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Abstract 

Pyramidal cells in the electrosensory lateral line lobe (ELL) of weakly electric fish have been 
observed to produce high frequency burst discharge with constant depolarizing current (Turner et 
al., 1994). We present a two-compartment model of an ELL pyramidal cell that produces burst 
discharges similar to those seen in experiments. The burst mechanism involves a slowly changing 
interaction between the somatic and dendritic action potentials. Burst termination occurs when the 
trajectory of the system is reinjected in phase space near the “ghost” of a saddle-node bifurcation 
of fixed points. The burst trajectory reinjection is studied using quasi-static bifurcation theory 
which shows a period doubling transition in the fast subsystem as the cause of burst termination. 
As the applied depolarization is increased, the model exhibits first resting, then tonic firing, and 
finally chaotic bursting behaviour, in contrast with many other burst models. The transition 
between tonic firing and burst firing is due to a saddle-node bifurcation of limit cycles. Analysis of 
this bifurcation shows that the route to chaos in these neurons is type I intermittency, and we 
present experimental analysis of ELL pyramidal cell burst trains which support this model 
prediction. By varying parameters in a way that changes the positions of both saddle-node 
bifurcations in parameter space we produce a wide gallery of burst patterns, which span a 
significant range of burst time scales. 
 

 

1 – Introduction 

Burst discharge of action potentials is a distinct and complex class of neuron behaviour 

(Connors et al., 1982; McCormick et al., 1985; Connors and Gutnick, 1990). Burst responses show 

a large range of time scales and temporal patterns of activity.  Many electrophysiological studies of 

cortical neurons have identified cells that intrinsically burst at low frequencies (<20 Hz) (Bland 

and Colom, 1993; Steriade et al., 1993; Franceschetti et al., 1995). However, recent work in 

numerous systems has now identified the existence of “chattering” cells which show burst patterns 

in the high frequency γ range (>20 Hz) (Turner et al., 1994; Paré et al., 1995; Gray and 

McCormick, 1996; Steriade et al., 1998; Lemon and Turner, 2000; Brumburg et al., 2000). Also, 

the specific inter-spike interval (ISI) pattern within the active phase of bursting varies considerably 

across burst cell types.  Certain bursting cells show a lengthening of ISIs as a burst evolves (e.g.  

pancreatic-β  cells, Sherman et al., 1990), others a parabolic trend in the ISI pattern (e.g  Aplysia 

R15 neuron; Adams 1985), and yet others show no change in the ISI during a burst (e.g. thalamic 

reticular neuron; Pinault and Deschênes, 1992).  This diversity of specific time scales and ISI 

patterns suggests that numerous distinct burst mechanisms exist.  Knowledge of the burst 

mechanisms allows one to predict how the burst output may be modified, or halted completely in 
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response to stimuli.  This may have consequences for the information content of the cell’s output 

(Lisman, 1997).    

Pyramidal cells in the electrosensory lateral line lobe (ELL) of the weakly electric fish 

Apteronotus leptorhynchus have been shown to produce either tonic firing and γ frequency 

sustained burst patterns of action potential discharge (Turner et al., 1994; Turner and Maler, 1999; 

Lemon and Turner, 2000). These secondary sensory neurons are responsible for transmitting 

information from populations of electroreceptor afferents that connect to their basal bushes (see 

Berman and Maler, 1999 and references therein).  In vivo recordings from ELL pyramidal cells 

have indicated that their bursts are correlated with certain relevant stimulus features, suggesting 

the possible importance of ELL bursts for feature detection (Gabianni et al., 1996; Metzner and 

Gabianni, 1998; Gabianni and Metzner, 1999).  Thus, both the proximity of ELL pyramidal cells 

to the sensory periphery, and the known relevance of their bursts to signal detection, suggest that 

studies of ELL bursting may provide novel results concerning the role of burst output in sensory 

processing.        

  Previous in vitro and in vivo experiments have focused both upon specifying the 

mechanism for burst discharge of ELL pyramidal cells, and showing methods for the modulation 

of burst output (Turner et al., 1994, 1996; Turner and Maler,1999; Lemon and Turner, 2000; 

Bastian and Nguyenkim, 2001; Rashid et al., 2001).  Lemon and Turner (2000) have shown that a 

frequency dependent or “conditional” action potential backpropagation along the proximal apical 

dendrite underlies both the evolution and termination of ELL burst output.  Recently, through the 

construction and analysis of a detailed multicompartmental model of an ELL pyramidal cell, we 

have reproduced burst discharges similar to those seen in experiment.  This model allowed us to 

make strong predictions about the characteristics of the various ionic channels that could underlie 

the burst mechanism (Doiron et al., 2001b).  However, a deeper understanding of the dynamics of 

the ELL burst mechanism could not be achieved due to the high dimensionality (312 

compartments and 10 ionic currents) of the model system.  

The analysis of bursting neurons using dynamical systems and bifurcation theory is well 

established (Rinzel, 1987; Rinzel and Ermentrout, 1989; Wang and Rinzel, 1995; Bertram et al., 

1995; Hoppensteadt and Izhikevich, 1997; Izhikevich, 2000; Golubitsky et al., 2001).  These 

studies have reduced complex neural behaviour to flows of low dimensional nonlinear dynamical 

systems.  In the same spirit, we present here a two-compartment reduction of our detailed ionic 
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model of an ELL pyramidal cell (Doiron et al., 2001a, 2001b). The reduced model, referred to as 

the ghostburster (this term is explained in the text), produces burst discharges similar to both the 

full model and in vitro recordings of bursting ELL pyramidal cells. This analysis supports our 

previous predictions on the sufficient ionic and morphological requirements of the ELL pyramidal 

cell burst mechanism.  In addition to this, the low dimension of this model allows for a detailed 

dynamical systems treatment of the burst mechanism.    

When applied depolarization is treated as a bifurcation parameter, the model cell shows 

three distinct dynamical behaviours: resting with low intensity depolarizing current, tonic firing at 

intermediate levels, and chaotic burst discharge at high levels of depolarization. This is contrary to 

other burst mechanisms that show burst discharge for low levels of depolarization and then 

transition to tonic firing as applied current is increased (Hayashi and Ishizuka, 1992; Gray and 

McCormick, 1996; Steriade et al., 1998; Wang, 1999).  Both of the bifurcations separating the 

three dynamical behaviours of the ghostburster are shown to be saddle-node bifurcations of either 

fixed points (quiescent to tonic firing) or limit cycles (tonic firing to bursting).  Treating our burst 

model as a fast-slow burster (Rinzel, 1987; Rinzel and Ermentrout 1989, Wang and Rinzel, 1995; 

Izhikevich, 2000) and using quasi-static bifurcation analysis, we show that the burst termination is 

linked to a transition from period-one to period-two firing in the fast subsystem, causing the burst 

trajectory to be reinjected near the “ghost” of the saddle-node bifurcation of fixed points.  The time 

spent near the saddle-node determines the inter-burst interval length. 

  This concept of burst discharge is quite different from the two-bifurcation analysis used to 

understand most other burst models (Rinzel, 1987; Rinzel and Ermentrout 1989,Wang and Rinzel, 

1995; de Vries, 1998; Izhikevich, 2000; Golubitsky et al., 2001).  Further analysis predicts that the 

route to chaos in transitioning from tonic to chaotic burst firing is through type I intermittency 

(Pomeau and Manneville, 1980).  Comparisons of both model and experimental ELL burst 

recording data supports this prediction. Furthermore, by changing the relative position of the two 

saddle-node bifurcations in a two-parameter bifurcation set, the time scales of both the burst and 

inter-burst period can be chosen independently, allowing for wide variations in possible burst 

outputs. 
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2 – Methods  

2.1 ELL pyramidal cell bursting 

 

Figure 1A shows in vitro recordings from the soma of a bursting ELL pyramidal cell with a 

constant depolarizing input.  The bursts comprise a sequence of action potentials, which appear on 

top of a slow depolarization of the subthreshold membrane potential. The depolarization causes the 

inter-spike-intervals (ISIs) to decrease as the burst evolves.  The ISI decrease culminates in a high 

frequency spike doublet that triggers a relatively large after-hyperpolarization (AHP) labeled a 

burst-AHP (bAHP).  The bAHP causes a long ISI that separates the train of action potentials into 

bursts, two of which are shown in Figure 1A.  The full characterization of the burst sequence has 

been presented in Lemon and Turner (2000). 

