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Abstract

Pyramida cellsin the dectrosensory laterd line lobe (ELL) of weskly dectric fish have been
observed to produce high frequency burst discharge with constant depolarizing current (Turner et
al., 1994). We present a two-compartment model of an ELL pyramida cell that produces burst
discharges Smilar to those seen in experiments. The burst mechanism involves adowly changing
interaction between the somatic and dendritic action potentials. Burst termination occurs when the
trgjectory of the system isreinjected in phase space near the “ghost” of a saddle-node bifurcation
of fixed points. The burgt trgectory reinjection is sudied using quas-static bifurcation theory
which shows a period doubling trangtion in the fast subsystem as the cause of burst termination.
Asthe gpplied depolarization is increased, the modd exhibits first resting, then tonic firing, and
findly chaotic burding behaviour, in contrast with many other burst models. The transition
between tonic firing and burg firing is due to a saddle-node bifurcation of limit cycles. Analyss of
this bifurcation shows that the route to chaos in these neuronsistype | intermittency, and we
present experimental analysis of ELL pyramida cdl burgt trains which support this model
prediction. By varying parametersin away that changes the positions of both saddle-node
bifurcations in parameter space we produce awide galery of burst patterns, which span a
sgnificant range of burst time scales.

1 —Introduction

Burgt discharge of action potentiasis a distinct and complex class of neuron behaviour
(Connors et d., 1982; McCormick et al., 1985; Connors and Gutnick, 1990). Burst responses show
alarge range of time scales and tempora patterns of activity. Many dectrophysiologica studies of
cortica neurons have identified cdlsthat intrindcaly burst a low frequencies (<20 Hz) (Bland
and Colom, 1993; Steriade et a., 1993; Franceschetti et a., 1995). However, recent work in
numerous systems has now identified the existence of “chattering” cells which show burst petterns
in the high frequency g range (>20 Hz) (Turner et d., 1994; Paré et a., 1995; Gray and
McCormick, 1996; Steriade et d., 1998; Lemon and Turner, 2000; Brumburg et a., 2000). Also,
the specific inter-spike interva (1Sl) pattern within the active phase of bursting varies considerably
across burdt cdll types. Certain bursting cells show alengthening of 1SIs as a burst evolves (e.g.
pancregtic-b cells, Sherman et d., 1990), others a parabolic trend in the ISI pattern (e.g Aplysia
R15 neuron; Adams 1985), and yet others show no changein the ISl during aburst (eg. thdamic
reticular neuron; Pinault and Deschénes, 1992). Thisdiversity of specific time scalesand IS
patterns suggests that numerous distinct burst mechanisms exist. Knowledge of the burst
mechanisms alows one to predict how the burst output may be modified, or hated completely in
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response to simuli. This may have consegquences for the information content of the cell’s output
(Lisman, 1997).

Pyramidd cdllsin the dectrosensory laterd line lobe (ELL) of the weskly dectric fish
Apteronotus leptor hynchus have been shown to produce ether tonic firing and g frequency
sustained burst patterns of action potential discharge (Turner et d., 1994; Turner and Maler, 1999;
Lemon and Turner, 2000). These secondary sensory neurons are responsible for transmitting
information from populations of eectroreceptor afferents that connect to their basa bushes (see
Berman and Maler, 1999 and references therein). In vivo recordings from ELL pyramidd cdls
have indicated that their bursts are correlated with certain relevant stimulus features, suggesting
the possible importance of ELL burgts for festure detection (Gabianni et d., 1996; Metzner and
Gabianni, 1998; Gabianni and Metzner, 1999). Thus, both the proximity of ELL pyramida cdls
to the sensory periphery, and the known relevance of their bursts to signd detection, suggest that
sudies of ELL bursting may provide nove results concerning the role of burst output in sensory
processing.

Previousin vitro and in vivo experiments have focused both upon specifying the
mechanism for burgt discharge of ELL pyramida cells, and showing methods for the modulation
of burst output (Turner et a., 1994, 1996; Turner and Maer,1999; Lemon and Turner, 2000;
Bastian and Nguyenkim, 2001; Rashid et d., 2001). Lemon and Turner (2000) have shown that a
frequency dependent or “conditiona” action potentia backpropagation along the proximal apica
dendrite underlies both the evolution and termination of ELL burst output. Recently, through the
congtruction and analysis of a detailed multicompartmenta modd of an ELL pyramidd cdl, we
have reproduced burst discharges smilar to those seen in experiment. This mode alowed usto
make strong predictions about the characterigtics of the variousionic channelsthat could underlie
the burst mechanism (Doiron et d., 2001b). However, a degper understanding of the dynamics of
the EL L burst mechanism could not be achieved due to the high dimensondity (312
compartments and 10 ionic currents) of the model system.

The andysis of burgting neurons using dynamica systems and bifurcation theory iswell
established (Rinzel, 1987; Rinzd and Ermentrout, 1989; Wang and Rinzdl, 1995; Bertram et d.,
1995; Hoppensteadt and Izhikevich, 1997; Izhikevich, 2000; Golubitsky et d., 2001). These
sudies have reduced complex neura behaviour to flows of low dimensiona nonlinear dynamica

systems. In the same Spirit, we present here a two-compartment reduction of our detailed ionic
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mode of anELL pyramidd cell (Doiron et d., 2001a, 2001b). The reduced modd, referred to as
the ghostburster (thisterm is explained in the text), produces burst discharges smilar to both the
full modd and in vitro recordings of bursting ELL pyramidd cdls. This andys's supports our
previous predictions on the sufficient ionic and morphologica requirements of the ELL pyramidd
cell burst mechanism. In addition to this, the low dimension of thismode alows for a detailed
dynamica systems trestment of the burst mechanism.

When applied depolarization is treated as a bifurcation parameter, the mode cdll shows
three digtinct dynamicd behaviours: resting with low intensity depolarizing current, tonic firing a
intermediate levels, and chaotic burst discharge a high levels of depolarization. Thisis contrary to
other burst mechanisms that show burst discharge for low levels of depolarization and then
trangtion to tonic firing as applied current isincreased (Hayashi and Ishizuka, 1992; Gray and
McCormick, 1996; Steriade et d., 1998; Wang, 1999). Both of the bifurcations separating the
three dynamical behaviours of the ghostburster are shown to be saddle-node bifurcations of ether
fixed points (quiescent to tonic firing) or limit cyces (tonic firing to bursting). Treating our burst
modd as afast-dow burgter (Rinzd, 1987; Rinzel and Ermentrout 1989, Wang and Rinzel, 1995;
Izhikevich, 2000) and using quas-datic bifurcation analyss, we show that the burst termination is
linked to atrangtion from period-one to period-two firing in the fast subsystem, causing the burst
trgectory to be reinjected near the “ghost” of the saddle-node bifurcation of fixed points. Thetime
spent near the saddle-node determines the inter-burst interva length.

This concept of burdt discharge is quite different from the two- bifurcation anadysis used to
understand most other burst models (Rinzel, 1987; Rinzdl and Ermentrout 1989,Wang and Rinzd,
1995; de Vries, 1998; Izhikevich, 2000; Golubitsky et a., 2001). Further analyss predicts that the
route to chaosin trangtioning from tonic to chaotic burd firing is through type | intermittency
(Pomeau and Manneville, 1980). Comparisons of both modd and experimenta ELL burst
recording data supports this prediction. Furthermore, by changing the reative position of the two
saddle-node bifurcations in a two- parameter bifurcation set, the time scaes of both the burst and
inter-burst period can be chosen independently, alowing for wide variations in possible burst
outputs.
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2—Methods
2.1 ELL pyramidal cell bursting

Figure 1A showsin vitro recordings from the soma of aburdting ELL pyramidd cdll with a
constant depolarizing input. The bursts comprise a sequence of action potentias, which appear on
top of adow depolarization of the subthreshold membrane potentia. The depolarization causes the
inter-spike-intervals (1Sls) to decrease asthe burst evolves. The ISl decrease culminatesin ahigh
frequency spike doublet that triggers ardativey large after-hyperpolarization (AHP) labeled a
burst-AHP (bAHP). The bAHP causesalong 1Sl that separates the train of action potentids into
bursts, two of which are shown in Figure 1A. The full characterization of the burst sequence has
been presented in Lemon and Turner (2000).

Immunohistochemica studies of the apica dendrites of ELL pyramida cells have indicated
apatched distribution of sodium channels aong the first ~200 mm of the gpica dendrite (Turner et
a., 1994). Figure 1B illustrates schematicaly such aN&' channd ditribution over the dendrite.
The active dendritic Na" allows for action potential backpropagation along the apical dendrite,
producing a dendritic spike response (Figure 1B; Turner et al., 1994). Na' or Ca?* mediated action
potential backpropagation has been observed in severd other central neurons (Turner et d., 1994;
Stuart and Sakmann, 1994; for areview of active dendrites see Stuart et a., 1997) and has been
modeled in many studies (Traub et d., 1994; Mainen et d., 1995; Vetter et d., 2001; Doiron et d.,
2001b). Action potential backpropagation produces a somatic depolarizing after-potentid (DAP)
after the somatic spike, as shown in Figure 1B. The DAP isthe result of adendritic reflection of
the somatic action potential. This requires both along dendritic action potentid half-width as
compared to that of a somatic action potentia, and alarge somatic hyperpolarization succeeding
an action potentia. These two features dlow for passive dectrotonic current flow from the
dendrite to the soma subsequent to the somatic spike, yielding aDAP.

