 + iγ

2ω
, ω

))
, (11)

obtained by inserting (10) into (8). In the following we
consider Eq. (11) as a separate equation which must be
solved with respect to W (x, t) and ω. Note that the un-
known field W (x, t) has a problem-specific meaning: It
is proportional to the current entering a neuron at posi-
tion x at time t due to the activity of all other neurons
in the network. The use of self-consistency arguments
to study infinite networks of oscillators goes back to Ku-
ramoto [23, 55, 56], but such approaches have always
focused on steady states, whereas we consider periodic
solutions here.
Note that from a computational point of view, the self-

consistency equation (11) has many advantages. It allows
us to reduce the dimensionality of the problem at least
in the case of special coupling kernels with finite num-
ber of Fourier harmonics (see Section IIC). Moreover,
its structure is convenient for parallelization, since the
computations of operator U at different points x are per-
formed independently. Finally, the main efficiency is due
to the fact that the computation of U is performed in
non-iterative way.
In the next proposition, we will prove some properties

of the solutions of Eq. (11), which will be used later in
Section II E.

Proposition 1 Let the pair (W (x, t), ω) be a solution of
the self-consistency equation (11) and let U(x, t) be de-
fined by (10). Then∣∣∣∣exp(∫ 2π

0

M(x, t)dt

)∣∣∣∣ < 1

where

M(x, t) =
i

ω
[(κKHn(U) + η0 + iγ)(1 + U(x, t))

+ 1− U(x, t)] . (12)

Proof: For every fixed x ∈ [0, 2π], the function U(x, t)
yields a stable 2π-periodic solution of the complex Riccati
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equation (7). The linearization of Eq. (7) around this
solution reads

dv

dt
=M(x, t)v,

where

M(x, t) = 2i

(
W (x, t) + ζ +

1

2ω

)
+ 2i

(
W (x, t) + ζ − 1

2ω

)
U(x, t).

Moreover, using (8) and (9), we can show that the above
expression determines a function identical to the function
M(x, t) in (12). Recalling that U(x, t) is not only a sta-
ble but also an asymptotically stable solution of Eq. (7),
see Remark 1 in Appendix, we conclude that the corre-
sponding Floquet multiplier lies in the open unit disc D.
This ends the proof.

C. Numerical implementation

Eq. (11) describes a periodic orbit, and since Eq. (7)
is autonomous we need to append a pinning condition
in order to select a specific solution of Eq. (11). For a
solution of the type shown in Fig. 1 we choose∫ 2π

0

dx

∫ 2π

0

W (x, t) sin(2t)dt = 0. (13)

In the following we focus on the case of the cosine cou-
pling (3). It is straight-forward to show that (KHn)(x)
can be written as a linear combination of 1, cosx and
sinx. However, the system is translationally invariant in
x, and we can eliminate this invariance from Eq. (11)
by restricting this equation to its invariant subspace
Span{1, sinx}. Then, taking into account that the func-
tion W (x, t) is real, we seek an approximate solution of
the system (11), (13) using a Fourier-Galerkin ansatz

W (x, t) =

2F∑
m=0

(vm + wm sinx)ψm(t) (14)

where vm and wm are real coefficients and ψm(t) are
trigonometric basis functions

ψ0(t) = 1,

ψm(t) =
√
2 cos(nt), if m = 2n with n ∈ N,

ψm(t) =
√
2 sin(nt), if m = 2n− 1 with n ∈ N.

Our typical choice of the number of harmonics in (14)
is F = 10. To exactly represent W (x, t) in (14) would
require an infinite number of terms in the series, so us-
ing a finite value of F introduces an approximation in
our calculations. However, the excellent agreement be-
tween our calculations with F = 10 and those from full

simulations of (4) (shown below) indicate that such an
approximation is justified.
Using the scalar product

⟨u, v⟩ = 1

(2π)2

∫ 2π

0

dx

∫ 2π

0

u(x, t)v(x, t)dt

we project Eq. (11) on different spatio-temporal Fourier
modes to obtain the system

vm =
κ

2ω

〈
Hn

(
U
(
W (x, t),

η0 + iγ

2ω
, ω

))
, ψm(t)