Immunohistochemical studies of the apical dendrites of ELL pyramidal cells have indicated 

a patched distribution of sodium channels along the first ~200 µm of the apical dendrite (Turner et 

al., 1994).  Figure 1B illustrates schematically such a Na+ channel distribution over the dendrite. 

The active dendritic Na+ allows for action potential backpropagation along the apical dendrite, 

producing a dendritic spike response (Figure 1B; Turner et al., 1994).  Na+ or Ca2+ mediated action 

potential backpropagation has been observed in several other central neurons (Turner et al., 1994; 

Stuart and Sakmann, 1994; for a review of active dendrites see Stuart et al., 1997) and has been 

modeled in many studies (Traub et al., 1994; Mainen et al., 1995; Vetter et al., 2001; Doiron et al., 

2001b).  Action potential backpropagation produces a somatic depolarizing after-potential (DAP) 

after the somatic spike, as shown in Figure 1B.  The DAP is the result of a dendritic reflection of 

the somatic action potential.  This requires both a long dendritic action potential half-width as 

compared to that of a somatic action potential, and a large somatic hyperpolarization succeeding 

an action potential.  These two features allow for passive electrotonic current flow from the 

dendrite to the soma subsequent to the somatic spike, yielding a DAP. 

Recent work has shown the necessity of spike backpropagation in ELL pyramidal cells for 

burst discharge (Turner et al., 1994; Turner and Maler, 1999; Lemon and Turner, 2000).  These 

studies blocked spike backpropagation by locally applying tetrodoxin (TTX, a Na+ channel 

blocker) to apical dendrites of ELL pyramidal cells, after which all bursting ceased and only tonic 

firing persisted.  Our previous modeling study (Doiron et al., 2001b), reproduced this result, since 

when active Na+ conductances were removed from all dendritic compartments, similar results were 
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obtained.  However, in that study we modeled the proximal apical dendrite with ten compartments, 

five of which contained active spiking Na+ channels.  The large number of variables in such a 

model is incompatible with the objectives of the present study.  In light of this, and following 

previous modeling studies involving action potential backpropagation (Pinsky and Rinzel, 1994; 

Bressloff, 1995; Mainen and Sejnowski, 1996; Lánsky and Rodriguez, 1999; Wang, 1999; Booth 

and Bose, 2001), we investigate a two-compartment model of an ELL pyramidal cell, where one 

compartment represents the somatic region, and the second the entire proximal apical dendrite.  

Note that a two-compartment treatment of dendritic action potential backpropagation is a 

simplification of the cable equation (Keener and Sneyd, 1998).  However, in consideration of the 

goals of the present study, which require only DAP production, the two-compartment assumption 

is sufficient. 

 

2.2 Two-Compartment Model 

 

A schematic of our two-compartment model of an ELL pyramidal cell is shown in Figure 

2, together with the active inward and outward currents that determine the compartment membrane 

potentials.  Both the soma and dendrite contain fast inward Na+ currents, INa,s and INa,d, and 

outward delayed rectifying (Dr) K+ currents, respectively IDr,s and IDr,d.  These currents are 

necessary to reproduce somatic action potentials, and proper spike backpropagation that yields 

somatic DAPs.  In addition, both the soma and dendrite contain passive leak currents Ileak.  The 

membrane potentials Vs (somatic) and Vd (dendritic) are determined through a modified 

Hodgkin/Huxley (1952) treatment of each compartment.  The coupling between the compartments 

is assumed to be through simple electrotonic diffusion giving currents from soma to dendrite , Is/d, 

or vice-versa, Id/s.   In total, the dynamical system comprises six nonlinear differential equations, 

Eq (1)-(6); henceforth, we will refer to Eq(1)-(6) as the ghostburster model, and the justification 

for the name will be presented in the Results section.      

 

 

 

 

 



JCNS 811-01 Doiron et al. 

 7

Soma 

 

(1)   )()()1()( 2
,

2
,, sKssDrsNassssNaS

s VVngVVnVmgI
dt

dV
−⋅⋅+−⋅−⋅⋅+= ∞  

     )()( slleaksd
c VVgVV

g
−⋅+−⋅+

κ
  

 

(2) 
sn

ssss nVn
dt
dn

,

, )(

τ
−

= ∞  

 

Dendrite 

 

(3) )()()( 2
,

2
,, dKdddDrdNaddddNa

d VVpngVVhVmg
dt

dV
−⋅⋅⋅+−⋅⋅⋅= ∞  

   )()(
)1( dlleakds

c VVgVVg
−⋅+−⋅

−
+

κ
  

(4)    
dh

dddd hVh
dt

dh

,

, )(

τ
−

= ∞  

 

(5)   
dn

dddd nVn
dt

dn

,

, )(

τ
−

= ∞  

(6)  
dp

dddd pVp
dt

dp

,

, )(

τ
−

= ∞  

 

Table I lists the values of all channel parameters used in the simulations.  The soma is modeled 

with two variables (see eq. (1) and (2)).  The reduction from the classic four dimensional Hodgkin-

Huxley model is accomplished by slaving INa,s activation, sm ,∞ , to Vs (i.e the Na+ activation ms 

tracks Vs instantaneously), and modeling its inactivation ,hs, through IDr,s activation, ns (we set 

ss nh −≡ 1 ).  This second approximation is a result of observing in our large compartmental model 

(Doiron et al., 2001b) that 1≈+ ss nh during spiking behaviour.  Both of these approximations 
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have been used in various other models of spiking neurons (Keener and Sneyd, 1998).  The 

dendrite is modeled with four variables (see eq. (3)-(6)).  Similar to the treatment of INa,s, we slave 

INa,d activation, dm ,∞ ,  to Vd, but model its inactivation with a separate dynamical variable hd.  

Lemon and Turner (2000) have shown that the refractory period of dendritic action potentials is 

larger than that of somatic in ELL pyramidal neurons.  This result has previously been shown to be 

necessary for burst termination (Doiron et al., 2001b).  To model differential somatic/dendritic 

refractory period we have chosen τh,d  to be longer than τn,s (similar to our large compartmental 

model (Doiron et al., 2001b)).  This result has not been directly verified through 

immunohistochemical experiments of ELL pyramidal cells Na+ channels, thus, at present, this 

remains an assumption in our model.  

 The crucial element for the success of our model in reproducing bursts is the treatment of 

IDr,d.  Dendritic recordings from bursting ELL pyramidal cells show a slow, frequency dependent 

broadening of the action potential width as a burst evolves (Lemon and Turner, 2000).  Such a 

cumulative increase in action potential width has been observed in other experimental 

preparations, and has been linked to a slow inactivation of rectifier-like K+ channels (Aldrich et al., 

1979; Ma and Koester, 1996; Shao et al., 1999).  In light of this, our previous study (Doiron et al., 

2001b), modeled the dendritic K+ responsible for spike rectification with both activation and 

inactivation variables.  When the time constant governing the inactivation was relatively long (5 

ms) compared with the time constants of the spiking currents (~ 1ms), the model produced a burst 

discharge comparable to ELL pyramidal cell burst recordings.  Doiron et al. (2001b) also 

considered other potential burst mechanisms, including slow activation of persistent sodium, 

however, only slow inactivation of dendritic K+ produced burst results comparable to experiment.  

At this time there is no direct evidence for a cumulative inactivation of dendritic K+ channels in 

ELL pyramidal cells, and these results remain a model assumption.  However, preliminary work 

suggests that the shaw-like AptKv3.3 channels may express such a slow inactivation (R.W. Turner 

personal communication); these channels have been shown to be highly expressed in the apical 

dendrites of ELL pyramidal cells (Rashid et al., 2001).  In the present work, our dynamical system 

also models dendritic K+ current, IDr,d, as having both activation, nd, and slow inactivation pd 

variables (see Eqs. (3),(5), and (6)).  Slow inactivation of K+ channels, although not a mechanism 

in contemporary burst models, was proposed by Carpenter (1979), in the early stages of 

mathematical treatment of bursting in excitable cells.  We do not implement a similar slow 
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inactivation of somatic Dr,s since somatic spikes observed in bursting ELL pyramidal cells do not 

exhibit broadening as the burst evolves (Lemon and Turner, 2000).    