Recent work has shown the necessity of spike backpropagation in ELL pyramidd cdlls for
burgt discharge (Turner et d., 1994; Turner and Maer, 1999; Lemon and Turner, 2000). These
studies blocked spike backpropagation by locally applying tetrodoxin (TTX, aNa channd
blocker) to gpica dendrites of ELL pyramida cells, after which dl bursting ceased and only tonic
firing perssted. Our previous modding study (Doiron et d., 2001b), reproduced this result, Snce

when active Na® conductances were removed from al dendritic compartments, similar results were
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obtained. However, in that sudy we modeed the proxima apica dendrite with ten compartments,
five of which contained active spiking Na™ channdls. The large number of variablesin such a
model is incompatible with the objectives of the present study. Inlight of this, and following
previous modding studies involving action potential backpropagation (Pinsky and Rinzdl, 1994,
Bresdoff, 1995; Mainen and Sgjnowski, 1996; Lansky and Rodriguez, 1999; Wang, 1999; Booth
and Bose, 2001), we investigate a two-compartment modd of an ELL pyramida cell, where one
compartment represents the somatic region, and the second the entire proximal apical dendrite.
Note that a two-compartment trestment of dendritic action potentia backpropagationisa
amplification of the cable equation (Keener and Sneyd, 1998). However, in consderation of the
gods of the present study, which require only DAP production, the two-compartment assumption
isaufficient.

2.2 Two-Compartment Model

A schematic of our two-compartment mode of an ELL pyramidd cdl is shown in Figure
2, together with the active inward and outward currents that determine the compartment membrane
potentials. Both the soma and dendrite contain fast inward Na' currents, Ina sand Inad, and
outward delayed rectifying (Dr) K™ currents, respectively Ipr sand Ipy g. These currents are
necessary to reproduce somatic action potentials, and proper spike backpropagation that yields
somatic DAPs. In addition, both the soma and dendrite contain passive lesk currents ljeq. The
membrane potentias Vs (somatic) and Vy (dendritic) are determined through a modified
Hodgkin/Huxley (1952) treatment of each compartment. The coupling between the compartments
is assumed to be through smple dectrotonic diffusion giving currents from somato dendrite, lyq,
or vice-versa, lys. Intotd, the dynamica system comprises six nonlinear differentid equetions,
Eq (1)-(6); henceforth, we will refer to Eq(1)-(6) as the ghostbur ster modd, and the judtification
for the name will be presented in the Results section.
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Tablel ligtsthe vadues of al channd parameters used in the smulations. The somais modeed
with two varidbles (see eg. (1) and (2)). The reduction from the classic four dimensional Hodgkin-

Huxley model is accomplished by daving Ina,sactivation, m, _, to Vs (i.ethe Na activation ms

tracks Vs instantaneoudly), and modeling itsinactivation ,hs, through I p, s activation, ns (we set
h, © 1- n,). Thissecond approximation isaresult of observing in our large compartmental mode!

(Doairon et d., 2001b) that h +n_ » 1during spiking behaviour. Both of these gpproximations
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have been used in various other models of spiking neurons (Keener and Sneyd, 1998). The
dendrite is modeled with four variables (see eg. (3)-(6)). Similar to the treatment of Ina,s, We dave
Ina,a Ectivation, m, ,, to Vg, but model itsinactivation with a separate dynamica variable hy.

Lemon and Turner (2000) have shown that the refractory period of dendritic action potentidsis
larger than that of somatic in ELL pyramida neurons. This result has previoudy been shown to be
necessary for burst termination (Doiron et d., 2001b). To modd differentid somatic/dendritic
refractory period we have chosen th ¢ to belonger than t, s (Smilar to our large compartmenta
mode (Doiron et d., 2001b)). This result has not been directly verified through
immunohistochemical experiments of ELL pyramida cdlsN&' channds, thus, at present, this
remains an assumption in our model.

The crucia dement for the success of our mode in reproducing burdsis the trestment of
Iorg. Dendritic recordings from bursting ELL pyramida cells show a dow, frequency dependent
broadening of the action potential width as a burst evolves (Lemon and Turner, 2000). Such a
cumuletive increase in action potential width has been observed in other experimenta
preparations, and has been linked to adow inactivation of rectifier-like K™ channes (Aldrich et dl.,
1979; Maand Koester, 1996; Shao et d., 1999). In light of this, our previous study (Doiron et al.,
2001b), modeled the dendritic K™ responsible for spike rectification with both activation and
inactivaion variables. When the time congtant governing the inactivation was rdatively long (5
ms) compared with the time congtants of the piking currents (~ 1ms), the mode produced a burst
discharge comparable to ELL pyramidd cdl burst recordings. Doiron et d. (2001b) also
congdered other potentia burst mechanisms, including dow activation of persstent sodium,
however, only sow inactivation of dendritic K* produced burst results comparable to experiment.
At thistime there is no direct evidence for a cumulative inactivation of dendritic K* channelsin
ELL pyramida cells, and these results remain amoded assumption. However, preliminary work
suggests that the shaw-like AptKv3.3 channdl's may express such adow inactivation (R.W. Turner
personal communication); these channd's have been shown to be highly expressed in the apical
dendrites of ELL pyramidd cells (Rashid et d., 2001). In the present work, our dynamica system
also models dendritic K™ current, Ipy g, as having both activation, ng, and dow inactivation pg
variables (see Egs. (3),(5), and (6)). Slow inactivation of K* channels, athough not a mechanism
in contemporary burst models, was proposed by Carpenter (1979), in the early stages of
mathematica trestment of burdting in excitable cells. We do not implement asmilar dow
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inactivation of somatic Dr,s since somatic spikes observed in bursting ELL pyramida cells do not
exhibit broadening as the burst evolves (Lemon and Turner, 2000).

The sométic-dendritic interaction is modded as smple dectrotonic diffusion with coupling
coefficient g, and scaed by the ratio of somatic-to-total surface areak. Thisform of coupling has
been used in previous two-compartment neural models (Mainen and Sgnowski, 1996; Wang 1999;
Kepecs and Wang, 2000; Booth and Bose, 2001). |s represents either an applied or synaptic
current flowing into the somatic compartment. In the present study s is dways congant in time,
and will be used as a bifurcation parameter. Physological judtification for the parameter values
givenin Table| is presented in detail in Doiron et d. (2001b). Egs (1) — (6) areintegrated by a4t
order Runge-Kutta agorithm with afixed time step of D=5 10° s,

3 —Results
3.1 Model performance

Figure 3A and 3B show smulation time series of Vs and py, respectively, for the
ghostburgter with constant depolarization of 1s=9. We see arepetitive burst train smilar to that
shown in Figure 1A. Figure 4 compares the time series of Vsand Vy for the ghostburster (bottom
row) during asingle burg, to both a somatic and dendritic burst from ELL pyramida cell
recordings (top row), and the large compartmental modd presented in Doiron et a., (2001b)
(middle row). All burst sequences are produced with constant somatic depolarization. The sométic
burgts dl show the same characteristic growth in depolarization (DAP growth), and consequent
decreasesin 1Sl leading to the high frequency doublet. The dendritic bursts dl show that a
dendritic spike failure is associated with both doublet spiking and burst termination. The somatic
AHPsin the smulation of the ghostburster do not show a gradua depolarization during the burst,
as do both the AHPsin the ELL pyramida cell recordings and the large compartmental model
gmulations. Thisisaminor discrepancy, which is not relevant for the understanding of the burst
mechanism.

The mechanism involved in the burst sequences shown in Figures 3 and 4 has been
explained in detail (athough not from a dynamica systems point of view) in past experimenta and
computationa studies (Lemon and Turner, 2000; Doiron et d., 2001b). We give a short overview
of this explanation. Action potentia backpropagation is the process of a somatic action potential
actively propagating along the dendrite due to activation of dendritic Na cahnnels. Rapid
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hyperpolarization of the somatic membrane, mediated by somatic potassum activation ng, alows
eectrotonic diffuson of the dendritic action potentid, creating a DAP in the somatic compartment.
However, with repetitive spiking the dendritic action potentids, shown by Vg, broaden in width
and show a basdine summation (Figure 4). Thisis dueto the dow inactivation of I, 4, mediated
by p4, @ shown in Figure 3B. Thisfurther drives eectrotonic diffuson of the dendritic action
potentia back to the soma; consequently, the DAP at the soma grows, producing an increased
sométic depolarization as the burst evolves. Thisresults in decreasing somatic 1SS, as
experimentaly observed during ELL burst output. This positive feedback loop between the soma
and dendrite finally produces a high frequency spike doublet (Figure 4).

Doublet 1SIs are within the refractory period of dendritic spikes but not that of somatic
spikes (Lemon and Turner, 2000). This causes the backpropagation of the second somatic spikein
the doublet to fail, due to lack of recovery of Ina g fromitsinactivation, as shown in the dendritic
recordings (Figure 4). This backpropagation failure removes any DAP at the soma, uncovering a
large bAHP, and thus terminates the burdt. This crestesalong 1Sl the inter-burst period, which
alows pq and hq to recover, in preparation for the next burst (see Figure 3B).

3.2 Bifurcation Analysis

In the following sections we will use dynamica systems theory to explore various agpects of
the ghostburster equations (Eg. (1)-(6)). Anintroduction to some of the concepts we will use can
be found for example in Strogatz (1994). An dternative explanation of the burst mechanism,
given in physiological terms, was presented in Doiron et d. (2001b).

Figure 5A givesthe bifurcation diagram of hy as computed from the ghostburster with s
treated as the bifurcation parameter. We chose I s Snce thisis both an experimentaly and
physiologicaly relevant parameter to vary. Three digtinct dynamical behaviours are observed.