〉
,(15)

wm =
κA

2ω

〈
Hn

(
U
(
W (x, t),

η0 + iγ

2ω
, ω

))
,

ψm(t) sinx

〉
, (16)

for m = 0, 1, . . . , 2F . Eqs. (15) and (16), together with
(13), are a set of 2(2F + 1) + 1 = 4F + 3 equations for
the 4F + 3 unknowns v0, v1, . . . , v2F , w0, w1, . . . , w2F , ω,
which must be solved simultaneously. We solve them
using Newton’s method and find convergence within 3 or
4 iterations.
In simple terms, suppose we have somewhat accurate

estimates of v0, v1, . . . , v2F , w0, w1, . . . , w2F , ω. These
can be inserted into (14) to calculate the function
W (x, t). Then one can calculate a periodic solution of
Eq. (7) with the specified W (x, t) by formula (10) and
finally calculate Hn(U) and insert this into (15) and (16)
and perform the projections. We want the difference be-
tween the new values of v0, v1, . . . , v2F , w0, w1, . . . , w2F

and the initial values of them to be zero, and for (13) to
hold. This determines the 4F + 3 equations we need to
solve. The solutions of these equations can be followed
as a parameter is varied in the standard way [26]. Note
that these calculations involve discretising the spatial do-
main with N points. However, the number of unknowns
(4F + 3) is significantly less than N .

D. Results

The results of following the solution shown in Fig. 1
as η0 is varied are shown in Fig. 2, along with values
measured from direct simulations of Eq. (4). The pe-
riod seems to become arbitrarily large as η0 approaches
−2.32, and the solution approaches a heteroclinic con-
nection, spending more and more time near two sym-
metric states which are mapped to one another under the
transformation x → −x. The solution becomes unstable
at η0 ≈ −0.5 through a subcritical torus (or secondary
Hopf) bifurcation. (This was determined by finding the
Floquet multipliers of the periodic solution in the con-
ventional way; results not shown.) For these calculations
we used N = 256 spatial points.

For more negative values of η0 than those shown in
Fig. 2, another type of periodic solution is stable: see
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FIG. 2. Period of the type of solution shown in Fig. 1 as a
function of η0 (solid curve). The circles show values measured
from direct simulations of Eq. (4). Other parameters: A =
−5, κ = 1, γ = 0.01.

Fig. 3. Such a solution does not have the spatio-temporal
symmetry of the solution shown in Fig. 1. However, we
can follow it in just the same way as the parameter η0 is
varied, and we obtain the results shown in Fig. 4. This
periodic orbit appears to be destroyed in a supercriti-
cal Hopf bifurcation as η0 is decreased through approx-
imately −3.2, and become unstable to a wandering pat-
tern at η0 is increased through approximately −2.34.

Note that the left asymptote in Fig. 2 coincides with
the right asymptote in Fig. 4. On the other hand, we
note that two patterns shown in Figs. 1 and 3 have dif-
ferent spatiotemporal symmetries, therefore due to topo-
logical reasons they cannot continuously transform into
each other. Similar bifurcation diagrams where parame-
ter ranges of two patterns with different symmetries are
separated by heteroclinic or homoclinic bifurcations were
found for non-locally coupled Kuramoto-type phase os-
cillators [42] and seem to be a general mechanism which,
however, needs additional investigation.

E. Stability of breathing bumps

Given a T -periodic solution a(x, t) of Eq. (4), we can
perform its linear stability analysis, using the approach
proposed in [39]. Before doing this, we write

Hn(z) = anC0 + 2Re[Dn(z)]

where

Dn(z) = an

n∑
q=1

Cqz
q,

to emphasise that Hn(z) is always real. Now, we in-
sert the ansatz z(x, t) = a(x, t) + v(x, t) into Eq. (4)
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FIG. 3. Another periodic solution of Eq. (4). (a):
arg (z(x, t)). (b): |z(x, t)|. Parameters: A = −5, η0 = −2.5,
κ = 1, γ = 0.01.
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FIG. 4. Period of the type of solution shown in Fig. 3 as a
function of η0 (solid curve). The circles show values measured
from direct simulations of Eq. (4). Other parameters: A =
−5, κ = 1, γ = 0.01.

and linearize the resulting equation with respect to small
perturbations v(x, t). Thus, we obtain a linear integro-
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differential equation

∂v

∂t
= µ(x, t)v + κ

i(1 + a(x, t))2

2
K
(
D′

n(a)v +D′
n(a)v

)
,

(17)
where

µ(x, t) = [i(η0+κKHn(a))−γ](1+a(x, t))+ i(1−a(x, t))
(18)

and

D′
n(z) =

d

dz
Dn(z) = an

n∑
q=1

qCqz
q−1.