The somatic-dendritic interaction is modeled as simple electrotonic diffusion with coupling 

coefficient gc, and scaled by the ratio of somatic-to-total surface area κ.  This form of coupling has 

been used in previous two-compartment neural models (Mainen and Sejnowski, 1996; Wang 1999; 

Kepecs and Wang, 2000; Booth and Bose, 2001).  IS  represents either an applied or synaptic 

current flowing into the somatic compartment.  In the present study IS is always constant in time, 

and will be used as a bifurcation parameter.  Physiological justification for the parameter values 

given in Table I is presented in detail in Doiron et al. (2001b).  Eqs (1) – (6) are integrated by a 4th 

order Runge-Kutta algorithm with a fixed time step of ∆t=5× 10-6 s.  

 

3 – Results 

3.1 Model performance 

Figure 3A and 3B show simulation time series of Vs and pd, respectively, for the 

ghostburster with constant depolarization of IS = 9.  We see a repetitive burst train similar to that 

shown in Figure 1A.  Figure 4 compares the time series of Vs and Vd for the ghostburster (bottom 

row) during a single burst, to both a somatic and dendritic burst from ELL pyramidal cell 

recordings (top row), and the large compartmental model presented in Doiron et al., (2001b) 

(middle row). All burst sequences are produced with constant somatic depolarization.  The somatic 

bursts all show the same characteristic growth in depolarization (DAP growth), and consequent 

decreases in ISI leading to the high frequency doublet.  The dendritic bursts all show that a 

dendritic spike failure is associated with both doublet spiking and burst termination.  The somatic 

AHPs in the simulation of the ghostburster do not show a gradual depolarization during the burst, 

as do both the AHPs in the ELL pyramidal cell recordings and the large compartmental model 

simulations.  This is a minor discrepancy, which is not relevant for the understanding of the burst 

mechanism.      

 The mechanism involved in the burst sequences shown in Figures 3 and 4 has been 

explained in detail (although not from a dynamical systems point of view) in past experimental and 

computational studies (Lemon and Turner, 2000; Doiron et al., 2001b).  We give a short overview 

of this explanation. Action potential backpropagation is the process of a somatic action potential 

actively propagating along the dendrite due to activation of dendritic Na+ cahnnels.  Rapid 
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hyperpolarization of the somatic membrane, mediated by somatic potassium activation ns, allows 

electrotonic diffusion of the dendritic action potential, creating a DAP in the somatic compartment.  

However, with repetitive spiking the dendritic action potentials, shown by Vd, broaden in width 

and show a baseline summation (Figure 4).  This is due to the slow inactivation of IDr,d, mediated 

by pd, as shown in Figure 3B.  This further drives electrotonic diffusion of the dendritic action 

potential back to the soma; consequently, the DAP at the soma grows, producing an increased 

somatic depolarization as the burst evolves.  This results in decreasing somatic ISIs, as 

experimentally observed during ELL burst output.  This positive feedback loop between the soma 

and dendrite finally produces a high frequency spike doublet (Figure 4).   

Doublet ISIs are within the refractory period of dendritic spikes but not that of somatic 

spikes (Lemon and Turner, 2000). This causes the backpropagation of the second somatic spike in 

the doublet to fail, due to lack of recovery of INa,d from its inactivation, as shown in the dendritic 

recordings (Figure 4).  This backpropagation failure removes any DAP at the soma, uncovering a 

large bAHP, and thus terminates the burst. This creates a long ISI, the inter-burst period, which 

allows pd and hd to recover, in preparation for the next burst (see Figure 3B). 

3.2  Bifurcation Analysis 

In the following sections we will use dynamical systems theory to explore various aspects of 

the ghostburster equations (Eq. (1)-(6)).  An introduction to some of the concepts we will use can 

be found for example in Strogatz (1994).  An alternative explanation of the burst mechanism, 

given in physiological terms, was presented in Doiron et al. (2001b).    

Figure 5A gives the bifurcation diagram of hd as computed from the ghostburster with IS 

treated as the bifurcation parameter.  We chose IS since this is both an experimentally and 

physiologically relevant parameter to vary.  Three distinct dynamical behaviours are observed.  

For IS < IS1 two fixed points exist; one stable, representing the resting state, and one unstable 

saddle.  When IS = IS1 the stable and unstable fixed points coalesce in a saddle-node bifurcation of 

fixed points on an invariant circle, after which a stable limit cycle exists.  This is characteristic of 

Class I spike excitability (Ermentrout, 1996), of which the canonical model is the well-studied θ 

neuron (Hoppensteadt and Izhikevich, 1997).  For IS1< IS <IS2 the stable limit cycle coexists with an 

unstable limit cycle.  Both limit cycles coalesce at IS = IS2 in a saddle-node bifurcation of limit 

cycles.  For IS > IS2 the model dynamics, lacking any stable periodic limit cycle, evolve on a 

chaotic attractor giving bursting solutions as shown in Figures 3 and 4 (lower panel).  As IS 
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increases further a period doubling cascade out of chaos is observed, and a period two solution 

exists for high IS.  The importance of both of the saddle-node bifurcations will be explored in later 

sections. 

Figure 5B shows the observed spike discharge frequencies, f (≡ 1/ISI), from the 

ghostburster as IS  is varied over the same range as in Figure 5A.  The rest state, IS < IS1, admits no 

firing, indicated by setting f = 0.  For IS1 < IS < IS2  the stable limit cycle attractor produces 

repetitive spike discharge giving a single nonzero f value for each value of IS.  f becomes 

arbitrarily small as IS approaches IS1 from above due to the infinite period bifurcation at IS1.  

However, for IS>IS2 the attractor produces a varied ISI pattern, as shown in Figures 3 and 4.  This 

involves a range of observed f values for a given fixed IS, ranging from ~ 100 Hz in the inter-burst 

interval to almost 700 Hz at the doublet firing.  The burst regime, IS>IS2 does admit windows of 

periodic behaviour. A particularly large window of IS ∈ (13.13,13.73) shows a stable period six 

solution which undergoes a period doubling cascade into chaos as IS is decreased.  Finally, the 

period doubling cascade out of chaos for IS >> IS2 is evident.   

Figure 5C shows the most positive Lyapunov exponent, λ, of the ghostburster as a function 

of IS.  We see that λ < 0 for IS < IS1 because the only attractor is a stable fixed point.  For IS1<IS<IS2, 

λ =0 because the attractor is a stable limit cycle. Of particular interest is that λ is positive for a 

range of IS greater than IS2, indicating that the bursting is chaotic.  The windows of periodic 

behaviour within the chaotic bursting are indicated by λ being zero (e.g. the large window for IS ∈ 

(13.13,13.73)).  For IS > 17.65, λ=0 because the ghostburster undergoes a period doubling cascade 

out of chaos, resulting in a stable period two solution. 

Figure 6 is a two parameter bifurcation set showing curves for both the saddle-node 

bifurcation of fixed points (SNFP) and of limit cycles (SNLC).  The parameters are the applied 

current IS, already studied in Figure 5, and gDr,d which controls the influence of the slow dynamical 

variable pd (see Eq (3)).  It is natural to choose gDr,d as the second bifurcation parameter since the 

burst mechanism involves dendritic backpropagation, which IDr,d regulates, and gDr,d can be 

experimentally adjusted by focal application of K+ channel blockers to the apical dendrites of ELL 

pyramidal cells (Rashid et al., 2001).   A vertical line in Figure 6 corresponds to a bifurcation 

diagram similar to that presented in Figure 5A.  The diagram in Figure 5A corresponds to the 

rightmost value of gDr,d in Figure 6 (gDr,d =15).  The intersection of the curves SNFP and SNLC 

with any vertical line gives the values IS1 and IS2 for that particular value of gDr,d.   Thus, the curves 
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SNFP and SNLC partition parameter space into regions corresponding to quiescence, tonic firing, 

and chaotic bursting solutions of the ghostburster equations, as indicated in Figure 6.  The curves 

intersect at a codimension-two bifurcation point corresponding to simultaneous fixed point and 

limit cycle saddle-node bifurcations.  The curve to the left of the intersection point corresponds to 

the codimension one SNFP curve; there is no stable period-one limit cycle corresponding to tonic 

firing in this region.  Figure 6 demonstrates that it is possible to make IS1 and IS2 arbitrarily close, 

by choosing gDr,d appropriately.  This property will be of use later in the study.     