For Is< Ig two fixed points exist; one stable, representing the resting state, and one unstable
saddle. When Is= Ig; the stable and unstable fixed points coalesce in a saddle-node bifurcation of
fixed points on an invariant circle, after which agable limit cyde exigts. Thisis characteridtic of
Class| spike excitability (Ermentrout, 1996), of which the canonical modd isthe well-studied q
neuron (Hoppensteadt and 1zhikevich, 1997). For 1< Is<Is the sablelimit cycle coexists with an
ungtable limit cycle. Both limit cycles codesce a |s= s, in asaddle-node bifurcation of limit
cycles. For s> Is; themodd dynamics, lacking any stable periodic limit cycle, evolveon a

chaotic attractor giving bursting solutions as shown in Figures 3 and 4 (lower pand). Asls

10
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increases further a period doubling cascade out of chaosis observed, and a period two solution
exigsfor high Is. The importance of both of the saddle-node bifurcations will be explored in later
sections.

Figure 5B shows the observed spike discharge frequencies, f (° 1/1S1), from the
ghostburster as | s isvaried over the same range asin Figure 5A. Therest date, Is < Is;, admits no
firing, indicated by settingf = 0. For Is; < Is< s, the stable limit cycle attractor produces
repetitive spike discharge giving asingle nonzero f vaue for eech vdue of Is. f becomes
arbitrarily smdl as s approaches |; from above due to the infinite period bifurcation a |s;.
However, for Is>lsp the attractor produces avaried ISl pattern, as shown in Figures3and 4. This
involves arange of observed f vaues for agiven fixed Is, ranging from ~ 100 Hz in the inter-burst
interval to amost 700 Hz &t the doublet firing. The burst regime, 1s>1s; does admit windows of
periodic behaviour. A particularly large window of 15T (13.13,13.73) shows a stable period six
solution which undergoes a period doubling cascade into chaos as |s is decreased. Findly, the
period doubling cascade out of chaosfor |s >> | isevident.

Figure 5C shows the most positive Lyapunov exponent, | , of the ghostburster as afunction
of Is. Weseethat| <OforIs<ls; becausetheonly attractor isastable fixed point. For Is;<ls<ls,
| =0 because the dtractor is astable limit cycle. Of particular interest isthat | is podtive for a
range of Is greater than |, indicating that the bursting is chaotic. The windows of periodic
behaviour within the chaotic bursting areindicated by | being zero (e.g. the large window for Is 1
(13.13,13.73)). For Is> 17.65, | =0 because the ghostburster undergoes a period doubling cascade
out of chaos, resulting in a stable period two solution.

Figure 6 isatwo parameter bifurcation set showing curves for both the saddle-node
bifurcation of fixed points (SNFP) and of limit cycles (SNLC). The parameters are the applied
current |s, aready studied in Figure 5, and gor ¢ Which contrals the influence of the dow dynamica
vaiable py (see Eq (3)). Itisnatural to choose gor g &s the second bifurcation parameter since the
burst mechanism involves dendritic backpropageation, which I 4 regulates, and gor g can be
experimentally adjusted by focal gpplication of K* channe blockers to the apical dendrites of ELL
pyramidd cells (Rashid et d., 2001). A verticd linein Figure 6 corresponds to a bifurcation
diagram smilar to that presented in Figure 5A. The diagram in Figure 5A corresponds to the
rightmost value of gor ¢ in Figure 6 (gbr,g =15). Theintersection of the curves SNFP and SNLC
with any verticd line givesthevaues Is; and s, for that particular value of gor g Thus, the curves

11
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SNFP and SNLC partition parameter space into regions corresponding to quiescence, tonic firing,
and chaotic bursting solutions of the ghostburster equations, asindicated in Figure 6. The curves
intersect at a codimension-two bifurcation point corresponding to smultaneous fixed point and
limit cycle saddle-node bifurcations. The curve to the left of the intersection point corresponds to
the codimension one SNFP curve; there is no stable period-one limit cycle corresponding to tonic
firing in thisregion. Figure 6 demongratesthat it is possble to make Is; and |5, arbitrarily close,
by choosing gor g gppropriately. This property will be of use later in the study.

3.3 The Burst Mechanism : Reconstructing the Burst Attractor.

The dynamica system described by the ghostburster equations possesses two separate time
scales. The time congtants governing the active ionic channds ng, hg, and ng, are dl ~ 1 ms, and the
half width of the spike response of the membrane potentids Vs and Vg are~ 0.5 msand 1.1 ms
respectively. However, thetime scae of py is characterized by t g, which is afactor of five times
larger than any of the other time scales. Previous studies of other burst models have profited from
agmilar coexistence of at least two time scales of activity during bursting (Rinzd, 1987; Rinze
and Ermentrout, 1989; Wang and Rinzel, 1995; Bertram et d., 1995; de Vries, 1998; Izhikevich,
2000; Golubitsky et d., 2001). This dlowed for a separation of the full dynamica system into two
smaller subsystems, one fast and one dow. We aso treat our burst moded as afast-dow burdter.
The naturd variable separation isto group Vs, ns, V4, hy, and ng into afast subsystem, denoted by
the vector x, while the dow subsystem conssts solely of pg. This gives the smplified notation of
our modd,

@ %= f(x, Dy
dpd _ pd,¥ (X)' pd
® ot

pd

where f(x,pq) represents the right hand sde of Egs. (1)-(5) and Eq. (8) issmply Eq (6) restated.
Since py changes on adower time scale than X, we approximate pq as constant, and use pqy

as a bifurcation parameter of the fast subsystemn (quas-static approximation; see e.g. Hoppensteadt

and Izhikevich, 1997). We note that with py constant the fast subsystem (7) cannot produce

burgting comparable to that seen from ELL pyramidd cells. Burding requires the dow varigble to

modulate DAP growth dynamicaly (Doiron et d., 2001b). Tregting pq as a bifurcation parameter

12
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will show how changesin pq produce the characterigtics of ELL burgting through the bifurcation
dructure of the fast subsystem. Since pq only directly affects the fast subsystem through the
dynamicsof Vy (see eg. (3)) we choose V4 as arepresentative variable of the fast subsystem x.

Figure 7A showsthelocd maximaof Vg4 on a periodic orbit as afunction of py, whilethe
fast subsysemisdriven with Is= 9 > Is,. At acriticd vaue of py, labeed py1, the fast subsystem
goes through atrangtion from a period-one to a period- two limit cycle. Thisis shown by only
onemaximumin Vg for pg > pq1, Wwhereas there are two maximafor pg < pqz. Figure 7B shows a
time series of V(t) following the period-one limit cyde when pg = 0.13 > pg1, while Figure 7C
shows the period-two limit cyclewhen pg = 0.08 < pg1. The second dendritic action potentid in the
period-two orbit (Figure 7C) is of reduced amplitude; this corresponds to the dendritic failure
observed in the full dynamica system (Eqgs (7) and (8)) when pq islow (see right column of Figure
4). The bifurcation diagram in Figure 7A may be thought of asa*“burst shdl” in a projection of
phase space. The full burst dynamics will evolve upon the burst shell as py is modulated dowly by
the fast subsystem. We therefore next address the dynamics of py(t) during the burst trgjectory in
the fast subsystem.

Upon inspection of Figure 3B it is clear that there exists two ostillationsin py(t), one fast
oscillation occurring on the time scae of spikes, and the other on amuch longer time scale,
tracking the bursts. Figure 8 shows py(t) during aburgt solution of the full dynamica sysem. Itis
clear that the fast Joike oscillationsin py(t) are driven by the ingantaneous vaue of Vq4(t). Thisis
dueto t, being small enough to dlow pqy(t) to be affected by the spiking in the fast subsystem. In
addition, there isa genera decreasein pqy(t) asthe burst evolves, and an sharp increase in py(t) after
the doublet 1S1. The increase reinjects py(t) to ahigher vaue dlowing the burst oscillation to begin
again. The period of aburst oscillation encompasses severd spikes, and thus cannot be andlyzed in
terms of the ingtantaneous dynamics of the fast subsystem.

Due to the separation of time scales, and the fact that dp, it depends only on Vy (eg. (6)),

we expect that the burst oscillation depends on the average of Vg between consecutive spikes,
defined as

© (Vo)=—— Fu()c
§

i+1 ti '

wheret; isthetime of the i, spike. We construct a discrete function p,
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(10) Py = Pay (V)
where p,, (¥ istheinfinite conductance curve asin eq. (6). Figure 8 shows asequence of p,
values constructed by using {V,, ) from the burst solution of the full dynamical system. This
sequenceis plotted (solid circles) on top of the full py(t) dynamics during the burdt train. It is
evident that the time sequence of p,, is of the same shape as the burst oscillation in py(t). Thisis
evidence that the dow burst oscillation can be analyzed by considering (V).

We now complete the burst shell by adding to Figure 7A the nulldine for py (from eg. (6))
aswell as {V, ) computed for the stable periodic solutions of the fast subsystem. Thisisshownin
Figure 9A. Note that as py decreasesthrough pas, (V, ) decressesby ~10 mV. Thisisdueto the

dendritic spike failure and subsequent long IS occurring when py < paz1, both contributing to lower

Vg on average (see Figure 7C). The pg nulldineand (v, ) curves crossat pg = paz < pai. Sincewe

have shown that the burst oscillation is sensitive to {V, ), the crossing corresponds to
<dpd dt> changing from negetive to positive (see Figure 9D).

