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Abstract: We study a minimal integrate-and-fire based model of a “ghostburst-
ing” neuron under periodic stimulation. These neurons are involved in sensory
processing in weakly electric fish. There exist regions in parameter space in which
the model neuron is mode-locked to the stimulation. We analyse this locked be-
havior and examine the bifurcations that define the boundaries of these regions.
Due to the discontinuous nature of the flow, some of these bifurcations are non-
smooth. This exact analysis is in excellent agreement with numerical simulations,
and can be used to understand the response of such a model neuron to biologically
realistic input.
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1 Introduction

“Ghostbursting” is a novel type of neuronal bursting that has recently been charac-
terised [Doiron et al., 2002]. It occurs in pyramidal cells in the electrosensory sys-
tem of the weakly electric fish Apteronotus leptorhynchus. These fish communicate,
navigate and find prey using their electrosense. They generate a weak electric field
with their electric organ (located in the tail) and sinusoidally modulate this in time
at frequencies between approximately 800 and 1200 Hz. This electric field then
permeates their local environment. Modulations in the amplitude and phase of
the oscillation caused by nearby objects are detected by the fish’s electroreceptors,
which cover the fish’s skin. These signals are then passed on to the electrosensory
lateral line lobe (ELL) of the fish, and from there to higher brain centers.

In vitro studies of pyramidal cells from the ELL of A. leptorhynchus show that if
a constant current (chosen from some appropriate interval) is injected into a cell,
the cell’s action potentials are clustered together in bursts [Lemon & Turner, 2000].
These bursts are generated in an approximately periodic fashion, provided the
injected current is kept fixed. Within a burst, the times between successive action
potentials (spikes) monotonically decrease, i.e. the action potentials “speed up.”
The end of a burst is marked by a very short interspike interval (ISI), which is
followed by a long ISI, before the next burst commences. An example is shown in
Fig. 1. This type of bursting (dubbed “ghostbursting”) was recently reproduced in
a biophysically detailed model neuron [Doiron et al., 2001] and further analysed
in a simpler yet still realistic model [Doiron et al., 2002].

One novel aspect of this type of bursting is that it seems necessary for the neu-
ron undergoing bursting to be spatially extended, i.e. ghostbursting cannot be seen
in a “point” neuron. This is apparent once the bursting mechanism is understood.
In summary, both the pyramidal cell soma and dendrite are capable of producing
spikes. Just after all but the last somatic spike in a burst, the dendrite fires a spike.
During a burst there is a slow decrease in the dendritic potassium inactivation vari-
able, causing the dendritic spikes to become wider in time, and causing the slow
speed up of spikes — see Fig. 1. This speed up continues until the dendrite can no
longer respond to a somatic spike (the dendritic refractory period is longer than
that of the somatic). The lack of a dendritic spike then causes a long gap between
two somatic spikes, during which the dendritic potassium inactivation variable
increases, and another burst starts. See Doiron et al. [2002] for more details.

The model of Doiron et al. [2002] involves six nonlinear ODEs, which reproduce
qualitatively, and to a large extent quantitatively, the experimentally observed
bursting [Lemon & Turner, 2000]. Laing & Longtin [2002] introduced a minimal
model of a ghostbursting neuron that had two variables, one “voltage” variable
whose dynamics were governed by a modified integrate-and-fire mechanism, and
a second variable that modulated the spike patterning so as to qualitatively repro-
duce ghostbursting. It is that model that we study here, under periodic modulation
of its input current.

Investigating the effects of periodic forcing on such a model sensory neuron
is important for the following reasons. The frequency of electric organ discharge
(EOD) for a particular fish is essentially constant. Males have higher frequencies

2



than females, and when two fish are physically close the difference in EOD fre-
quencies gives rise to a beat frequency, equal to that difference. Thus there are at
least two types of periodic signals (the fish’s own EOD and the beat signal) that
could be detected by electroreceptors on the fish’s skin and passed directly to the
pyramidal cells that we are modelling. It is well known that weakly electric fish
can detect beat frequencies, and change their own EOD frequency so as to increase
the beat frequency [Zakon et al. 2002]. During such a jamming avoidance response
the fish with the lower initial EOD frequency lowers its frequency while the other
does the opposite, thereby increasing the beat rate to values that have little effect
on electrolocation. This work can also be seen as a generalisation of work on peri-
odically forced oscillators [Glass et al., 1984, Glass & Mackey, 1988].