 

3.3 The Burst Mechanism : Reconstructing the Burst Attractor. 

The dynamical system described by the ghostburster equations possesses two separate time 

scales. The time constants governing the active ionic channels ns, hd, and nd, are all ~ 1 ms, and the 

half width of the spike response of the membrane potentials Vs and Vd are ~ 0.5 ms and 1.1 ms 

respectively.   However, the time scale of pd is characterized by τp,d, which is a factor of five times 

larger than any of the other time scales.  Previous studies of other burst models have profited from 

a similar coexistence of at least two time scales of activity during bursting (Rinzel, 1987; Rinzel 

and Ermentrout, 1989; Wang and Rinzel, 1995; Bertram et al., 1995; de Vries, 1998; Izhikevich, 

2000; Golubitsky et al., 2001).  This allowed for a separation of the full dynamical system into two 

smaller subsystems, one fast and one slow.  We also treat our burst model as a fast-slow burster. 

The natural variable separation is to group Vs, ns, Vd, hd, and nd into a fast subsystem, denoted by 

the vector x , while the slow subsystem consists solely of pd. This gives the simplified notation of 

our model, 

(7)     ),( dpxf
dt
dx =  

(8)     
dp

ddd pxp
dt

dp

,

, )(

τ
−

= ∞  

where f(x,pd) represents the right hand side of Eqs. (1)-(5) and Eq. (8) is simply Eq (6) restated. 

Since pd changes on a slower time scale than x, we approximate pd as constant, and use pd 

as a bifurcation parameter of the fast subsystem (quasi-static approximation; see e.g. Hoppensteadt 

and Izhikevich, 1997).  We note that with pd constant the fast subsystem (7) cannot produce 

bursting comparable to that seen from ELL pyramidal cells.  Bursting requires the slow variable to 

modulate DAP growth dynamically (Doiron et al., 2001b).  Treating pd as a bifurcation parameter 
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will show how changes in pd produce the characteristics of ELL bursting through the bifurcation 

structure of the fast subsystem.  Since pd only directly affects the fast subsystem through the 

dynamics of Vd (see eq. (3)) we choose Vd as a representative variable of the fast subsystem x.   

Figure 7A shows the local maxima of Vd on a periodic orbit as a function of pd, while the 

fast subsystem is driven with IS = 9 > IS2.  At a critical value of pd, labeled pd1, the fast subsystem 

goes through a transition from a period-one to a period- two limit cycle.  This is shown by only 

one maximum in Vd for pd > pd1, whereas there are two maxima for pd < pd1.  Figure 7B shows a 

time series of Vd(t) following the period-one limit cycle when pd = 0.13 > pd1, while Figure 7C 

shows the period-two limit cycle when pd = 0.08 < pd1.  The second dendritic action potential in the 

period-two orbit (Figure 7C) is of reduced amplitude; this corresponds to the dendritic failure 

observed in the full dynamical system (Eqs (7) and (8)) when pd is low (see right column of Figure 

4).  The bifurcation diagram in Figure 7A may be thought of as a “burst shell” in a projection of 

phase space.  The full burst dynamics will evolve upon the burst shell as pd is modulated slowly by 

the fast subsystem.  We therefore next address the dynamics of pd(t) during the burst trajectory in 

the fast subsystem.  

Upon inspection of Figure 3B it is clear that there exists two oscillations in pd(t), one fast 

oscillation occurring on the time scale of spikes, and the other on a much longer time scale, 

tracking the bursts.  Figure 8 shows pd(t) during a burst solution of the full dynamical system.  It is 

clear that the fast spike oscillations in pd(t) are driven by the instantaneous value of Vd(t).  This is 

due to τp being small enough to allow pd(t) to be affected by the spiking in the fast subsystem.  In 

addition, there is a general decrease in pd(t) as the burst evolves, and an sharp increase in pd(t) after 

the doublet ISI. The increase reinjects pd(t) to a higher value allowing the burst oscillation to begin 

again. The period of a burst oscillation encompasses several spikes, and thus cannot be analyzed in 

terms of the instantaneous dynamics of the fast subsystem.  

Due to the separation of time scales, and the fact that dt
dpd  depends only on Vd (eq. (6)), 

we expect that the burst oscillation depends on the average of Vd between consecutive spikes, 

defined as  

(9) ∫
+

−
=

+

1

)(
1

1

i

i

t

t
d

ii
d dttV

tt
V  

where ti is the time of the ith spike.  We construct a discrete function dp~  
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(10) )(~
, ddd Vpp ∞=  

where )(, ⋅∞dp  is the infinite conductance curve as in eq. (6).  Figure 8 shows a sequence of dp~  

values constructed by using dV  from the burst solution of the full dynamical system.  This 

sequence is plotted (solid circles) on top of the full pd(t) dynamics during the burst train. It is 

evident that the time sequence of dp~ is of the same shape as the burst oscillation in pd(t).  This is 

evidence that the slow burst oscillation can be analyzed by considering dV .  

We now complete the burst shell by adding to Figure 7A the nullcline for pd (from eq. (6)) 

as well as dV  computed for the stable periodic solutions of the fast subsystem.  This is shown in 

Figure 9A.  Note that as pd decreases through pd1, dV  decreases by  ~10 mV.  This is due to the 

dendritic spike failure and subsequent long ISI occurring when pd < pd1, both contributing to lower 

Vd on average (see Figure 7C).  The pd nullcline and dV  curves cross at pd = pd2 < pd1.  Since we 

have shown that the burst oscillation is sensitive to dV , the crossing corresponds to 

dt
dpd changing from negative to positive (see Figure 9D).   

A saddle-node bifurcation of fixed points occurs at pd = pd
* for some pd

* > pd1 (data not 

shown).  This bifurcation is similar to the saddle-node bifurcation of fixed points in Figure 5A, 

where IS is the bifurcation parameter.  This is expected, since pd is the coefficient to a 

hyperpolarizing ionic current (see eq. (3)), hence an increase in pd is equivalent to a decrease in 

depolarizing IS.  Because of the saddle-node bifurcation at pd = pd
* , the period of the period-one 

limit cycle scales as 
∗− dd pp

1  for pd near pd
* (Guckenheimer and Holmes, 1983). 

With the burst shell now fully constructed (Figure 9A) we place the full burst dynamics (eq. 

(7)-(8)) onto the shell.  This is shown in Figure 9B.  The directed trajectory is the full six 

dimensional burst trajectory projected into the Vd - pd subspace.  As the burst evolves, pd(t) 

decreases from spike to spike in the burst.  This causes the frequency of spike discharge to increase 

due to the gradual shift away from the saddle-node bifurcation of fixed points at pd = pd
*.  

However, once pd(t) < pd1 the spike dynamics shift from period-one spiking to period-two spiking.  

This first produces a high frequency spike doublet, which is then followed by a dendritic potential 
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of reduced amplitude, causing dV  to decrease.  When pd(t) < pd2,  0>dt
dpd  (see Figure 8D), 

and pd(t) increases and is reinjected to a higher value.   The reinjection towards the “ ghost” of the 

saddle-node bifurcation of fixed points causes the ISI (the inter-burst interval) to be long, since the 

velocity through phase space is lower in this region. 

Figure 9C shows the burst trajectory in the frequency domain. The period doubling is 

evident at pd = pd1 since two distinct frequencies are observed for pd < pd1, corresponding to a 

period two solution of the fast subsystem, whereas for pd > pd1 only a period one solution is found. 

As pd is reduced in the period one regime (pd > pd1) the frequency of the limit cycle increases, due 

to the reduced effect of the hyperpolarizing current IDr,d.  We superimpose the ISIs of the burst 

trajectory shown in Figure 9B on the frequency bifurcation diagram in Figure 9C.  The sequence 

begins with a long ISI (numbered 1) with subsequent ISIs decreasing, culminating with the short 

doublet ISI (numbered 5).  The reinjection of pd near pd
* occurs during the next ISI (numbered 6).  