Note that Eq. (17) coincides with the Eq. (5.1) from [40],
except that the coefficients a(x, t) and µ(x, t) are now
time-dependent. Since Eq. (17) contains the complex-
conjugated term v, it is convenient to consider this equa-
tion along with its complex-conjugate

∂v

∂t
= µ(x, t)v − κ

i(1 + a(x, t))2

2
K
(
D′

n(a)v +D′
n(a)v

)
.

This pair of equations can be written in the operator
form

dV

dt
= A(t)V + B(t)V, (19)

where V (t) = (v1(t), v2(t))
T is a function with values in

Cper([0, 2π];C2), and

A(t)V =

(
µ(x, t) 0

0 µ(x, t)

)(
v1

v2

)
,

and

B(t)V =
iκ

2

(
(1 + a(x, t))2 0

0 −(1 + a(x, t))2

)

×

 K (D′
n(a)v1)

K
(
D′

n(a)v2

)  . (20)

For every fixed t the operators A(t) and B(t) are lin-
ear operators from Cper([0, 2π];C2) into itself. Moreover,
they both depend continuously on t and thus their norms
are uniformly bounded for all t ∈ [0, T ].
Recall that the question of linear stability of a(x, t) in

Eq. (4) is equivalent to the question of linear stability
of the zero solution in Eq. (17), and hence to the ques-
tion of linear stability of the zero solution in Eq. (19).
Moreover, using the general theory of periodic differen-
tial equations in Banach spaces, see [13, Chapter V], the
last question can be reduced to the analysis of the spec-
trum of the monodromy operator E(T ) defined by the
operator exponent

E(t) = exp

(∫ t

0

(A(t′) + B(t′))dt′
)
.

The analysis of Eq. (19) in the case when A(t) is a matrix
multiplication operator and B(t) is an integral operator
similar to (20) has been performed in [39, Section 4]. Re-
peating the same arguments we can demonstrate that the
spectrum of the monodromy operator E(T ) is bounded
and symmetric with respect to the real axis of the com-
plex plane. Moreover, it consists of two qualitatively dif-
ferent parts:
(i) the essential spectrum, which is given by the for-

mula

σess =

{
exp

(∫ T

0

µ(x, t)dt

)
: x ∈ [0, 2π]

}
∪ {c.c.}

(21)
(ii) the discrete spectrum σdisc that consists of finitely

many isolated eigenvalues λ, which can be found using
a characteristic integral equation, as explained in [39,
Section 4].

Note that if a(x, t) is obtained by solving the self-
consistency equation (11) and hence it satisfies

a(x, t/ω) = U(x, t) = U
(
W (x, t),

η0 + iγ

2ω
, ω

)
,

where (W (x, t), ω) is a solution of Eq. (11), then we can
use Proposition 1 and formula (18) to show∣∣∣∣∣exp

(∫ T

0

µ(x, t)dt

)∣∣∣∣∣ < 1 for all x ∈ [0, 2π].

In this case, the essential spectrum σess lies in the open
unit disc D and therefore it cannot contribute to any
linear instability of the zero solution of Eq. (19).
To illustrate the usefulness of formula (21), in Fig. 5 (a)

we plot the essential spectrum for the periodic solution
shown in Fig. 1. In Fig. 5 (b) we show the Floquet multi-
pliers of the same periodic solution, where we have found
the solution and its stability in the conventional way, of
discretizing the domain and finding a periodic solution
of a large set of coupled ordinary differential equations.
In panel (b) we see several real Floquet multipliers that
do not appear in panel (a); these are presumably part of
the discrete spectrum. Note that calculating the discrete
spectrum by the method of [39, Section 4] is numerically
difficult, so we do not do that here.

F. Formula for firing rates

One quantity of interest in a network of model neurons
such as (1) is their firing rate. The firing rate of the kth
neuron is defined by

fk =
1

2π

〈
dθk
dt

〉
T

,

where the angled brackets ⟨·⟩T indicate a long-time av-
erage. In the case of large N , we can also consider the
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FIG. 5. (a) The essential spectrum given by (21) for the pe-
riodic solution shown in Fig. 1. (b) Floquet multipliers of the
same periodic solution found using the technique explained at
the start of Sec. II. For both calculations the spatial domain
has been discretized using 512 evenly spaced points.

average firing rate

f(x) =
1

#{k : |xk − x| < π/
√
N}

∑
|xk−x|<π/

√
N

fk, (22)

where xk = 2πk/N is the spatial positions of the kth neu-
ron and the averaging takes place over all neurons in the
(π/