A saddle-node bifurcation of fixed points occurs at pg = pg for somepy > pq1 (datanot
shown). Thisbifurcationis smilar to the saddle-node bifurcation of fixed pointsin Figure 5A,
where Isisthe bifurcation parameter. Thisis expected, Snce py isthe coefficient to a
hyperpolarizing ionic current (see eg. (3)), hence an increasein pqy is equivaent to adecreasein

depolarizing |s. Because of the saddle-node bifurcation a pg = py , the period of the period-one
limit cycle scdes as — for pg near Pd (Guckenheimer and Holmes, 1983).
/I\de - pd|

With the burgt shell now fully congtructed (Figure 9A) we place the full burst dynamics (eg.
(7)-(8)) onto the shell. Thisisshownin Figure 9B. The directed trgectory isthe full six
dimensiond burst trgjectory projected into the Vg - pg subspace. Asthe burst evolves, py(t)
decreases from spike to spike in the burst. This causes the frequency of spike discharge to increase
due to the gradual shift away from the saddle-node bifurcation of fixed pointsat ps = pq -

However, once pqy(t) < pq1 the spike dynamics shift from period-one spiking to period-two spiking.
Thisfirg produces a high frequency spike doublet, which is then followed by a dendritic potentia
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of reduced amplitude, causing (v, ) to decrease. When pqy(t) < po2, <de

dt> >0 (seeFigure 8D),

and pq(t) increases and is reinjected to ahigher vdue. The reinjection towardsthe“ ghost” of the
saddle-node bifurcation of fixed points causes the IS (the inter-burst interval) to be long, since the
velocity through phase space islower in thisregion.

Figure 9C shows the burgt trgectory in the frequency domain. The period doubling is
evident a pg = pq1 Snce two distinct frequencies are observed for py < pqz, corresponding to a
period two solution of the fast subsystem, whereas for pg > pg1 only a period one solution is found.
As py isreduced in the period one regime (pq > pq1) the frequency of the limit cycle increases, due
to the reduced effect of the hyperpolarizing current Ip, g. We superimpose the 1SIs of the burst
trgectory shown in Figure 9B on the frequency bifurcation diagram in Figure 9C. The sequence
beginswith along ISl (numbered 1) with subsequent 1SIs decreasing, culminating with the short
doublet IS (numbered 5). Thereinjection of py near pg~ occurs during the next 1S (numbered 6).
The reinjection causes this next ISl to be long; it separates the action potentids into bursts. Figure

L dp 1 t”\l@jp o) . .
9D showsthe average of the derivative of py, < d > = d/ =dt,duringeach IS in
At L=t t.%

dt g

the burgt shown in Figures 9B, and 9C. Notice that <dp%jt> is negative and decreases as the burst

evolves. Thisisbecausethe ISl length reduces as the burst evolves, alowing the burst trgjectory

to spend lesstime in the region where dp%t >0. However, alarge fraction of the burst
trgectory during the inter-burst ISl (6) occurs in the region where dp%t > 0. Hence, the average

<dpd dt> is greater than zero for the inter-burst interva, producing the reinjection of pq(t) to

higher vaues.

|zhikevich (2000) has labdled the burst mechanisms according to the bifurcationsin the fast
subsystem that occur in the trangition from quiescence to limit cycle and vice versa. Even though
there is never atrue " quiescent” period during the burst phase trgjectory, the inter-burst interval for
our mode! is determined by the approach to an infinite period bifurcation. This phenomenon is
often labeled as sensing the “ghost” of a bifurcation (Strogatz, 1994), and we naturally label the
burst mechanism as ghostbur sting.
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The ghostburster system exhibits bursting, for some range of s, only for 2<t, <110 ms,
with dl other parameters as given in Table 1. The lower bound of t, is due to the fact that the
inactivation of 1pr g must be cumulative in order for there to be areduction of the IS's as the burst
evolves. Thisrequiresat, larger than that of the ionic channels responsible for spike production
(<1ms). Theupper bound on t, isaso expected since Sgnificant remova of py inactivation
during the inter-burst interval is necessary for another burst to occur. Too large avalue of t , will
not alow sufficient recovery of 1, g from inactivation and therefore bursting will not occur.

3.4- Thelnter-burst Interval.

By vaying Is it is possible to set the inter-burst intervd, T, to be different lengths. Thisis
because after the dendrite has failed (removing the DAP a the soma) the time required to produce
an action potentid in the somatic compartment (which is Tyg) is dictated amost solely by Is. The
spike excitability of the somatic compartment is Type | (Ermentrout, 1996), as evident from the
saddle-node hifurcation of fixed pointsat Is=1s;. Asaconsequence T is determined from the
well-known scaing law associated with saddle-node bifurcations on a circle (Guckenheimer and
Holmes, 1983),

1 T, ~/'—Is —
Figure 10 shows the average inter-burst interval, <T,g>, asafunction of Is- Is; for the ghostburster
with gor g = 12.14. Thisvaue of gor g Setsls; and Is; close to one another (see Figure 6), alowing
the system to burst with values of Is closeto Ig;. It is necessary to form an average dueto the
chaotic nature of burst solutions. Nevertheless, <T,g> increases as | s approaches I s, as suggested
by Eq. (11). A linear regression fit of 1/<Tg>2 againgt |s- |s; gives acorrdation coefficient of
0.845 further verifying that Eq (11) holds. Figure 10 aso shows downward dipsin <T,g> that
occur more frequently asls- Is; goesto zero. Time series of bursts with |s corresponding to the
dipsin <T;g> show scattered bursts with short inter-burst intervals thet deviate from Eq (11),
amongst burgts with longer inter-burst intervas, which fit the trend described by Eq (11). These
scattered small vaues of T, reduce <T,g> for these particular values of 1s. These dips contribute
to the deviation of the linear correlation coefficient cited above from 1. We do not study the dips
further since the behaviour has yet to be observed experimentaly. However, experimental
measurements of ELL pyramida cdl burgt period do indeed show alengthening of the period as
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the applied current is reduced (R.W. Turner, personal communication). This corresponds to the
generd trend shown in Figure 10. Eq (11) and Figure 10 show that by choosing the model
parameters properly it is possible to regulate the effect of the ghost of the saddle-node bifurcation
of fixed points on the burst solutions. We will show later how this property yields greet diversity
of time scales of possible burst solutions of the ghostburster modd.

3.5~ TheBurst Interval — Intermittency.

Regions of chaotic and periodic behaviour exist in many burst modds (Chay and Rinzd,
1985; Terman, 1991; Terman, 1992; Hayashi and Ishizuka, 1992; Wang, 1993; Komendantov and
Kononenko, 1998). Theresults of Figure 5 show that periodic spiking and chaotic burding are
aso two digtinct dynamica behaviours of the ghostburster. Moreover, the bifurcation parameter
we have used to move between both dynamica regimesis the applied current Is whichmimicsan
average synaptic input to the cdll. Thisindicates that changing the magnitude of input to the cell
may cause atrangtion from periodic spiking to chaotic burdting. In ELL pyramidd cdlsa
trangtion from tonic firing to highly variable burgting has been observed as gpplied depolarizing
current isincreased (Lemon and Turner, 2000; Bastian and Nguyenkim, 2001; Doiron and Turner,
unpublished results). It remains to be shown that the experimentally observed bursting isindeed
chaatic; preliminary results suggest that such an andysisis difficult due to non-dationarity in the
data (Doiron and Turner, unpublished observations). Nonethdess, understanding the trangitions or
routes to chaos in the modd separating tonic and chaotic burst regimes is not only necessary for a
complete description of the dynamics of the model, but dso for characterizing the input- output
relation of bursing ELL pyramidd cdlls.

Figure 5A shows that the trangition from periodic spiking to chaotic bursting occurs at
|s=1s2 when agtable limit cycle collides with an unstable periodic orbit in a saddle-node bifurcation
of limit cydes. Since we are analyzing spiking behaviour on both sides of the bifurcation it is
natura to consgder the ISl return map for Is near 1s;. We choose | s dightly larger than |s; and plot
in Figure 11A the ISl return map for a single burst sequence from the ghostburster (for 1s:<Is<ls
the return map isasingle point). We have labded the regions of interest in the Figure and explain
each region in order: (1) The burst begins here. (2) The 1Sl sequence approaches the diagond.
This produces a clustering of points corresponding to the pseudo-periodic behaviour observed in
the center of the burst. We refer to this region of the map asatrapping region. (3) ThelS
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sequence leaves the trapping region with a downward trend. (4) The inter-burdt interva involves a
sharp trangtion from small 1Sl to large 1S. (5) The 1Sl sequence returns to the trapping region and
another burst begins.

The above description indicates that the route to chaosis Type | intermittency (Manneville
and Pomeau, 1980; Guckenheimer and Holmes, 1983). Intermittency involves seemingly periodic
behaviour separated by brief excursonsin phase space. The clustering of pointsin the ISl return
map in the trapping region of Figure 11A (labded 2) is amanifestation of this gpparent periodic
firing. A trapping region is a characterigtic feature of Type | intermittency and correspondsto a
saddle-node bifurcation of limit cyclesin the return map, occurring specificaly & 1s=ls for the
ghostburster equations. The escape and return to the trapping region (regions 3,4,5 in Figure 11A)

are the brief excursons. These events correspond to the period doubling trangtion and the cross of
thedv, ) curve and pqy nulldine, in the fast subsystem, as explained in Figure 9. Figure 11B shows

the ISl return map for amode burst of seven spikes and Figure 11C the same map for aseven
spike burst recording from an ELL pyramida cell. Both maps show the quditative structure
gamilar to in Figure 11A, including a clear escape from and reinjection into a trapping region near
the diagond. Interestingly, Wang (1993) has dso observed Type | intermittency in the Hindmarsh
Rose modd).