The reinjection causes this next ISI to be long; it separates the action potentials into bursts.  Figure 

9D shows the average of the derivative of pd, ∫
+





−

=
+

1

1

1 i

i

t

t

d

ii

d dtdt
dp

ttdt
dp , during each ISI in 

the burst shown in Figures 9B, and 9C.  Notice that dt
dpd  is negative and decreases as the burst 

evolves.  This is because the ISI length reduces as the burst evolves, allowing the burst trajectory 

to spend less time in the region where dt
dpd > 0.    However, a large fraction of the burst 

trajectory during the inter-burst ISI (6) occurs in the region where dt
dpd > 0.  Hence, the average 

dt
dpd  is greater than zero for the inter-burst interval, producing the reinjection of pd(t) to 

higher values.  

Izhikevich (2000) has labeled the burst mechanisms according to the bifurcations in the fast 

subsystem that occur in the transition from quiescence to limit cycle and vice versa.  Even though 

there is never a true “quiescent” period during the burst phase trajectory, the inter-burst interval for 

our model is determined by the approach to an infinite period bifurcation. This phenomenon is 

often labeled as sensing the “ghost” of a bifurcation (Strogatz, 1994), and we naturally label the 

burst mechanism as ghostbursting. 
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The ghostburster system exhibits bursting, for some range of IS, only for 2< τp <110 ms, 

with all other parameters as given in Table 1. The lower bound of τp is due to the fact that the 

inactivation of IDr,d must be cumulative in order for there to be a reduction of the ISIs as the burst 

evolves.  This requires a τp larger than that of the ionic channels responsible for spike production 

(< 1 ms).  The upper bound on τp is also expected since significant removal of pd inactivation 

during the inter-burst interval is necessary for another burst to occur.  Too large a value of τp will 

not allow sufficient recovery of IDr,d from inactivation and therefore bursting will not occur. 

 

3.4-   The Inter-burst Interval.  

By varying IS it is possible to set the inter-burst interval, TIB, to be different lengths.  This is 

because after the dendrite has failed (removing the DAP at the soma) the time required to produce 

an action potential in the somatic compartment (which is TIB) is dictated almost solely by IS.  The 

spike excitability of the somatic compartment is Type I (Ermentrout, 1996), as evident from the 

saddle-node bifurcation of fixed points at IS = IS1.  As a consequence TIB is determined from the 

well-known scaling law associated with saddle-node bifurcations on a circle (Guckenheimer and 

Holmes, 1983), 

(11)       
1

1~
SS

IB II
T

−
. 

Figure 10 shows the average inter-burst interval, <TIB>, as a function of IS - IS1  for the ghostburster 

with gDr,d = 12.14.  This value of gDr,d  sets IS1 and IS2 close to one another (see Figure 6), allowing 

the system to burst with values of IS close to IS1. It is necessary to form an average due to the 

chaotic nature of burst solutions. Nevertheless, <TIB> increases as IS approaches IS1, as suggested 

by Eq. (11). A linear regression fit of 1/<TB>2 against IS - IS1 gives a correlation coefficient of 

0.845 further verifying that Eq (11) holds.  Figure 10 also shows downward dips in <TIB> that 

occur more frequently as IS - IS1 goes to zero.  Time series of bursts with IS corresponding to the 

dips in <TIB> show scattered bursts with short inter-burst intervals that deviate from Eq (11), 

amongst bursts with longer inter-burst intervals, which fit the trend described by Eq (11).  These 

scattered small values of TIB reduce <TIB> for these particular values of IS.  These dips contribute 

to the deviation of the linear correlation coefficient cited above from 1.  We do not study the dips 

further since the behaviour has yet to be observed experimentally. However, experimental 

measurements of ELL pyramidal cell burst period do indeed show a lengthening of the period as 
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the applied current is reduced (R.W. Turner, personal communication).  This corresponds to the 

general trend shown in Figure 10.  Eq (11) and Figure 10 show that by choosing the model 

parameters properly it is possible to regulate the effect of the ghost of the saddle-node bifurcation 

of fixed points on the burst solutions.  We will show later how this property yields great diversity 

of time scales of possible burst solutions of the ghostburster model.     

 

3.5- The Burst Interval – Intermittency.   

Regions of chaotic and periodic behaviour exist in many burst models (Chay and Rinzel, 

1985; Terman, 1991; Terman, 1992; Hayashi and Ishizuka, 1992; Wang, 1993; Komendantov and 

Kononenko, 1998).  The results of Figure 5 show that periodic spiking and chaotic bursting are 

also two distinct dynamical behaviours of the ghostburster. Moreover, the bifurcation parameter 

we have used to move between both dynamical regimes is the applied current IS which mimics an 

average synaptic input to the cell.  This indicates that changing the magnitude of input to the cell 

may cause a transition from periodic spiking to chaotic bursting.  In ELL pyramidal cells a 

transition from tonic firing to highly variable bursting has been observed as applied depolarizing 

current is increased (Lemon and Turner, 2000; Bastian and Nguyenkim, 2001; Doiron and Turner, 

unpublished results).  It remains to be shown that the experimentally observed bursting is indeed 

chaotic; preliminary results suggest that such an analysis is difficult due to non-stationarity in the 

data (Doiron and Turner, unpublished observations).  Nonetheless, understanding the transitions or 

routes to chaos in the model separating tonic and chaotic burst regimes is not only necessary for a 

complete description of the dynamics of the model, but also for characterizing the input-output 

relation of bursting ELL pyramidal cells.  

Figure 5A shows that the transition from periodic spiking to chaotic bursting occurs at 

IS=IS2 when a stable limit cycle collides with an unstable periodic orbit in a saddle-node bifurcation 

of limit cycles.  Since we are analyzing spiking behaviour on both sides of the bifurcation it is 

natural to consider the ISI return map for IS near IS2. We choose IS slightly larger than IS2 and plot 

in Figure 11A the ISI return map for a single burst sequence from the ghostburster (for IS1<IS<IS2 

the return map is a single point). We have labeled the regions of interest in the Figure and explain 

each region in order: (1) The burst begins here. (2) The ISI sequence approaches the diagonal.  

This produces a clustering of points corresponding to the pseudo-periodic behaviour observed in 

the center of the burst.  We refer to this region of the map as a trapping region. (3) The ISI 
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sequence leaves the trapping region with a downward trend. (4) The inter-burst interval involves a 

sharp transition from small ISI to large ISI. (5) The ISI sequence returns to the trapping region and 

another burst begins. 

The above description indicates that the route to chaos is Type I intermittency (Manneville 

and Pomeau, 1980; Guckenheimer and Holmes, 1983).  Intermittency involves seemingly periodic 

behaviour separated by brief excursions in phase space.  The clustering of points in the ISI return 

map in the trapping region of Figure 11A (labeled 2) is a manifestation of this apparent periodic 

firing. A trapping region is a characteristic feature of Type I intermittency and corresponds to a 

saddle-node bifurcation of limit cycles in the return map, occurring specifically at IS=IS2 for the 

ghostburster equations. The escape and return to the trapping region (regions 3,4,5 in Figure 11A) 

are the brief excursions.  These events correspond to the period doubling transition and the cross of 

the dV  curve and pd nullcline, in the fast subsystem, as explained in Figure 9. Figure 11B shows 

the ISI return map for a model burst of seven spikes and Figure 11C the same map for a seven 

spike burst recording from an ELL pyramidal cell.  Both maps show the qualitative structure 

similar to in Figure 11A, including a clear escape from and reinjection into a trapping region near 

the diagonal. Interestingly, Wang (1993) has also observed Type I intermittency in the Hindmarsh-

Rose model).       

  Since intermittent behaviour is connected to a saddle-node bifurcation, the time spent in 

the trapping region TB, corresponding to the burst period (the duration of the spikes in the cluster 

making up the burst), has a well defined scaling law 

(12)    
2

1~
SS

B II
T

−
 

Similar to Figure 10 we consider the average of the burst period, <TB>, because of the chaotic 

nature of the bursting.  Figure 12 shows that <TB> asymptotes to infinity as IS approaches IS2.  

Linear regression fits to 1/<TB>2 against IS - IS2 give a correlation coefficient of 0.886.  These 

results validate Eq (12) for the ghostburster burst sequences. Again the deviation in the correlation 

coefficient from 1 is caused by slight dips in <TB>, similar to the dips observed in <TIB> (Figure 

10).  By choosing the quantity IS-IS2 we can obtain bursts with spike numbers comparable to 

experiment.  
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3.6 - Gallery of Bursts 

Eqs (11) and (12) give the inverse square root scaling relations of TB and TIB respectively.  