√
N)-vicinity of the point x ∈ [0, 2π]. Note that while

the individual firing rates fk are usually randomly dis-
tributed due to the randomness of the excitability param-
eters ηk, the average firing rate f(x) converges to a con-
tinuous (and even smooth) function for N → ∞. More-
over, the exact prediction of the limit function f(x) can
be given, using only the corresponding solution z(x, t) of
Eq. (4). To show this, we write Eq. (1) as

dθk
dt

= Re
{
1− eiθk + (ηk + κIk)(1 + eiθk)

}
. (23)

We recall that in deriving (4) from (1) we introduce
a probability distribution ρ(θ, x, η, t) which satisfies a

continuity equation [25, 27, 41]. At a given time t,
ρ(θ, x, η, t)dθdηdx is the probability that a neuron with
a position in [x, x+ dx] and intrinsic drive in [η, η + dη]
has its phase in [θ, θ + dθ]. Moreover, in the case of the
Lorentzian distribution of parameters ηk, the probability
distribution ρ(θ, x, η, t) satisfies the relations∫ ∞

−∞
dη

∫ 2π

0

ρ(θ, x, η, t)eiθdθ = z(x, t), (24)∫ ∞

−∞
dη

∫ 2π

0

ηρ(θ, x, η, t)eiθdθ = (η0 + iγ)z(x, t),(25)

which are obtained by a standard contour integration in
the complex plane [44]. The relation (24) has been al-
ready used to calculate the continuum limit analog of (2)

I(x, t) =

∫ 2π

0

K(x− y)Hn(z(y, t))dy = KHn(z).

Inserting this instead of Ik(t) into Eq. (23) and replacing
the time and index averaging in (22) with the correspond-
ing averaging over the probability denisty, we obtain

f(x) = lim
τ→∞

1

2πτ

∫ τ

0

∫ ∞

−∞

∫ 2π

0

Re
{
1− eiθ

+(η + κI(x, t))(1 + eiθ)
}
ρ(θ, x, η, t)dθ dη dt.

The two inner integrals in the above formula can be sim-
plified using the relations (24), (25) and the standard
normalization condition for ρ(θ, x, η, t). Thus we obtain

f(x) = lim
τ→∞

1

2πτ

∫ τ

0

Re {1− z(x, t)

+(η0 + iγ + κI(x, t))(1 + z(x, t))} dt.

Moreover, if z = a(x, t) is a T -periodic solution of Eq. (4),
then the long-time average is the same as an average over
one period. So, in the periodic case, the continuum limit
average firing rate equals

f(x) =
1

2πT

∫ T

0

Re {1− a(x, t)

+(η0 + iγ + κI(x, t))(1 + a(x, t))} dt. (26)

(Note that with simple time rescaling formula (26) can
be rewritten in terms of a 2π-periodic solution of the
complex Riccati equation (7), u(x, t) = a(x, t/ω).) The
expression (26) is different from the firing rate expression
given in Sec. I, but both are equally valid.
Results for a pattern like that shown in Fig. 1 are given

in Fig. 6, where we show both f(x) (from (26)) and val-
ues extracted from a long simulation of Eq. (1). The
agreement is very good.

III. OTHER MODELS

We now demonstrate how the approach presented
above can be applied to various other neural models.
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FIG. 6. Average firing rate for a pattern like that shown in
Fig. 1. The curve shows f(x) as given by (26). The dots
show values measured from direct simulations of Eq. (1). For
the discrete simulation, N = 214 neurons were used and the
average frequency profile, {fj}, j = 1, 2 . . . N , was convolved
with a spatial Gaussian filter of standard deviation 0.01 be-
fore plotting. For clarity, not all points are shown. Other
parameters: A = −5, η0 = −0.9, κ = 1, γ = 0.01.

A. Delays

Delays in neural systems are ubiquitous due to the fi-
nite velocity at which action potentials propagate as well
as to both dendritic and synaptic processing [3, 12, 14,
51]. Here we assume that all Ij(t) are delayed by a fixed
amount τ , i.e. we have Eq. (1) but we replace (2) by

Ij(t) =
2π

N

N∑
k=1

KjkPn(θk(t− τ)). (27)

The mean field equation is now

∂z

∂t
=

(iη0 − γ)(1 + z)2 − i(1− z)2

2

+ κ
i(1 + z)2

2
KHn(z(x, t− τ)). (28)

We can write this equation in the same form as Eq. (7)
but now

W (x, t) =
κ

2ω
KHn(u(x, t− ωτ)), (29)

and the corresponding self-consistency equation is also
time-delayed

W (x, t) =
κ

2ω
KHn

(
U
(
W (x, t− ωτ),

η0 + iγ

2ω
, ω

))
.