Some work on the periodically forced ghostburster has been done previously
[Laing & Longtin, 2002, Laing & Longtin, 2003]. Laing & Longtin [2002] studied
the same model that we study here, but their analysis only allowed one to study
mode-locked solutions in which the neuron fired once during a whole number of
forcing periods, and they also ignored non-smooth bifurcations, whose study is es-
sential for a complete understanding. Here we perform a full analysis of arbitrary
mode-locked states for arbitrary periodic forcing, and investigate non-smooth bi-
furcations of the system. Laing & Longtin [2003] studied the periodically forced
neuron model consisting of six nonlinear ODEs presented by Doiron et al. [2002],
but did not analyse mode-locked solutions in any detail.

The work presented here is similar to that in Coombes et al. [2001], where the
authors analysed a periodically forced integrate-and-fire-or-burst neuron model.
That model had a second variable to model a Ca2 � ion current, and was capable of
bursting under appropriate stimuli.

The structure of the rest of the paper is as follows. In Sec. 2 we present the
discontinuous differential equations describing the minimal ghostbursting neu-
ron and derive an implicit map for successive firing times. In Sec. 3 we describe
mode-locked solutions and formulate a set of nonlinear simultaneous equations
that any mode-locked solution must satisfy. Sec. 4 discusses the stability of these
solutions and Sec. 5 shows some numerical results, comparing direct simulations
with numerically determined resonance tongue boundaries. We summarize our
main results in Sec. 6.

2 Model Equations

The differential equations describing our model neuron are

dV
dt

� A(t) � V � c ∑
m � n

H(tm � tm � 1 � r) � (t � tm ��� ) 	 (1)

dc
dt

� � c 
�� � (B � Cc2) ∑
m � n

� (t � tm) 	 tn  t  tn � 1 	 (2)

with the rule V(t
�
n ) � 0 if V(t �n ) � 1, where H is the Heaviside step function and

� is the Dirac delta function. A(t) is a periodic function of time, with period ∆.
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This model was first introduced by Laing & Longtin [2002], although a redundant
parameter in that formulation has been scaled out here.

Equations (1)-(2) define a modified integrate-and-fire (IF) neuron subject to
periodic forcing. Periodically forced IF neuron models have been studied previ-
ously [Keener et al., 1981, Coombes, 1999, Coombes & Bressloff, 1999], as have IF
models with periodically varying [Glass, 1991] and dynamic [Chacron et al., 2003]
thresholds.

The times
�
tn � are referred to as the firing times of the neuron. Between fir-

ing times, c decays exponentially to zero with time constant � . At each firing
time, c is instantaneously updated c �� c � B � Cc2. Assuming that the last ISI
(tn � tn � 1) was greater than r, V is incremented by the value of c at a time tn

� � .
If the last ISI was less than r, V is not incremented (this mimics the failure of the
dendrite to respond to a somatic action potential). Typical “bursting” behavior
of the system in shown in Fig. 2. The current is given by A(t) � I0

� I1 sin ( � t).
Note that when I1

� 0, the system progressively moves from bursting to periodic
firing and then quiescence as I0 is decreased, in agreement with experimental ob-
servations [Lemon & Turner, 2000] and the behavior of more sophisticated mod-
els [Doiron et al., 2001, Doiron et al., 2002]. For more analysis of the model (1)-(2),
see Laing & Longtin [2002].

Because (1)-(2) is piecewise linear, we can integrate over tn  t  tn � 1 to obtain

V(t; tn 	 tn � 1 	 cn) � G(t) � e � (t � tn)G(tn)
� e � (t � tn)H(t � tn � � )H(tn � tn � 1 � r)cne ��� ˆ� 	 (3)

where 1 
 ˆ� � 1 � 1 
�� , cn
� c(t

�
n ), and

G(t) �
	 0

��� esA(s � t) ds 
The specific case we will study from now on is A(t) � I0

� I1 sin ( � t), so

G(t) � I0
��� I1

1 � � 2 � [sin ( � t) ��� cos ( � t)] 
The next firing time, tn � 1, is defined implicitly by