Since intermittent behaviour is connected to a saddle-node bifurcation, the time spent in
the trgpping region Tg, corresponding to the burst period (the duration of the spikesin the cluster
making up the burst), has awell defined scaling law

@
Similar to Figure 10 we consder the average of the burst period, <Tg>, because of the chaotic
nature of the bursting. Figure 12 shows that <Tg> asymptotesto infinity as |s approaches | .
Linear regression fitsto 1/<Tg> againd Is- | give acorrelation coefficient of 0.886. These
results vaidate Eq (12) for the ghostburster burst sequences. Again the deviation in the correlaion
coefficient from 1 is caused by dight dipsin <Tg>, Smilar to the dips observed in <T,g> (Figure
10). By choosing the quantity |s-1s, we can obtain bursts with spike numbers comparable to
experimen.
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3.6 - Gallery of Bursts

Egs (11) and (12) give the inverse square root scaing relations of Tg and T g respectively.
These results showed that Tg isdetermined by Is-1s; and Tig by Is-1s1. Using thisfact and the
ability to vary the difference between Is; and Is; (see Figure 6) we can produce awide array of
burst patterns with differing time scales.

Figure 13A reproduces the (s, gor.q ) bifurcation set shown in Figure 6. The letters B-F
mark (Is, gorq) parameters used to produce the spike trains shown in the associated panels B-F of
Figure 13. Figure 13B uses (Is, gor,d) Vaues such that the ghostburster isin the tonic firing
regime. The burst trains shown in Figures 3 and 4 correspond to (Is, gor,g) vauesin the burst
regime of Figure 6 which are not close to either of the SNFP or SNLC curves. An example of a
burgt train with such a parameter choice, is shown in Figure 13C. However, if we approach the
SNLC curve but remain distant from the SNFP curve, we can increase Tg by one order of
meagnitude yet keep Tg the same. The burdt train in Figure 13D shows an example of this. If we
choose I's and gor ¢ to be close to both the SNFP and SNL C curves we can now increase Tig as well
(Figure 13E). Theinter-burst period T;g has now dso increased dramaticdly from that shown in
Figures 13C and D.

Findly, for Is and gor g Values to the I eft of the codimension two bifurcation point, burst
sequences show only a period two solution (Figure 13F). The burst sequences are no longer
chaotic. Thisisto be expected snce there no longer is a saddle-node bifurcation of limit cycles,
which gave rise to the intermittency route to chaosin the ghostburster equations (Figure 11).
Approaching the SNFP curve dlowsfor alarge Tig, but the fact that only bursts of two spikes can
appear forces Tg to be smal. The redtriction of bursts to only doublets when g g is smal occurs
because gor 4 is the coefficient to the hyperpolarizing K* current in the dendrite (Eq (3)), and as
such controls the effect of the DAP at the soma. For gor g to the left of the codimension-two
bifurcation point, the first somatic spike in the doublet produces a DAP of sufficient strength to
cause the second somatic spike which iswithin the refractory period of the dendrite. Thus

dendritic failure occurs after the firgt reflection and the burst contains only two spikes.
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4 —Discussion
4.1 Ghostbursting: a Novel Burst Mechanism

We have introduced a two-compartment model of burding ELL pyramidd cdlls, titled the
ghostburster. The modd is a significant reduction of alarge multi-compartmenta ionic model of
these cdlls (Doiron et d., 2001b). The large modd was motivated by the ‘ conditiona’
backpropagation burst mechanism that has been experimentaly characterized in ELL pyramidd
cdls (Lemon and Turner, 2000). The results of Lemon and Turner (2000) and Doiron et d.,
(2001b), suggest that the ionic requirements necessary and sufficient to support bursting as
observed inthe ELL are 1) action potentia backpropagation aong the agpica dendrite sufficient to
produce somatic DAPs. 2) the refractory period of dendritic action potentials must be longer than
that of the somatic potentials 3) Sow inactivation of adendritic K* channd involved in
repolarization. The fact that the ghostburster was designed to contain only these three
requirements, yet succeeds in producing burst discharge comparable to experiment, suggests that
these three requirements capture the essential basis of the burst mechanism used in ELL pyramidd
cedls,

The smplicity of the ghostburster, as compared to the large compartmental model, has
alowed us to understand, from a dynamica systems perspective, the mechanism involved in this
type of bursting. The ghostburster was analyzed using a separation of the full dynamica system
into fast and dow subspaces (Eq (7) and (8)), amilar to the analysis of many other burst models
(Rinze, 1987; Rinzdl and Ermentrout, 1989; Wang and Rinzel, 1995; Bertram et al., 1995;
Hoppensteadt and 1 zhikevich, 1997; de Vries, 1998; 1zhikevich, 2000; Golubitsky et d., 2001).
Treating the dow dynamicd varigble pq as a bifurcation parameter with respect to the fast
subsystemn alowed us to congtruct a‘ burst shell” upon which the full burst dynamics evolve. The
shell shows that a trangtion from a period-one limit cycle to a period-two limit cycle occursin the
dynamics of the fast subsystem as pq isreduced. The period-two limit cycle causes a sharp
reduction in <Vy> since the second spike of the limit cycleis of reduced amplitude, due to
dendritic refractoriness. The reduction in <Vg> causes the <Vy>(py) curve to cross the py nulldine,
and pq(t)grows during the second ISl of the period-two orbit. The growth in py(t) reinjects py(t)
near a saddle-node bifurcation of fixed points occurring a high py. This passage near the ‘ ghost’
of the saddle-node bifurcation causesthe ISl to be long, separating the action potentials into burdts.
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Recently, Izhikevich (2000) has approached the classfication of bursters from a
combinatorid point of view. This has been successful in producing alarge number of new fadt-
dow burgting mechanisms. One of these burst mechanisms has been recently observed ina
biophysicaly plausble modd of bursting corticotroph cells of the pituitary (Shorten et d., 2000).
In contrast, Golubitsky et d., (2001) (extending the work of Bertram et d. (1995), and de Vries
(1998)) have dlassfied burgersin terms of the unfoldings of high codimension bifurcations. Both
these methods have used the implicit assumption that burst initiation and termination involve
bifurcations from quiescence (or subthreshold oscillation) to limit-cycle and vice-versa. However,
our burst mechanism does not gppear in any of the above classfications. Thisis because, the
trgectoriesin the fagt subsystem of the ghostburgter are dways following alimit-cycle, and are
never in ‘true’ quiescence, corresponding to astable fixed point.  The period of the limit cycle
changes dynamicaly because the dow subsystem is oscillating, forcing the fast sysem to
sometimes pass near the ‘ghost’ of an infinite period bifurcation. Furthermore, in the ghostburster,
burst termination is connected with a bifurcation from a period-one to a period-two limit cydein
the fast subsystem. Thisisanove concept, Snce burst termination in dl other burst modelsis
connected with atrangtion from a period-one limit cycle to a stable fixed point in the fast
subsystem (Izhikevich 2000; Golubitsky et d., 2001). Thus, while classfying burst phenomena
through the bifurcations from quiescence to a period-one limit cycdle and vice-versain the fast
subsystem of a dynamical bursting model has had much success, our work requires an extenson of
the classfication of burdting to include an dternative definition of *quiescence and a burst
attractor which is composed of only period-one and period-two limit cydes with no stable fixed
points.

Rinzd (1987) shows that burst mechanisms with a one-dimensiond dow subsystem
require bistability in the fast subsystem in order to exhibit bursting. The dow subsystem of
ghostbuster equations is one dimensiond, yet Figure 9 shows that the fast subsystem x isnot
bistable. Thiswould seem to be a contradiction; however, recal that ast , approaches values that
are Smilar to other burgting mechanisms, burdting is not observed. Thus our results do not
contradict Rinzel’ s previous study, yet support a separate mechanism entirely. Thisillustratesa
key digtinction between the ghostburster and conventiond bursting systems; the timescae of the
dow variable has an upper bound in the ghostburgter. The fast and dow timescales are sufficiently
separate to alow us to successfully study the burst mechanism using a quasistatic approximetion.
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Thus ghostburgting, while digtinct, does share smilarities with conventiona burst mechanisms,
Note that mechanisms exist Smilar to ghostburgting, which involve a dow passage phenomena
(requiring saddle-node or homodlinic bifurcations), may exist, placing the ghostburster as only one
in afamily of new burs mechanisms.

The ghostburster model exhibits a threshold between tonic firing and bursting behaviour.
Both Terman (1991,1992) and Wang (1993) have aso identified thresholds between these
behaviours in the Hindmarsh-Rose model and a modified version of the Morris-Lecar equations,
respectively. Both of these modes exhibited a homodlinic orbit in the fast subsystem asthe
spiking phase of aburgt terminated. As aresult, the bifurcations from continuous spiking to
bugting in the full dynamics were complicated. Wang observed a crises bifurcation at the trangtion
(Grebogi et d., 1983), whereas Terman showed that a series of bifurcations occurs during the
trangtion, which could be shown to exhibit dynamics similar to the Smae horseshoe map
(Guckenheimer and Holmes, 1983). The saddle-node bifurcation of limit cycles that separates the
two regimes in the Ghostburster model isagreat ded smpler than ether of these bifurcations.
However, interestingly Wang has shown that an intermittent route to chaos is dso observed in the
Hindmarsh- Rose modd as continuous spiking trangtions into bursting, much like the Ghostburster
system.