We expandW (x, t) as in (14), and givenW (x, t), we find
the relevant 2π-periodic solution of Eq. (7) as above. The
only difference comes in evaluating the projections (15)
and (16). Instead of using Hn(U(x, t)) in the scalar prod-
ucts, we need to use Hn(U(x, t− ωτ)).
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FIG. 7. The vertical axis relates to averaging W (x, t) over x.
For a periodic solution, the maximum and minimum over one
period of this quantity is plotted. The black horizontal line
corresponds to the steady state which is stable at τ = 2.5.
Circles: measured from direct simulations of Eq. (28). Other
parameters: A = −5, η0 = −2, κ = 1, γ = 0.1.

Since U(x, t) is 2π-periodic in time, we can evaluate it
at any time using just its values for t ∈ [0, 2π]. Specifi-
cally,

U(x, t−ωτ) =

{
U(x, 2π + t− ωτ), 0 ≤ t ≤ ωτ,

U(x, t− ωτ), ωτ < t ≤ 2π.
(30)

Note that this approach would also be applicable if
one had a distribution of delays [30, 35] or even state-
dependent delays [21].

As an example, we show in Fig. 7 the results of vary-
ing the delay τ on a solution of the form shown in Fig. 3.
Increasing τ leads to the destruction of the periodic so-
lution in an apparent supercritical Hopf bifurcation.

B. Two populations

Neurons fall into two major categories: excitatory and
inhibitory. A model consisting of a single population with
a coupling function of the form (3) is often used as an
approximation to a two-population model [17]. Here we
consider a two population model which supports a trav-
elling wave. The mean field equations are
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∂u

∂t
=

(iηu − γ)(1 + u)2 − i(1− u)2

2

+
i(1 + u)2

2
[weeKHn(u)− weiKHn(v)] , (31)

∂v

∂t
=

(iηv − γ)(1 + v)2 − i(1− v)2

2

+
i(1 + v)2

2
[wieKHn(u)− wiiKHn(v)] (32)

where u(x, t) is the complex-valued order parameter for
the excitatory population and v(x, t) is that for the in-
hibitory population. The non-negative connectivity ker-
nel between and within populations is the same:

K(x) =
1

2π
(1 + cosx)

and there are four connection strengths within and be-
tween populations: wee, wei, wie and wii. Similar models
have been studied in [6, 48].

For some parameter values, such a system supports a
travelling wave with a constant profile. Such a wave can
be found very efficiently using the techniques discussed
here, and that was done for a travelling chimera in [43].
However, here we consider a slightly different case: that
where the mean drive to the excitatory population, ηu,
is spatially modulated. We thus write

ηu = η0 + ϵ sinx.

For small |ϵ| the travelling wave persists, but not with a
constant profile. An example is shown in Fig. 8. Note
that such a solution is periodic in time.

By rescaling time we can write Eqs. (31)–(32) as

∂ũ

∂t
= i

(
weeWu − weiWv + ζu − 1

2ω

)
+ 2i

(
weeWu − weiWv + ζu +

1

2ω

)
ũ

+ i

(
weeWu − weiWv + ζu − 1

2ω

)
ũ2, (33)

∂ṽ

∂t
= i

(
wieWu − wiiWv + ζv −

1

2ω

)
+ 2i

(
wieWu − wiiWv + ζv +

1

2ω

)
ṽ

+ i

(
wieWu − wiiWv + ζv −

1

2ω

)
ṽ2, (34)

where ũ(x, t) ≡ u(x, t/ω), ṽ(x, t) ≡ v(x, t/ω),

Wu(x, t) =
1

2ω
KHn(u), (35)

Wv(x, t) =
1

2ω
KHn(v) (36)

and

ζu =
ηu + iγ

2ω
=
η0 + ϵ sinx+ iγ

2ω
, ζv =

ηv + iγ

2ω
.
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FIG. 8. A modulated travelling wave solution of Eqs. (31)–
(32). (a): |u|; (b): |v|. Other parameters: η0 = 0.1, ηv = 0.1,
ϵ = 0.01, γ = 0.03, wee = 1, wei = 0.7, wie = 0.3, wii = 0.1.

In the same way as above, we can derive self-consistency
equations of the form (11) forWu(x, t) andWv(x, t). Do-
ing so, we obtain a system of two coupled equations

Wu(x, t) =
κ

2ω
KHn

(
U
(
weeWu(x, t)− weiWv(x, t),

η0 + ϵ sinx+ iγ

2ω
, ω

))
,

Wu(x, t) =
κ

2ω
KHn

(
U
(
wieWu(x, t)− wiiWv(x, t),

ηv + iγ

2ω
, ω

))
.