These results showed that TB is determined by IS-IS2 and TIB by IS-IS1.  Using this fact and the 

ability to vary the difference between IS2 and IS1 (see Figure 6) we can produce a wide array of 

burst patterns with differing time scales.  

Figure 13A reproduces the (IS , gDr,d ) bifurcation set shown in Figure 6.  The letters B-F 

mark (IS , gDr,d )  parameters used to produce the spike trains shown in the associated panels B-F of 

Figure 13.  Figure 13B uses (IS , gDr,d )  values such that the ghostburster is in the tonic firing 

regime. The burst trains shown in Figures 3 and 4 correspond to (IS , gDr,d )  values in the burst 

regime of Figure 6 which are not close to either of the SNFP or SNLC curves.  An example of a 

burst train with such a parameter choice, is shown in Figure 13C.  However, if we approach the 

SNLC curve but remain distant from the SNFP curve, we can increase TB by one order of 

magnitude yet keep TIB the same.  The burst train in Figure 13D shows an example of this.  If we 

choose IS and gDr,d to be close to both the SNFP and SNLC curves we can now increase TIB as well 

(Figure 13E).  The inter-burst period TIB has now also increased dramatically from that shown in 

Figures 13C and D.   

Finally, for IS and gDr,d values to the left of the codimension two bifurcation point, burst 

sequences show only a period two solution (Figure 13F).  The burst sequences are no longer 

chaotic.  This is to be expected since there no longer is a saddle-node bifurcation of limit cycles, 

which gave rise to the intermittency route to chaos in the ghostburster equations (Figure 11).  

Approaching the SNFP curve allows for a large TIB, but the fact that only bursts of two spikes can 

appear forces TB to be small.  The restriction of bursts to only doublets when gDr,d is small occurs 

because gDr,d is the coefficient to the hyperpolarizing K+ current in the dendrite (Eq (3)), and as 

such controls the effect of the DAP at the soma.  For gDr,d to the left of the codimension-two 

bifurcation point, the first somatic spike in the doublet produces a DAP of sufficient strength to 

cause the second somatic spike which is within the refractory period of the dendrite.  Thus 

dendritic failure occurs after the first reflection and the burst contains only two spikes. 
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4 – Discussion   

4.1 Ghostbursting: a Novel Burst Mechanism 

We have introduced a two-compartment model of bursting ELL pyramidal cells, titled the 

ghostburster.  The model is a significant reduction of a large multi-compartmental ionic model of 

these cells (Doiron et al., 2001b).  The large model was motivated by the ‘conditional’ 

backpropagation burst mechanism that has been experimentally characterized in ELL pyramidal 

cells (Lemon and Turner, 2000).  The results of Lemon and Turner (2000) and Doiron et al., 

(2001b), suggest that the ionic requirements necessary and sufficient to support bursting as 

observed in the ELL are 1) action potential backpropagation along the apical dendrite sufficient to 

produce somatic DAPs. 2) the refractory period of dendritic action potentials must be longer than 

that of the somatic potentials 3) slow inactivation of a dendritic K+ channel involved in 

repolarization. The fact that the ghostburster was designed to contain only these three 

requirements, yet succeeds in producing burst discharge comparable to experiment, suggests that 

these three requirements capture the essential basis of the burst mechanism used in ELL pyramidal 

cells.    

The simplicity of the ghostburster, as compared to the large compartmental model, has 

allowed us to understand, from a dynamical systems perspective, the mechanism involved in this 

type of bursting.  The ghostburster was analyzed using a separation of the full dynamical system 

into fast and slow subspaces (Eq (7) and (8)), similar to the analysis of many other burst models 

(Rinzel, 1987; Rinzel and Ermentrout, 1989; Wang and Rinzel, 1995; Bertram et al., 1995; 

Hoppensteadt and Izhikevich, 1997; de Vries, 1998; Izhikevich, 2000; Golubitsky et al., 2001).  

Treating the slow dynamical variable pd as a bifurcation parameter with respect to the fast 

subsystem allowed us to construct a ‘burst shell’ upon which the full burst dynamics evolve.  The 

shell shows that a transition from a period-one limit cycle to a period-two limit cycle occurs in the 

dynamics of the fast subsystem as pd is reduced.  The period-two limit cycle causes a sharp 

reduction in <Vd> since the second spike of the limit cycle is of reduced amplitude, due to 

dendritic refractoriness.  The reduction in <Vd> causes the <Vd>(pd) curve to cross the pd nullcline, 

and pd(t)grows during the second ISI of the period-two orbit.  The growth in pd(t) reinjects pd(t) 

near a saddle-node bifurcation of fixed points occurring at high pd.  This passage near the ‘ghost’ 

of the saddle-node bifurcation causes the ISI to be long, separating the action potentials into bursts.           
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Recently, Izhikevich (2000) has approached the classification of bursters from a 

combinatorial point of view.  This has been successful in producing a large number of new fast-

slow bursting mechanisms.  One of these burst mechanisms has been recently observed in a 

biophysically plausible model of bursting corticotroph cells of the pituitary (Shorten et al., 2000).  

In contrast, Golubitsky et al., (2001) (extending the work of Bertram et al. (1995), and de Vries 

(1998)) have classified bursters in terms of the unfoldings of  high codimension bifurcations.  Both 

these methods have used the implicit assumption that burst initiation and termination involve 

bifurcations from quiescence (or subthreshold oscillation) to limit-cycle and vice-versa.  However, 

our burst mechanism does not appear in any of the above classifications. This is because, the 

trajectories in the fast subsystem of the ghostburster are always following a limit-cycle, and are 

never in ‘true’ quiescence, corresponding to a stable fixed point.   The period of the limit cycle 

changes dynamically because the slow subsystem is oscillating, forcing the fast system to 

sometimes pass near the ‘ghost’ of an infinite period bifurcation.  Furthermore, in the ghostburster, 

burst termination is connected with a bifurcation from a period-one to a period-two limit cycle in 

the fast subsystem.  This is a novel concept, since burst termination in all other burst models is 

connected with a transition from a period-one limit cycle to a stable fixed point in the fast 

subsystem (Izhikevich 2000; Golubitsky et al., 2001). Thus, while classifying burst phenomena 

through the bifurcations from quiescence to a period-one limit cycle and vice-versa in the fast 

subsystem of a dynamical bursting model has had much success, our work requires an extension of 

the classification of bursting to include an alternative definition of ‘quiescence’ and a burst 

attractor which is composed of only period-one and period-two limit cycles with no stable fixed 

points.  

Rinzel (1987) shows that burst mechanisms with a one-dimensional slow subsystem 

require bistability in the fast subsystem in order to exhibit bursting. The slow subsystem of 

ghostbuster equations is one dimensional, yet Figure 9 shows that the fast subsystem x is not 

bistable.  This would seem to be a contradiction; however, recall that as τp approaches values that 

are similar to other bursting mechanisms, bursting is not observed.  Thus our results do not 

contradict Rinzel’s previous study, yet support a separate mechanism entirely.  This illustrates a 

key distinction between the ghostburster and conventional bursting systems; the timescale of the 

slow variable has an upper bound in the ghostburster.  The fast and slow timescales are sufficiently 

separate to allow us to successfully study the burst mechanism using a quasistatic approximation.  
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Thus ghostbursting, while distinct, does share similarities with conventional burst mechanisms.  

Note that mechanisms exist similar to ghostbursting, which involve a slow passage phenomena 

(requiring saddle-node or homoclinic bifurcations), may exist, placing the ghostburster as only one 

in a family of new burst mechanisms.        

The ghostburster model exhibits a threshold between tonic firing and bursting behaviour.  

Both Terman (1991,1992) and Wang (1993) have also identified thresholds between these 

behaviours in the Hindmarsh-Rose model and a modified version of the Morris-Lecar equations, 

respectively.  Both of these models exhibited a homoclinic orbit in the fast subsystem as the 

spiking phase of a burst terminated. As a result, the bifurcations from continuous spiking to 

busting in the full dynamics were complicated. Wang observed a crises bifurcation at the transition 

(Grebogi et al., 1983), whereas Terman showed that a series of bifurcations occurs during the 

transition, which could be shown to exhibit dynamics similar to the Smale horseshoe map 

(Guckenheimer and Holmes, 1983).  The saddle-node bifurcation of limit cycles that separates the 

two regimes in the Ghostburster model is a great deal simpler than either of these bifurcations. 