1 � V(tn � 1; tn 	 tn � 1 	 cn) 	 (4)

where tn � 1 is the smallest value greater than tn that satisfies (4). We also have

cn � 1
� Ψ(cn 	 ∆n) 	 (5)

where ∆n
� tn � 1 � tn and

Ψ(c 	 t) � ce � t � � � B � C � ce � t � ��� 2  (6)

There are two Heaviside functions in (3), one resulting from the “hard” cutoff
in (1) — meant to represent the failure of the neuron’s dendrite to respond if the
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previous ISI was shorter than the dendritic refractory period, r — and one resulting
from the integration of the delta function in (1). The presence of these Heaviside
functions can give rise to discontinuities in the solution, (3). We prefer to work
with a smooth flow, so we can determine firing times by threshold crossings. We
achieve this by replacing both Heaviside functions in (3) by

f � (t) � 1
1 � e � � t 	

when necessary. Note that f � (t) converges pointwise to H(t) as � ��� . For nu-
merical work, we set � � 100.

Together, (4) and (5) provide a means for calculating the sequence of firing times�
tn � , provided initial conditions are specified. We now discuss the existence of

mode-locked solutions.

3 Mode-locked Solutions

Mode-locked solutions are those for which the model neuron fires p times for every
q periods of the forcing function, where p 	 q ��� � . We refer to these solutions as
p : q mode-locked. For such solutions, the firing times are given by

tn
���
	 n

p � �� n(p) � q∆ n � 0 	 1 	 2 	��� (7)

where n(p) � n mod p, the � 0 	��� 	 � p � 1 � [0 	 1) are a collection of firing phases,
and [ � ] denotes the integer part. Let us also define p � 2 firing times

T � 1
� ( � p � 1 � 1)q∆ 	 (8)

Tm
� �

mq∆ 	 0 � m � p � 1 	 (9)
Tp

� (1 �� 0)q∆  (10)

(These are just p � 2 consecutive firing times, shifted so that all but the first and
the last lie in the interval (0 	 q∆).) Substituting the firing times, (7), into (4) we see
that the p firing phases are determined by the p equations

1 � Gn � 1 � e � ∆n Gn
� e � ∆n H(∆n ��� )H(∆n � 1 � r)cne ��� ˆ� 	 n � 0 	��� 	 p � 1 	 (11)

where Gn
� G( � nq∆) and ∆n

� Tn � 1 � Tn.
The cn are given by (5)-(6), and c0 satisfies

c0
� Ψ( ����� (Ψ(Ψ(c0 	 ∆0) 	 ∆1) ����� ) 	 ∆p � 1) � Ψ(cp � 1 	 ∆p � 1)  (12)

Thus we can find p : q mode-locked solutions by simultaneously solving the p
equations (11) and the single equation (12).

For periodically forced systems, there typically exist regions in parameter space
in which mode-locked solutions exist, i.e. they are codimension-zero phenomena.
These regions are called Arnol’d tongues and are often wedge-shaped, with one
point of the wedge touching a curve of zero forcing amplitude [Coombes & Bressloff, 1999,
Glass, 1991]. The boundaries of these tongues are defined by instabilities of the
relevant mode-locked orbit. By mapping out these boundaries we can attempt to
partition parameter space in terms of the qualitative behavior of the system.
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4 Stability

Here we examine the stability of mode-locked solutions. Introducing the notation�
H(tn � 1 	 tn 	 tn � 1) � H(tn � 1 � tn � � )H(tn � tn � 1 � r), we can write each of the equa-
tions in (11) in the form

F(tn � 1 	 tn 	 tn � 1 	 cn) � e∆n(Gn � 1 � 1) � Gn
� �H(tn � 1 	 tn 	 tn � 1)cne ��� ˆ� � 0 	 (13)

where
cn � 1

� f (cn 	 tn � 1 	 tn) � Ψ(cn 	 tn � 1 � tn)  (14)

Considering perturbations of the form tn � tn
� � n and cn � cn

���
n about a mode-

locked solution gives a linearised system of equations:

0 �
�

F�
tn � 1

� n � 1
� � F�

tn
� n
� �

F�
tn � 1

� n � 1
� � F�

cn

�
n 	 (15)