The fact that the trangtion from tonic firing to burgting in the Ghostburster system occurs
as depolarization isincreased, isin contrast to both experimental and modding results of other
burgting cdlls (Terman 1992; Hayashi and Ishizuka, 1992; Wang 1993; Gray and McCormick,
1996; Steriade et d., 1998; Wang, 1999). However, since many experimental and modeling
results, separate from ELL, show burst threshold behaviour, the concept of ‘ burst excitability” may
have broader implications. To expand, the saddle-node bifurcation of limit cycdes marking burst
threshold can be compared to the saddle-node bifurcation of fixed points, which is connected to the
spike excitability of Type | membranes (Ermentrout, 1996; Hoppensteadt and 1 zhikevich, 1997).
The functiond implication of a burst threshold have yet to be fully understood, however recent
work suggests that it may have important implications for both the signaing of inputs (Eugiaet d.,
2000) and dividing cdl response into stimulus estimation (tonic firing) and sgnd detection
(burgting) (Sherman, 2001).
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4.2 Predictionsfor bursting in the ELL

Anintegrd part of the burst mechanismin ELL pyramida cdlsisthe interaction between
the soma and dendrite through action potentia backpropagation. One potentia function of
backpropagation is thought to be retrograde signaling to dendritic synapses (Hausser et al., 2000).
Further, arecent experimentd study has shown that the coincidence of action potentia
backpropagation and EPSPs produce a sgnificant amplification in membrane potentia
depolarization (Stuart and Hausser, 2001). These results may have consequences for both synaptic
plasticity and dendritic computation. Our results (and those of others, see Hausser et d., 2000 for
areview) imply that backpropagation can aso determine action potential patterning.

As mentioned above, the ghostburgter exhibits a threshold separating tonic firing and
burgting as depolarization isincreased. Smilar behaviour has been observed in both in vitro and
in vivo experimenta recordings of ELL pyramida cells (Lemon and Turner, 2000; Bastian and
Nguyenkim, 2001), and in our full compartmental model smulations (data not shown). A
reduction of burst threshold was obsarved in ELL pyramidal cellswhen TEA (K™ channd blocker)
was focaly applied to the proximal gpical dendrite (Noonan et d., 2001; Rashid et d., 2001). Our
work is conggtent with this observation, since dendritic TEA application is equivaent to a
reduction in gor ¢ conductance in our mode. Figure 6 shows that as goy q IS reduced burst threshold
islowered.

Burgts, as opposed to individua spikes, have been suggested to be a fundamenta unit of
information (Lisman, 1997). Infact, Gabbiani et d., (1996) have corrdated bursts from ELL
pyramida cells with features in the imulus driving the cdl. Consdering these reaults; it is
possible that the time scale of burgting, T (= Tg + T)), could be tuned to sensory input, hence the
ability of aburging cell to dter T may improve its coding efficiency. A natura method to dter T
would be to change the time congtant(s), t, that determine the dow process of the burst mechanism
(Giannakopoulous et d., 2000). Neverthdess, to achieve an order of magnitude changein T
requires a potentialy large changein t. Recently, Booth and Bose (2001) have shown, in atwo-
compartmentd mode of a bursting CA3 pyramidd cdl, that the precise timing of inhibitory
synaptic potentia's can change the burst period T. Thelr results have potentia implications for the
rate and temporal coding of hippocampd place cells. However, the ghostburster shows that both
Tg and T, can be changed by an order of magnitude, but with only smal changesin ether
depolarizing input and/or dendritic K* conductances (see Figure 13). Small changesin Is are
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conceivable through redligtic modulations of feedforward and feedback input which occur during
electro-location and e ectro-communication in weskly dectric fish (Heligenburg, 1991).
Changesin gor ¢ can further occur through the phosphorylation of dendritic K* channdls, such as
AptKv3.3 which has been shown to be abundant over the whole dendritic tree of ELL pyramida
cdls(Rashid et d., 2001). Hence, the ghostbursting mechanism may offer ELL pyramidd cdlsa
viable method by which to optimize sensory coding with regulated burst output. Further studies,
quantifying the information- theoretic relevance of burgting, are required to confirm these
speculations.

We conclude our study with a concrete prediction. Figures 10,12, and 13 show that the full
burst period T of ELL pyramida cells can be significantly decreased as either depolarizing current
(Is) isincreased or dendritic K™ conductance (gpr ¢) is decreased by a small amount. This prediction
can be eadily verified by experimentally measuring T in burding ELL pyramidd cdlsfor 1) step
changesin Is, and 2) before and after TEA application to the gpical dendrites, which will change
Oor.¢. Modification of other ionic currents, persistent sodium and somatic K* in particular, may
a0 be used to create smilar bifurcation sets asin Figure 13.

5- Acknowledgements

We would like to thank our colleague Ray W. Turner for the generous use of his data and fruitful
discussons. Vauable ingght on the analysis of our model was provided by John Lewis, Kashayar
Pakdaman, Eugene | zhikevich, Gerda DeVries, Maurice Chacron, and Egon Spengler. This
research was supported by operating grants from NSERC (B.D., A.L.), the OPREA (C.L.), and
CIHR (L.M.).

24



JCNS 811-01 Doiron et 4.

Refer ences

Adams WB (1985) Slow depolarization and hyperpolarizing currents which mediate bursting in an
Aplysia neurone R15. J. Physiol. (Lond.) 360:51-68.

Aldrich R, Getting P, and Thomson S (1979) Mechanism of frequency-dependent broadening of
molluscan neuron soma spikes. J. Physiol. (Lond.) 291: 531-544.

Bastian J, and Nguyenkim J (2001) Dendritic Modulation of Burst-Like Firing in Sensory Neurons
J. Neurophysiol. 85: 10-22.

Berman NJ, and Mder L (1999) Neurd architecture of the electrosensory latera line lobe:
adaptations for coincidence detection, a sensory searchlight and frequency- dependent adaptive
filtering. J. Exp. Biol. 202: 1243-1253, 1999

Bertram R, Butte MJ, Kiemd T, and Sherman A (1995) Topologica and phenomenologica
classification of bursting oscillations. Bull. Math. Biol. 57:413-439.

Bland BH, and Colom LV (1993) Extrinsc and intrinsic properties underlying oscillation and
synchrony in limbic cortex. Prog. Neurobiol. 41: 157-208.

Booth V, and Bose A (2001) Neura Mechanisms for Generating Rate and Tempora Codesin
Modd CA3 Pyramida Cells. J. Neurophysiol. 85: 2432-2445.

Bresdoff PC (1995) Dynamics of a compartmental model integrate-and fire neuron with somatic
potential reset. PhysicaD 80: 399-412.

Brumberg JC, Nowak LG, McCormick DA (2000) lonic Mechaniams Underlying Repetitive High-
Frequency Burst Firing in Supragranular Cortical Neurons. J. Neurosci. 20: 4829-4843.

Carpenter GA (1979) Burgting Phenomena in Excitable Membranes. SSAM J. Appl. Math 36:334-
372.

Chay TR, and Rinzel J(1985) Bursting, besting, and chaos in an excitable membrane modd.
Biophys. J. 48: 815-827.

Connors BW, Gutnick MJ, and Prince DA (1982) Electrophysiologica properties of neocortica
neuronsin vitro. J. Neurophysiol. 48: 1302-1320.

Connors BW, and Gutnick MJ (1990) Intringc firing patterns of diverse neocortical neurons.
TINS 13: 99-104.

de Vries G (1998) Multiple Bifurcations in a Polynomiad Modd of Burgting Oscillations. J.
Nonlinear Sci. 8: 281-316.

Doedd E (1981) A program for the automatic bifurcation anadlysis of autonomous systems. Congr.
Nemer. 30: 265-484.

Doiron B, Longtin A, Berman NJ, and Maer L (2001a) Subtractive and divisve inhibition: effect
of voltage-dependent inhibitory conductances and noise. Neurd. Comp. 13:227-248.

Doiron B, Longtin A, Turner RW, and Mader L (2001b) Model of gamma frequency burst
discharge generated by conditional backpropagation. J. Neurophysiol., In Press.

EguiaMC, Rabinovich Ml, and Abarbanel HDI (2000) Information transmission and recovery in
neural communication channdls. Phys. Rev. E62: 7111-7122.

Ermentrout B (1996) Type | Membranes, Phase Resetting Curves, and Synchrony. Neura Comp.
8: 979-1001.

Franceschetti S, Guateo E, Panzica F, Sancini G, Wanke E, and Avanzini A (1995) lonic
mechanism underlying burgt firing in pyramida neurons: intracdlular Sudy in rat sensorimotor
cortex. Brain Res 696:127-139.

Gabbiani F, Metzner W, WessHl R, and Koch C (1996) From stimulus encoding to feature
extraction in weskly eectric fish. Nature 384:564-567.

25



JCNS 811-01 Doiron et 4.

Gabbiani F, and Metzner W (1999) Encoding and processing of sensory information in neurond
giketrains. J. Exp. Biol. 202: 1267-1279.

Grebogi E, Oftt E, and Yorke, JA. (1983) Crises, sudden changesin chaotic attractors and transient
chaos. PhysicaD. 7:181-200.

Giannakopoulos F, Hauptmann C, and Zapp A (2000). Bursting activity in amode of aneuron
with recurrent synaptic feedback. Fields Ingtitute Communications, 29.