However, interestingly Wang has shown that an intermittent route to chaos is also observed in the 

Hindmarsh-Rose model as continuous spiking transitions into bursting, much like the Ghostburster 

system.   

The fact that the transition from tonic firing to bursting in the Ghostburster system occurs 

as depolarization is increased, is in contrast to both experimental and modeling results of other 

bursting cells (Terman 1992; Hayashi and Ishizuka, 1992; Wang 1993; Gray and McCormick, 

1996; Steriade et al., 1998; Wang, 1999).  However, since many experimental and modeling 

results, separate from ELL, show burst threshold behaviour, the concept of ‘burst excitability’ may 

have broader implications.  To expand, the saddle-node bifurcation of limit cycles marking burst 

threshold can be compared to the saddle-node bifurcation of fixed points, which is connected to the 

spike excitability of Type I membranes (Ermentrout, 1996; Hoppensteadt and Izhikevich, 1997).  

The functional implication of a burst threshold have yet to be fully understood, however recent 

work suggests that it may have important implications for both the signaling of inputs (Eugia et al., 

2000) and dividing cell response into stimulus estimation (tonic firing) and signal detection 

(bursting) (Sherman, 2001).   
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4.2 Predictions for bursting in the ELL 

An integral part of the burst mechanism in ELL pyramidal cells is the interaction between 

the soma and dendrite through action potential backpropagation.  One potential function of 

backpropagation is thought to be retrograde signaling to dendritic synapses (Häusser et al., 2000).  

Further, a recent experimental study has shown that the coincidence of action potential 

backpropagation and EPSPs produce a significant amplification in membrane potential 

depolarization (Stuart and Häusser, 2001).  These results may have consequences for both synaptic 

plasticity and dendritic computation.  Our results (and those of others, see Häusser et al., 2000 for 

a review) imply that backpropagation can also determine action potential patterning. 

As mentioned above, the ghostburster exhibits a threshold separating tonic firing and 

bursting as depolarization is increased.  Similar behaviour has been observed in both in vitro and 

in vivo experimental recordings of ELL pyramidal cells (Lemon and Turner, 2000; Bastian and 

Nguyenkim, 2001), and in our full compartmental model simulations (data not shown).  A 

reduction of burst threshold was observed in ELL pyramidal cells when TEA (K+ channel blocker) 

was focally applied to the proximal apical dendrite (Noonan et al., 2001; Rashid et al., 2001).  Our 

work is consistent with this observation, since dendritic TEA application is equivalent to a 

reduction in gDr,d conductance in our model.  Figure 6 shows that as gDr,d is reduced burst threshold 

is lowered.     

Bursts, as opposed to individual spikes, have been suggested to be a fundamental unit of 

information (Lisman, 1997).  In fact, Gabbiani et al., (1996) have correlated bursts from ELL 

pyramidal cells with features in the stimulus driving the cell.  Considering these results, it is 

possible that the time scale of bursting, T (= TB + TIB), could be tuned to sensory input, hence the 

ability of a bursting cell to alter T may improve its coding efficiency.  A natural method to alter T 

would be to change the time constant(s), τ, that determine the slow process of the burst mechanism 

(Giannakopoulous et al., 2000).  Nevertheless, to achieve an order of magnitude change in T 

requires a potentially large change in τ.  Recently, Booth and Bose (2001) have shown, in a two-

compartmental model of a bursting CA3 pyramidal cell, that the precise timing of inhibitory 

synaptic potentials can change the burst period T.  Their results have potential implications for the 

rate and temporal coding of hippocampal place cells.   However, the ghostburster shows that both 

TB and TIB can be changed by an order of magnitude, but with only small changes in either 

depolarizing input and/or dendritic K+ conductances (see Figure 13).  Small changes in IS are 



JCNS 811-01 Doiron et al. 

 24

conceivable through realistic modulations of feedforward and feedback input which occur during 

electro-location and electro-communication in weakly electric fish (Heiligenburg, 1991).   

Changes in gDr,d can further occur through the phosphorylation of dendritic K+ channels, such as 

AptKv3.3 which has been shown to be abundant over the whole dendritic tree of ELL pyramidal 

cells (Rashid et al., 2001).  Hence, the ghostbursting mechanism may offer ELL pyramidal cells a 

viable method by which to optimize sensory coding with regulated burst output.  Further studies, 

quantifying the information-theoretic relevance of bursting, are required to confirm these 

speculations.               

We conclude our study with a concrete prediction.  Figures 10,12, and 13 show that the full 

burst period T of ELL pyramidal cells can be significantly decreased as either depolarizing current 

(IS) is increased or dendritic K+ conductance (gDr,d) is decreased by a small amount. This prediction 

can be easily verified by experimentally measuring T in bursting ELL pyramidal cells for 1) step 

changes in IS , and 2) before and after TEA application to the apical dendrites, which will change 

gDr,d.  Modification of other ionic currents, persistent sodium and somatic K+ in particular, may 

also be used to create similar bifurcation sets as in Figure 13.  
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Figure Legends 

FIG 1.  ELL burst discharge and dendritic backpropagation.  A.  In vitro recording of burst 
discharge from the soma of an ELL pyramidal cell with constant applied depolarizing current.  
Two bursts of action potentials are shown, each exhibiting a growing depolarization as the burst 
evolves, causing the ISI to decrease; the burst ends with a high frequency doublet ISI.  The doublet 
triggers a sharp removal of the depolarization, uncovering a prominent AHP, labeled a burst-AHP.  
B.  Active Na+ conductances are distributed along the soma and proximal apical dendrite of ELL 
pyramidal cells (left).  Na+ regions are indicated with vertical bars to the left of the schematic. Note 
that the distribution of dendritic Na+ is punctuate, giving regions of high Na+ concentration (often 
referred to as “hot spots”) separated by regions of passive dendrite.  The active dendritic regions 
allow for backpropagation of a somatic action potential through a dendritic action potential 
response, as seen from ELL recordings from both the soma and proximal (~ 150 µm) dendrite 
(right).  Somatic action potential rectification by K+ currents and the broader action potential in the 
dendrite allow for electrotonic conduction of the dendritic action potential to the soma, resulting in 
a DAP at the soma (bottom left).  We thank R.W. Turner for generously providing his data for the 
figure.  
 
FIG 2.  Schematic of two-compartment model representation of an ELL pyramidal cell.  The ionic 
currents that influence both the somatic and dendritic compartment potentials are indicated.  
Arrows which point into the compartment represent inward Na+ currents, whereas arrows pointing 
outward represent K+ currents (the specific currents are introduced in the text).  The compartments 
are joined through an axial resistance, 1/gc, allowing current to be passed between the somatic and 
dendritic compartments. 
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FIG 3.  Model bursting.  A. Time series of the somatic potential Vs during burst output. B. 
Dendritic IDr,d inactivation variable pd during the same burst simulation as in A.  Note the 
cumulative (slow) inactivation as the burst evolves and the rapid recovery from inactivation during 
the inter-burst period.     
 
FIG 4.  Model performance.  A single burst is obtained from ELL pyramidal cell recordings (top 
row; data donated by R. W. Turner), full multi-compartmental model simulations (middle row; 
simulation presented in Doiron et al., 2001b), and reduced two-compartment model simulations 
(bottom row; eqs (1)-(6)).  All bursts are produced by applying constant depolarization to the soma 
(0.3 nA top; 0.6 nA middle; Is = 9, bottom). The columns show both somatic and dendritic 
responses for each row.  The reduced model somatic spike train reproduces both the in vitro data 
and full model simulation spike trains by showing the growth of DAPs and reduction in ISI as the 
burst evolves.  All somatic bursts are terminated with a large bAHP, which is connected to the 
dendritic spike failure. 
 