One difference between this model and the ones studied
above is that the solution cannot be shifted by a constant
amount in x to ensure that it is always even (or odd)
about a particular point in the domain. Thus we need to
write

Wu(x, t) =

2F∑
m=0

(vum + wu
m sinx+ zum cosx)ψm(t)(37)

Wv(x, t) =

2F∑
m=0

(vvm + wv
m sinx+ zvm cosx)ψm(t)(38)

These equations contain 6(2F +1) unknowns and we find
them (and ω) in the same way as above, by projecting
the self-consistency equations for Wu(x, t) and Wv(x, t)
onto the different spatio-temporal Fourier modes to ob-
tain equations similar to (15)–(16).
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FIG. 9. Period, T , of a modulated travelling wave solution
of Eqs. (31)–(32) as a function of heterogeneity strength ϵ.
Circles are from direct simulation of Eqs. (31)–(32). Other
parameters are as in Fig. 8.

The results of varying the heterogeneity strength ϵ are
shown in Fig. 9. Increasing heterogeneity decreases the
period of oscillation, and eventually the travelling wave
appears to be destroyed in a saddle-node bifurcation.

We conclude this section by noting that for some pa-
rameter values the model (31)–(32) can show periodic
solutions which do not travel, like those shown in Sec. II.
Likewise, the model in Sec. I can support travelling waves
for κ = 2.

C. Winfree oscillators

One of the first models of interacting oscillators stud-
ied is the Winfree model [2, 19, 29, 46]. We consider a
spatially-extended network of Winfree oscillators whose
dynamics are given by

dθj
dt

= ωj + ϵ
2πQ(θj)

N

N∑
k=1

KjkP (θk)

where Kjk = K(2π|j − k|/N) for some 2π-periodic
coupling function K, Q(θ) = − sin θ/

√
π and P (θ) =

(2/3)(1 + cos θ)2 is a pulsatile function with its peak at
θ = 0. The ωj are randomly chosen from a Lorentzian
with centre ω0 and width ∆ and ϵ is the overall coupling
strength.

In the limit N → ∞, using the Ott/Antonsen ansatz,
one finds that the network is described by the equa-
tion [28]

∂z

∂t
=

ϵ

2
√
π
KĤ(z) + (iω0 −∆)z − ϵ

2
√
π
z2KĤ(z), (39)

where the integral operator K is again defined by (5) and

Ĥ(z) = (2/3)[3/2 + z + z̄ + (z2 + z̄2)/4].

A typical periodic solution of Eq. (39) for the choice

K(x) = 0.1 + 0.3 cosx,

is shown in Fig. 10.
If we rescale time by the frequency of periodic solution

ω > 0, defining u(x, t) = z(x, t/ω), and denote

W (x, t) =
ϵ

2
√
πω

KĤ(u),

then Eq. (39) can be recast as a complex Riccati equation

∂u

∂t
=W (x, t) + i

ω0 + i∆

ω
u−W (x, t)u2. (40)

From the Proposition 2 in [43], it follows that for every
ω,∆ > 0, ω0 ∈ R and for every real-valued, 2π-periodic
in t function W (x, t), Eq. (40) has a 2π-periodic solution
lying in the open unit disc D. Denoting the corresponding
solution operator

Û : Cper([0, 2π];R)× Cup → Cper([0, 2π];D),

we easily obtain a self-consistency equation for periodic
solutions of Eq. (40)

W (x, t) =
ϵ

2
√
πω

KĤ
(
Û
(
W (x, t),

ω0 + i∆

ω

))
. (41)

Since the Poincaré map of Eq. (40) coincides with the
Möbius transformation, we can again use the calculation

scheme of Sec. II A to find the value of operator Û . Thus
we can solve Eq. (41) numerically for the real-valued field
W (x, t) and frequency ω.
Following the periodic solution shown in Fig. 10 as ϵ is

varied we obtain Fig. 11. As shown by the circles (from
direct simulations of Eq. (39)) this solution is not always
stable. As ϵ is decreased the solution loses stability to a
uniformly travelling wave, and the period of this wave is
not plotted.