Golubitsky M, Kresmir J, and Kaper TJ (2001). An unfolding theory approach to bursting in fast-
dow systems, In: Festschrift dedicated to Floris Takens, Globd Andyss of Dynamicd
Systems, pg.277-308.

Gray CM, and McCormick DA (1996) Chattering cdls: superficid pyramida neurons contributing
to the generation of synchronous oscillationsin the visud cortex. Science 274:109-113.

Guckenheimer J., and Holmes P (1993) Nonlinear Oscillations, Dynamica Systems, and
Bifurcations of Vector Fields. Springer-Verlag.

Hausser M, Spruston N, Stuart G (2000) Diversity and Dynamics of Dendritic Signaling. Science
290: 739-744.

Hayashi H, and 1zhizuka S (1992) Chaotic Nature of Bursting Discharges in the Onchidium
Pacemaker Neuron. J Theor. Biol. 156:269-291.

Heiligenburg W (1991) Neurd Netsin Electric Fish. MIT Press, Cambridge, MA.

Hodgkin A, and Huxley A (1952) A quantitative description of membrane current and its
gpplication to conduction and excitation in nerve. J. Physiol. 117: 500-544.

Hoppensteadt FC, and Izhikevich EM (1997) Weakly Connected Neural Networks. Springer-
Verlag, N.Y.

|zhikevich EM (2000). Neurd Excitability, Spiking, and Burdting. Int. J. Bifurc. Chaos 10:1171-
1269.

Jensen M, Azouz R, and Yaari Y (1996) Spike after-depolarization and burst generation in adult
rat hippocampa CA1 pyramdid cdlls. J. Physol. 492: 199-210.

Keener J., and Sneyd J (1998) Mathematicd Physiology. Springer-Verlag, NY.

Kepecs A, and Wang X-J (2000) Analyss of complex burgting in cortical pyramida neuron
models. Neurocompt. 32-33:181-187.

Komendantov AO, and Kononenko NI (1996) Deterministic Chaos in Mathematica Moddl of
Pacemaker Activity in Burgting Neurons of Snail, Helix Pomatia. J Theor. Biol. 183:219-230.

Lansky P, and Rodriguez R (1999) The spetia properties of amode neuron increase its coding
range. Biol. Cybern. 81: 161-167.

Lemon N, and Turner RW (2000) Conditional spike backpropagation generates burst dischargein
asensory neuron. J. Neurophysiol. 84:1519-1530.

Lisman JE (1997) Burgs as a unit of neurd information: making unreligble synapses reliable.
TINS 20: 28-43.

MaM, and Koester J (1995) Consequences and mechanisms of spike broadening of R20 cdlsin
Aplysia Californica. J. Neurosci. 15:6720-6734.

Mainen ZF, Joerges J, Huguenard JR, and Sginowski TJ (1995) A modd of spikeinitiationin
neocortical pyramida cells. Neuron 15: 1427-1439.

Mainen ZF, and Sgnowski TJ (1996) Influence of dendritic structure on firing pattern in mode
neocortical neurons. Nature 382:363- 365.

McCormick DA, Connors BW, Lighthall JwW, and Prince DA (1985) Comparétive
electrophysiology of pyramida and sparsely spiny stellate neurons of the neocortex. J.
Neurophysiol. 54: 782-806.

26



JCNS 811-01 Doiron et 4.

Metzner W, Koch C, Wessdl R, and Gabbiani F (1998) Feature extraction of burst-like spike pat-
ternsin multiple sensory maps. J. Neurosci. 15:2283-2300.

Noonan LM, Morales E, Rashid AJ, Dunn R.J, and Turner RW (2000) Kv3.3 channels have
multiple roles in regulating somatic and dendritic spike discharge. XXX Proc. Soc. Neurosci.,
26(2): 1638.

Paré D, Shink E, Gaudreau H, Destexhe A, and Lang EJ (1998) Impact of spontaneous synaptic
activity on the resting properties of cat neocortica neuronsin vivo. J. Neurophysiol. 79: 1450-
1460.

Finault D, and Deschénes M (1992) V oltage-Dependent 40 Hz ostillations in rét reticular thalamic
neuronsin vivo, Neurosci., 51:245-258.

Pinsky P, and Rinzd, J (1994) Intringc and network rhythmogenesisin areduced Traub mode for
CA3 neurons. J. Comput. Neurosci. 1, 39-60.

Pomeau Y, and Manneville P (1980) Intermittent Trangtion to Turbulence in Disspative
Dynamicd Systems. Comm. Math. Phys. 74:189-197.

Rashid AJ, Morales E, Turner RW, and Dunn RJ (2001) Dendritic Kv3 K* channels regulate burst
threshold in asensory neuron. J. Neurosci. 21: 125-135.

Rinzd J(1987) A formd classfication of burgting in excitable sysems. In; Teramoto E. and
Yamaguti M, eds. Mahematica Topicsin Population Biology, Morphogeness, and
Neurosciences. Lecture Notes in Biomathematics. Vol. 71, Springer-Verlag, Berlin.

Rinzd J., and Ermentrout B (1989). Andlysis of Neurd Excitability and Oscillations. In Koch C.
and Segev |, eds. Methods in Neuronal Modding. MIT Press, Cambridge MA, pg. 251-291.

Shao L-R, Halvorsrud R, Borg-Graham L, and Strom J (1999). The role of BK -type C&2”
dependent K* channels in spike broadening during repetitive firing in rat hippocampa
pyramidd cdls. J. Physiol. (Lond.) 521: 135-146.

Sherman A, Carrol P, Santos RM, and Atwater | (1990) Glucose dose response of pancrestic beta-
cells Experimenta and theoretical results. In : Hidalgo C eds. Transduction in Biologica
Systems, Plenum Press, NY, 1990.

Sherman SM (2001) Tonic and burst firing: dual modes of thamocortica relay. TINS 24:122-127.

Shorten PR, and Wall, D (2000) A Hodgkin-Huxley Modd Exhibiting Bursting Osaillations. Bull.
Math. Biol. 62: 695-715.

Steriade M, McCormick DA , and Sgnowski TJ (1993). Thalamocortical oscillationsin the
deeping and aroused brain. Science 262: 679-85.

Steriade M, Timofeev |, Dirmuller N, and Grenier F (1998) Dynamic properties of corticothalamic
neurons and loca cortica interneurons generating fast rhythmic (30-40 Hz) spike burgts. J.
Neurophysal. 79: 483-490.

Strogatz SH (1994) Nonlinear Dynamics and Chaos with Applications to Physics, Biology,
Chemidtry, and Engineering. Addison-Wedey, Reading, MA.

Stuart G, and Sakmann B (1994) Active propagation of somatic action potentiasinto neocortical
pyramidd cell dendrites. Nature 367: 69-72.

Stuart G, Spruston N, Sekmann B, and Hausser M (1997) Action potentia initiation and
backpropagation in neurons of the mammadian CNS. TINS 20:125-131.

Terman D (1991) Chaotic spikes arising from amodel of burgting in excitable membranes SAM J.
Appl. Math 51; 1418-1450.

Terman D (1992) The trangition from burgting to continuous spiking in excitable membrane
models. J. Nonlinear Sci. 2: 135-182.

27



JCNS 811-01 Doiron et 4.

Traub R, Wong R, Miles R, and Michelson H (1994). A modd of a CA3 hippocampa neuron
incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol. 66: 635-650.

Turner RW, Mder L, Deerinck T, Levinson SR, and Ellisman M (1994) TTX-sengtive dendritic
sodium channds underlie oscillatory discharge in a vertebrate sensory neuron. J. Neurosci. 14
6453-6471.

Turner RW, Plant J, and Maer L (1996) Oscillatory and burst discharge across el ectrosensory
topographic maps. J. Neurophysiol. 76:2364-2382.

Turner RW, and Mder L (1999) Oscillatory and burst discharge in the gpteronotid e ectrosensory
laterd linelobe. J. Exp. Biol. 202:1255-1265.

Vetter P, Roth A, and Hausser M (2001) Propagation of action potentials in dendrites depends on
dendritic morphology. J. Neurophysiol. 85:926-937.

Wang X-J(1993). Genesis of burgting oscillations in the Hindmarsh Rose modd and
homoclinicity to achaotic saddle. PhysicaD 62:263-274.

Wang X-J, and Rinzel J (1995). Osctillatory and burgting properties of neurons. In: ed. Arbib MA.
The Handbook of Brain Theory and Neura Networks. Cambridge MA: MIT Press, pp. 686-
691.

Wang X-J(1999) Fast burst firing and short-term synaptic pladticity: amodd of neocortica
chattering neurons. Neurosci. 89:347-362.

Figure L egends

FiIc1. ELL burs discharge and dendritic backpropagation. A. In vitro recording of burst
discharge from the soma of an ELL pyramidd cdl with constant gpplied depolarizing current.

Two burdts of action potentids are shown, each exhibiting a growing depolarization as the burst
evolves, causng the ISl to decrease; the burst ends with a high frequency doublet ISI. The doublet
triggers a sharp removad of the depolarization, uncovering a prominent AHP, labeled a burst-AHP.
B. Active Na conductances are distributed aong the soma and proximal apical dendrite of ELL
pyramida cdls (Ieft). Na' regions are indicated with vertical bars to the left of the schematic. Note
that the distribution of dendritic Na" is punctuate, giving regions of high Na® concentration (often
referred to as “hot spots”) separated by regions of passive dendrite. The active dendritic regions
dlow for backpropagation of a somatic action potential through a dendritic action potentia
response, as seen from ELL recordings from both the somaand proximal (~ 150 mm) dendrite
(right). Somatic action potentia rectification by K™ currents and the broader action potentia in the
dendrite dlow for eectrotonic conduction of the dendritic action potentia to the soma, resulting in
aDAP at the soma (bottom left). We thank R.W. Turner for generoudy providing his datafor the
figure.