FIG 5.  A.  Bifurcation diagram of the ghostburster equations (Eqs (1)-(6)) as a function of the 
bifurcation parameter IS.  We choose hd as the representative dynamic variable and plot hd on the 
vertical axis.   For IS < IS1  a stable fixed point (solid line) and a saddle (dashed line) coexist.  A 
saddle-node bifurcation of fixed points (SNFP) occurs at IS = IS1.  For IS1 < IS < IS2 stable (filled 
circles) and unstable (open circles) limit cycles coexist, the maximum and minimum of which are 
plotted. A saddle-node bifurcation of limit cycles (SNLC) occurs at IS = IS2.  For IS > IS2 a chaotic 
attractor exists; we show this by plotting the maximum and minimum of hd for all ISIs that occur in 
a 1s simulation for fixed IS.  A reverse period doubling cascade out of chaos is observed for large 
IS.  The software package AUTO (Doedel, 1981) was used to construct the leftmost part of the 
diagram.  Chaotic states are shown by plotting the minimum and maximum of hd for each ISI of a 
1000 ms spike train.  B.  Instantaneous frequency (1/ISI) is plotted for 1000 ms simulations of the 
ghostburster model for each increment in IS.  The transitions from rest to tonic firing and tonic 
firing to chaotic bursting are clear.  C. The maximum Lyapunov exponent λ as a function of IS.  
 
FIG 6.  Two parameter bifurcation set. Both the saddle-node bifurcations of fixed points (SNFP) 
and limit cycles (SNLC) bifurcations were tracked, using AUTO (Doedel 1981) in the (IS , gDr,d) 
subspace of parameter space. The curves partition the space into quiescence, tonic firing, and 
chaotic bursting regimes.    
            
FIG 7. A. Quasistatic bifurcation diagram.  pd is fixed as a bifurcation parameter while Vd is chosen 
as a representative variable from the fast subsystem x.  The maxima in the dendritic voltage 

( 0=
dt

dVd and 0
2

2

<
dt

Vd d ) are plotted for each value of pd.  At pd = pd1 the maxima of Vd switch to 

two values, corresponding to the values taken during each ISI of a period-two solution.  B.  Time 
series of the dendritic voltage, Vd(t), while pd = 0.13 > pd1.  The fast subsystem follows a period-
one solution. C.  Time series of the dendritic voltage, Vd(t), while pd = 0.08 < pd1.  The fast 
subsystem follows a period-two solution. A constant value of IS = 9 > IS1 is chosen for all 
simulations in A,B, and C.  
  
FIG 8.  pd(t) and dp~  computed from integration of the ghostburster equations with IS=9 > IS2.  Four 
bursts are shown with the corresponding time stamped spikes given above for reference.  A Slow 
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burst oscillation in pd(t) is observed.  It is evident that the discrete function dp~ (solid circles) tracks 

the burst oscillation in pd(t). dp~  shows a monotonic decrease throughout the burst until the inter-

burst interval, at which point dp~ is reinjected to a higher value.  The horizontal lines are the values 
pd1, corresponding to the period doubling transition, and pd2, corresponding to the crossing of the 
nullcline curve with the <Vd> curve.  The pd(t) reinjection occurs after pd(t)<pd2 as explained in the 
text. dp~ has been translated downward to lie on top of the pd(t) time series.  This is required 

because Eq (10) uses a unweighted average of Vd, given in Eq (9).  This produces a dp~ series 
which occurs at higher values than pd(t) because Eq (9) and (10) ignore the low pass characteristics 
of Eq (6).  However, only the shape of dp~ is of interest and this is not affected by the downward 
translation. 
 
FIG 9. A. The bifurcation diagram of Figure 6A is re-plotted along with the pd nullcline pd,∞ (Vd)  
(dashed line labeled N).  Note that the pd nullcline is inverted so as to give 

)1
1ln()( ,2/1,

d
ppdd pkVpV −−=∞ .  We plot the average of Vd over a whole period of Vd,<Vd> 

(solid line), at a fixed pd.  Note the sharp decline in <Vd> for pd below pd1.  B. The diagram in 9A is 
re-plotted with the labels removed.  A single directed burst trajectory projected in the (Vd,pd) plane 
obtained by integrating the full dynamical system (Eqs (1)-(6)) is plotted on top of the ‘burst 
shell’. C. All observed discharge frequencies of the fast subsystem are plotted as a function of pd.  
At pd = pd1 a stable period-one firing pattern of ~ 200 Hz changes to a period-two solution with 
one ISI being ~ (700 Hz)-1 and the other ~ (100Hz)-1.  The inverse of the ISIs of the single burst 
shown in Figure 9B are plotted as well.  The ISIs are numbered from 1 (the first ISI) through to 5 

(doublet ISI) and 6 (inter-burst interval).  D.  The average of the derivative of pd, dt
dpd , is 

plotted for each ISI in the single burst shown in Figure 8B.  Only the long inter-burst ISI has 

0>dt
dpd  ,all other ISIs have 0<dt

dpd .  A constant value of IS = 9 > IS1 is chosen for all 

simulations in A, B, C, and D.    
 
FIG 10. Inter-burst interval.  <TIB> is plotted as a function of IS - IS1.  The averaging was performed 
on 100 bursts produced by the ghostburster equations at a specific IS.  gDr,d was set to 12.14.  <TIB> 
shows a similar functional form to that described by Eq (11).  The dips in <TIB> are discussed in 
the text. 
 
FIG 11. Burst intermittency.  A. The ISI return map for a single burst sequence with IS=6.587 and 
gDr,d=13 is shown (for these parameters IS1=5.736 and IS2=6.5775).   The diagonal is plotted as well 
(dashed line).  The labels (1)-(5) are explained in the text. B. The ISI return map for a single burst 
sequence with IS=9 and gDr,d=15 as in Figure 3.  C. The ISI return map for a single burst recording 
from an ELL pyramidal cell (Data courtesy of R.W. Turner).  Compare with the model burst 
sequence in B.   
 
FIG 12. Burst interval <TB> plotted as a function of IS - IS2.  The averaging was performed on 100 
bursts produced by the ghostburster equations at a specific IS. gDr,d was set to 12.14.  <TB> shows a 
similar functional form to that described by Eq (12).  
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FIG 13.   Burst Gallery.  A.  Reproduction of the two parameter bifurcation set shown in Figure 6.  
The letters B-F marked inside the Figure correspond to the (IS, gDr,d) parameter values used to 
produce panels B-F respectively.  Examples of the inter-burst period TIB and burst period TB for 
each burst train are indicated (except for the tonic solution shown in B).  The exact IS and gDr,d 
values used to produce each spike train are as follows: B. IS=6.5, gDr,d=14 C.  IS= 7.7, gDr,d=13; D. 
IS=7.6, gDr,d=14; E. IS=5.748, gDr,d=12.14; F. IS=5.75, gDr,d=11.  The vertical mV scale bar in C 
applies to all panels, however, each panel has its own horizontal time scale bar. 
 

Table I 

Current gmax  V1/2 K ττ   

INa,s ( )(, ss Vm∞ ) 55 -40 3 N/A 

IDr,s ( )( ss Vn ) 20 -40 3 0.39 

INa,d ( )(/)(, dddd VhVm∞ ) 5 -40/-52 5/-5 N/A /1 

IDr,d ( )(/)( dddd VpVn ) 15 -40/-65 5/-6 0.9/5 

 

 

TABLE I.    Model parameter values.  The values correspond to the parameters introduced in eq (1)- 
(6).  Each ionic current (INa,s; IDr,s; INa,d; IDr,d) is modeled by a maximal conductance gmax (in units 
of mS/cm2), sigmoidal activation, and possibly inactivation, infinite conductance curves involving 

both V1/2 and k parameters kVVss se
Vm /)(, 2/11

1)( −−∞ +
= , and a channel time constant τ (in units of 

ms).  Double entries x/y correspond to channels with both activation (x) and inactivation (y) 
respectively.  If the activation time constant value is N/A then the channel activation tracks the 
membrane potential instantaneously. Other parameters values are; gc = 1, κ = 0.4, VNa = 40 mV, VK  

= -88.5 mV, Vleak = -70 mV, gleak = 0.18, and Cm=1 µF/cm2.  These values compare in magnitude to 
those of other two-compartment models (Pinsky and Rinzel, 1994; Mainen and Sejnowski, 1995).      
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Fig2 
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Fig3 
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Fig4 
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Fig5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



JCNS 811-01 Doiron et al. 

 37

Fig6 
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Fig7 
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Fig8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

pd1

pd2

Burst Oscillation

0.
02

25 ms

 



JCNS 811-01 Doiron et al. 

 40

 
Fig9 
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Fig10 
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Fig11 
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Fig12 
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Fig13 
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