IV. DISCUSSION

We considered time-periodic solutions of the Eqs. (4)–
(5), which exactly describe the asymptotic dynamics of
the network (1) in the limit of N → ∞. At every point
in space, Eq. (4) is a Riccati equation and we used this
to derive a self-consistency equation that every periodic
solution of Eq. (4) must satisfy. The Poincaré map of
the Riccati equation is a Möbius map and we can deter-
mine this map at every point in space using just three
numerical solutions of the Riccati equation. Knowing
the Möbius map enables us to numerically solve the self-
consistency equation in a computationally efficient man-
ner. We showed the results of numerically continuing
several types of periodic solutions as a parameter was
varied.
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FIG. 10. A periodic solution of Eq. (39). (a): arg (z(x, t)).
(b): |z(x, t)|. Parameters: ω0 = 1, ∆ = 0.1, ϵ = 2.1.
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FIG. 11. Period, T , of periodic solutions of Eq. (39) of the
form shown in Fig. 10. Circles are from direct simulations of
Eq. (39). Parameters: ω0 = 1, ∆ = 0.1.

We derived equations governing the stability of such
periodic solutions, but solving these equations is numer-
ically challenging. We also derived the expression for

the mean firing rate of neurons in a network in terms of
the quantities already calculated in the self-consistency
equation. We finished in Sec. III by demonstrating the
application of our approach to several other models in-
volving delays, two populations of neurons, and a net-
work of Winfree oscillators.
Our approach relies critically on the mathematical

form of the continuum-level equations (they can be writ-
ten as a Riccati equation) which are derived using the
Ott/Antonsen ansatz, valid only for phase oscillators
whose dynamics and coupling involve sinusoidal func-
tions of phases or phase differences. Other systems for
which our approach should be applicable include two-
dimensional networks which support moving or “breath-
ing” solutions [5]; however the coupling function would
have to be of the form such that the integral equivalent
to (5) could be written exactly using a small set of spa-
tial basis functions. Another application would be to any
system which is periodically forced in time and responds
in a periodic way [50, 53, 54].

APPENDIX

Let us consider a complex Riccati equation

dz

dt
= c0(t) + c1(t)z + c2(t)z

2 (42)

with 2π-periodic complex-valued coefficients c0(t), c1(t)
and c2(t). In this section we prove a statement which is
a modified version of Proposition 3 from [43].

Proposition 2 Suppose that there is c∗ > 0 such that

Re (c0(t)z + c1(t) + c2(t)z) ≤ −c∗Re (z + 1) (43)

for all z ∈ D and 0 ≤ t ≤ 2π, and that z = −1 is
not a fixed point of Eq. (42). Then, the Poincaré map
of Eq. (42) is described by a hyperbolic or loxodromic
Möbius transformation. Moreover, the stable fixed point
of this map lies in the open unit disc D, while the unsta-
ble fixed point lies in the complementary domain Ĉ\D,
where Ĉ = C ∪ {∞} is the extended complex plane. For
Eq. (42) this means that it has exactly one stable 2π-
periodic solution and this solution satisfies |z(t)| < 1 for
all 0 ≤ t ≤ 2π.

Proof: The fact that the Poincaré map of Eq. (42)
is described by a Möbius transformation was shown else-
where [10, 59]. So we only need to show that such a
Möbius transformation M(z) maps all points of the unit
circle |z| = 1 into the open unit disc D (but not on its
boundary). Then we can repeat the arguments of the
proof of Proposition 2 from [43].
Suppose the opposite. Then Eq. (42) has a solution

z∗(t) such that |z∗(0)| = |z∗(2π)| = 1. Due to the in-
equality (43) and the Proposition 1 from [43] this solu-
tion satisfies |z∗(t)| ≤ 1 for all t ∈ [0, 2π]. Moreover, since
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z = −1 is not a fixed point of Eq. (42), we can always
choose t∗ ∈ (0, 2π) such that z∗(t) ̸= −1 for t ∈ [t∗, 2π).
Then the Mean Value Theorem implies

0 ≤ |z∗(2π)|2 − |z∗(t∗)|2 = 2π
d|z∗|2

dt
(t∗∗) (44)

for some t∗∗ ∈ (t∗, 2π). On the other hand, due to our
assumptions, we have

d|z∗|2

dt
= 2Re

(
c0(t)z∗(t) + c1(t) + c2(t)z∗(t)

)
≤ −2c∗Re (z∗(t) + 1)

and therefore

d|z∗|2

dt
(t∗∗) ≤ −2c∗Re (z∗(t∗∗) + 1) < 0.

This is a contradiction to (44), which completes the
proof.

Remark 1 If the conditions of Proposition 2 are ful-
filled, then the stable solution of Eq. (42) is also asymp-
totically stable. This result follows from the properties of
stable fixed points of hyperbolic and loxodromic Möbius
transformations.