FiG2. Schematic of two-compartment mode representation of an ELL pyramidd cdll. Theionic
currents that influence both the somatic and dendritic compartment potentials are indicated.

Arrows which point into the compartment represent inward Na' currents, whereas arrows pointing
outward represent K* currents (the specific currents are introduced in the text). The compartments
are joined through an axia resstance, 1/g., dlowing current to be passed between the somatic and
dendritic compartments.
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FIG3. Modd bursting. A. Time series of the somatic potentid Vs during burst output. B.
Dendritic Ipr ¢ inactivation variable pq during the same burst smulation asin A. Note the
cumulative (dow) inactivation as the burst evolves and the rgpid recovery from inactivation during
the inter-burst period.

FIG4. Modd performance. A single burst is obtained from ELL pyramida cell recordings (top
row; data donated by R. W. Turner), full multi-compartmenta modd smulations (middle row;
smulation presented in Doiron et d., 2001b), and reduced two-compartment modd smulations
(bottom row; egs (1)-(6)). All bursts are produced by applying constant depolarization to the soma
(0.3 nA top; 0.6 nA middle; 15 =9, bottom). The columns show both somatic and dendritic
responses for each row. The reduced model somatic spike train reproduces both the in vitro data
and full modd amulation spike trains by showing the growth of DAPs and reduction in 1Sl asthe
burst evolves. All sométic burdts are terminated with alarge bAHP, which is connected to the
dendritic spike failure.

FIG5. A. Bifurcation diagram of the ghostburster equations (Egs (1)-(6)) as afunction of the
bifurcation parameter Is. We choose hy as the representative dynamic variable and plot hy on the
verticd axis. For Is<|g; adable fixed point (solid line) and a saddle (dashed line) coexist. A
saddle-node hifurcation of fixed points (SNFP) occursat Is=Is;. For Is; < ls< s Sable (filled
cirdes) and ungable (open cirdes) limit cycles coexig, the maximum and minimum of which are
plotted. A saddle-node bifurcation of limit cycles (SNLC) occursa Is= Is. For Is> s achaotic
atractor exists, we show this by plotting the maximum and minimum of hq for dl ISIsthat occur in
alssmulaion for fixed Is. A reverse period doubling cascade out of chaosis observed for large
Is. The software package AUTO (Doedd, 1981) was used to construct the leftmost part of the
diagram. Chaotic sates are shown by plotting the minimum and maximum of hy for each ISl of a
1000 ms spiketrain. B. Instantaneous frequency (1/190) is plotted for 1000 ms smulations of the
ghostburster mode for each increment in |s. The trangitions from rest to tonic firing and tonic
firing to chaotic burgting are clear. C. The maximum Lygpunov exponent | asafunction of |s.

FIG 6. Two parameter bifurcation set. Both the saddle-node bifurcations of fixed points (SNFP)
and limit cycles (SNLC) hifurcations were tracked, usng AUTO (Doeddl 1981) inthe (Is, Qor,d)
subspace of parameter space. The curves partition the space into quiescence, tonic firing, and
chaotic burgting regimes.

FIG7. A. Quasdtatic bifurcation diagram. pq isfixed as a bifurcation parameter while Vq is chosen
as arepresentative variable from the fast subsystem x. The maximain the dendritic voltage

(d;id = 0and ddzt\gd < 0) are plotted for each value of pg. At pg = pq1 the maximaof Vg switch to

two vaues, corresponding to the vaues taken during each IS of a period-two solution. B. Time
series of the dendritic voltage, Vq(t), while pg = 0.13 > pg1. The fast subsystem follows a period-
one solution. C. Time series of the dendritic voltage, Vq(t), while pg = 0.08 < pg1. Thefast
subsystemn follows a period-two solution. A congtant value of Is=9 > Ig; ischosenfor dl
smulaionsin A,B, and C.

FIG 8. pa(t) and p, computed from integration of the ghostburster equations with Is=9 > . Four
bursts are shown with the corresponding time stamped spikes given above for reference. A Sow
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burgt oscillaion in py(t) is observed. It isevident thet the discrete function P, (solid circles) tracks
the burst oscillation in pq(t). P, shows amonotonic decrease throughout the burst until the inter-
burgt interval, a which point p, isreinjected to a higher vdue. The horizontd lines are the vaues
P41, corresponding to the period doubling trangition, and pq2, corresponding to the crossing of the
nulldline curve with the <Vg> curve. The py(t) reinjection occurs after py(t)<pq2 as explained in the
text. p, has been trandated downward to lie on top of the py(t) time series. Thisisrequired
because Eq (10) uses aunweighted average of Vg, givenin Eq (9). Thisproducesa p, series
which occurs a higher vaues than py(t) because Eq (9) and (10) ignore the low pass characteristics
of Eq (6). However, only the shape of p,isof interest and thisis not affected by the downward
trandation.

FIG9. A. The bifurcation diagram of Figure 6A is re-plotted along with the pg nulldine pg x (Va)
(dashed linelabeled N). Note that the pg nulldlineisinverted so asto give

Vax (Pa) =Vaszp - KpIn( 74 pd). We plot the average of Vg4 over awhole period of Vg,<Vg>

(solid line), at afixed pg. Note the sharp declinein <Vg> for pq below pg1. B. Thediagramin 9A is
re-plotted with the labels removed. A single directed burst trgectory projected in the (Vg,pq) plane
obtained by integrating the full dynamicad system (Egs (1)-(6)) is plotted on top of the *burst

shdl’. C. All observed discharge frequencies of the fast subsystem are plotted as a function of py.

At pg = pq1 a stable period-one firing pattern of ~ 200 Hz changes to a period-two solution with
one ISl being ~ (700 Hz) ™ and the other ~ (100HZ) . Theinverse of the ISIs of the single burst
shown in FHgure 9B are plotted aswell. The ISIsare numbered from 1 (thefirst ISl) throughto 5

(doublet 1S]) and 6 (inter-burdt interva). D. The average of the derivative of py, <dp%t> ,is
plotted for each ISl in the single burst shown in Figure 8B. Only the long inter-burst 1Sl has
<dpd dt> >0 ,dl other ISSshave <dp%t> <0. A congant vdueof Is=9 > Ig; ischosen for dl

smulaionsin A, B, C, and D.

FIG 10. Inter-burdt interval. <T,g> isplotted asafunctionof Is- Is;. The averaging was performed
on 100 bursts produced by the ghostburster equations at a specific Is. gorgWwas set to 12.14. <Tg>
shows asmilar functiona form to that described by Eq (11). The dipsin <T,g> are discussed in

the text.

FIG 11. Burd intermittency. A. ThelS return map for asingle burst sequence with 1s=6.587 and
Obr =13 is shown (for these parameters |51=5.736 and 1s,=6.5775). The diagond is plotted as well
(dashed line). Thelabds (1)-(5) are explained in the text. B. The IS return map for asingle burst
sequence with 1s=9 and gor =15 asin Figure 3. C. ThelSl return map for asingle burst recording
from an ELL pyramida cdll (Data courtesy of RW. Turner). Compare with the mode burst
sequencein B.

FIG 12. Burd interval <Tg> plotted asafunction of Is- Is;. The averaging was performed on 100

bursts produced by the ghostburster equations at a specific Is. gorgwas set to 12.14. <Tg> showsa
samilar functiona form to that described by Eq (12).
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FIc13. Burgst Gdlery. A. Reproduction of the two parameter bifurcation set shown in Figure 6.
The letters B-F marked inside the Figure correspond to the (Is, gor g) parameter values used to
produce panels B-F respectively. Examples of the inter-burst period T,g and burst period Tg for
each burgt train are indicated (except for the tonic solution shown in B). The exact Is and gor 4
values used to produce each spiketrain are asfollows: B. 1s=6.5, gor =14 C. 1s= 7.7, gor ¢=13; D.
|s=7.6, gor =14; E. 1s=5.748, gor =12.14; F. 1s=5.75, gor =11. Theverticd mV scaebarin C
gopliesto dl pands, however, each pand has its own horizontd time scae bar.

Tablel
Current Omax Vi K t
Inas(My 5 (V) 55 -40 3 N/A
lors(ng(Vy)) 20 -40 3 0.39
Inad (My 4 (Vo) hy(Vy)) 5 -40/-52 5/-5 N/A /1
lora (Ng (V) py(Vy)) 15 -40/-65 5/-6 0.9/5

TABLEI. Mode parameter values. The values correspond to the parameters introduced in eq (1)-
(6). Eachionic current (Inas Ipr.s Inad; or.d) ISmodded by amaxima conductance gnax (in units
of mSen), sgmoidal activation, and possibly inactivation, infinite conductance curvesinvolving

both V1> and k parameters m, _(V;) = }{Jr IRVRISITE and a channdl time congtant t (in units of

ms). Double entries x/y correspond to channds with both activation (x) and inactivetion (y)
respectively. If the activation time congtant vaue is N/A then the channd activation tracks the
membrane potentid indantaneoudy. Other parametersvauesare; g-= 1, k = 0.4, VNa =40 mV, Vg
=-885mV, Vieak = -70 MV, gieak = 0.18, and C,=1 nf/cn?. These vaues compare in magnitude to
those of other two-compartment models (Pinsky and Rinzdl, 1994; Mainen and Sgjnowski, 1995).
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