Remark 2 For every fixed x the equation (7) from the
main text is equivalent to Eq. (42) with

c0(t) = c2(t) = i

(
W (x, t) + ζ − 1

2ω

)
and

c1(t) = 2i

(
W (x, t) + ζ +

1

2ω

)
,

where W (x, t) is a real-valued function, ω is a positive
constant, and ζ = (η0 + iγ)/(2ω) with η0 ∈ R and γ > 0.
In this case, we have

Re (c0(t)z + c1(t) + c2(t)z) = − γ

ω
Re (z + 1)

and therefore inequality (43) is satisfied. On the other
hand, we have

c0(t) + c1(t)(−1) + c2(t)(−1)2 = −2i/ω ̸= 0

and therefore z = −1 is not a fixed point of the corre-
sponding Riccati equation. Thus, all of the conclusions
of Proposition 2 hold true for Eq. (7).

Remark 3 If the conditions of Proposition 2 are ful-
filled, then the stable solution of Eq. (42) can be computed
in the following way.

(i) One solves Eq. (42) on the interval t ∈ (0, 2π] with
three different initial conditions z(0) = zk ∈ D, k =
1, 2, 3, and obtains three solutions Zk(t). Since each zk

lies in the open unit disc D this automatically implies
|Zk(t)| < 1 for all t ∈ (0, 2π].

(ii) One denotes wk = Zk(2π). Then, due to the prop-
erties of Poincaré map one has wk = M(zk), k = 1, 2, 3,
where M(z) is a Möbius transformation representing this
map. The above three relations can be used to reconstruct
the map M(z), namely

M(z) =
az + b

cz + d

where

a = det

 z1w1 w1 1

z2w2 w2 1

z3w3 w3 1

 , b = det

 z1w1 z1 w1

z2w2 z2 w2

z3w3 z3 w3

 ,

c = det

 z1 w1 1

z2 w2 1

z3 w3 1

 , d = det

 z1w1 z1 1

z2w2 z2 1

z3w3 z3 1

 .

(iii) Once the map M(z) is known, one can find its
fixed points by solving the quadratic equation

cz2 + dz − az − b = 0.

This yields two roots

z± =
a− d±

√
(a− d)2 + 4bc

2c
.

(iv) Choosing from the roots z+ and z− the one that
lies in the unit disc D, one obtains the initial condition
that determines the periodic solution of interest. The lat-
ter can be computed by solving Eq. (42) with this initial
condition.

(v) Sometime it may happen that the Poincaré map
M(z) is strongly contracting so that

|w1 − w2|+ |w3 − w2| < 10−8,

where the value 10−8 is chosen through experience. In
this case, the calculations in steps (ii) and (iii) become
inaccurate. Then the initial condition of the periodic so-
lution of interest is approximately given by the average
(w1 + w2 + w3)/3.

The above steps (i)–(v) can be understood as a con-
structive definition of the solution operator of Eq. (42),
which for every admissible choise of 2π-periodic coeffi-
cients c1(t), c2(t) and c3(t) yields the corresponding sta-
ble 2π-periodic solution of Eq. (42). More detailed justi-
fication of this definition can be found in [43, Section 4].
The algorithm in Sec. II A consists of applying the proce-
dure above at every point on the spatial grid (in parallel).
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[13] Daleckĭı, J.L., Krĕın, M.G.: Stability of solutions of dif-
ferential equations in Banach space. 43. American Math-
ematical Soc. (2002)
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work mechanisms underlying the role of oscillations in
cognitive tasks. PLoS Comput. Biol. 14(9), e1006430
(2018)

[54] Segneri, M., Bi, H., Olmi, S., Torcini, A.: Theta-nested
gamma oscillations in next generation neural mass mod-
els. Front. Comput. Neurosci. 14, 47 (2020)

[55] Shima, S., Kuramoto, Y.: Rotating spiral waves with
phase-randomized core in nonlocally coupled oscillators.
Phys. Rev. E 69(3), 036213 (2004)

[56] Strogatz, S.: From Kuramoto to Crawford: exploring
the onset of synchronization in populations of coupled
oscillators. Phys. D 143(1-4), 1–20 (2000)

[57] Uhlhaas, P.J., Singer, W.: Abnormal neural oscillations
and synchrony in schizophrenia. Nature Rev. Neurosci.
11(2), 100–113 (2010)

[58] di Volo, M., Torcini, A.: Transition from asynchronous to
oscillatory dynamics in balanced spiking networks with
instantaneous synapses. Phys. Rev. Lett. 121, 128301
(2018)
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