�
n � 1

�
�

f�
tn � 1

� n � 1
� � f�

tn
� n
� � f�

cn

�
n 	 (16)

where all partial derivatives are evaluated at the mode-locked solution. We can
rewrite (15)-(16) as�� � n � 1�

n � 1�
n � 1

�	
�
�� � Γn 
 Φn � Λn 
 Φn � Σn 
 Φn

1 0 0

n � n � n

�	��� � n�
n�
n

�	 ��
n

�� � n�
n�
n

�	
	 (17)

where the coefficients are

Φn
�

�
F�

tn � 1

� e∆n(An � 1 � 1) � cne ��� ˆ� � �H�
tn � 1

	 (18)

Γn
�
�

F�
tn

� � An
� cne ��� ˆ� 	 1 � ��

tn � �H 	 (19)

Λn
�

�
F�

tn � 1

� cne ��� ˆ� � �H�
tn � 1

	 (20)

Σn
�
�

F�
cn

� e ��� ˆ� �H  (21)

We have used the fact that G � (t) � A(t) � G(t). The other coefficients are



n
�
�

f�
tn
� � Γn

Φn
� � f�

tn � 1
	 (22)

� n
� � � Λn

Φn
� � f�

tn � 1
	 (23)

� n
�
�

f�
cn
� � Σn

Φn
� � f�

tn � 1
 (24)
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Here An
� A(Tn), and partial derivatives are given explicitly as� �

H�
tn � 1

� H(∆n � 1 � r)H � (∆n ��� ) 	 (25)� �
H�
tn

� H(∆n ��� )H � (∆n � 1 � r) � H(∆n � 1 � r)H � (∆n ��� ) 	 (26)� �
H�

tn � 1

� � H(∆n ��� )H � (∆n � 1 � r) 	 (27)

and �
f�
tn

� cne � ∆n � � [1 � 2Ccne � ∆n � � ] 
�� 	 (28)�
f�

tn � 1

� �
�

f�
tn
	 (29)�

f�
cn

� � �
cn
� � f�

tn
 (30)

Note that under the replacement of H(t) by f � (t), we replace H � (t) by � f � (t)[1 �
f � (t)].

The stability of a p : q mode-locked state thus depends on the behavior of the
map

un � p
�  (p)un 	

where

un
�
�� � n�

n�
n

�	
and  (p) �  p � 1


p � 2 �����  0  (31)

If all of the eigenvalues of  (p) are less than one in magnitude, the corresponding
mode-locked solution will be stable. Various bifurcations of the solution can occur
when an eigenvalue of  (p) passes through the unit circle in the complex plane
under variation of a parameter. Specifically, we expect a saddle-node bifurcation
when

det(  (p) � I) � 0 	 (32)

where I is the 3 � 3 identity matrix, a period-doubling bifurcation when

det(  (p) � I) � 0 	 (33)

and a Neimark-Sacker bifurcation when

det(  (p)) � 1 	 (34)

provided the rank of  (p) is maximal [Wiggins, 1990].
As an example, it can be shown that det(  0 � I) � 0 when Φ0

� Γ0
� Λ0

� 0,
and thus this equation can be used to find saddle-node bifurcations of 1 : q mode-
locked solutions. It is interesting to note that the same equation would have been
obtained if we had ignored perturbations in the cn when deriving  n.
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This linear stability analysis of the firing map will not detect bifurcations that
occur when mode-locked solutions interact with discontinuities of the firing map.
Indeed, we expect non-smooth bifurcations in such an integrate-and-fire system
whenever a tangential crossing of the firing threshold occurs [Coombes et al., 2001].
We have observed a “grazing” bifurcation due to this phenomenon in the system
under study, in which varying a parameter causes a subthreshold local maximum
to increase through the firing theshold, leading to a new firing event that occurs at
some time earlier than usual. For mode-locked solutions, these non-smooth bifur-
cations are defined by

V(t
�
; tn 	 tn � 1 	 cn) � 1 	 (35)

and
V � (t �

; tn 	 tn � 1 	 cn) � 0 	 (36)

for some tn  t
�  tn � 1, where tn � 1 is the appropriate solution of V(tn � 1; tn 	 tn � 1 	 cn) �

1. Note that from (3) we have

V � (t; tn � 1 	 tn 	 cn) � � V(t; tn � 1 	 tn 	 cn) � A(t)
� e � (t � tn)H � (t � tn ��� )H(tn � tn � 1 � r)cne ��� ˆ�  (37)

In principle there could also be a type of grazing bifurcation in which varying
a parameter causes the voltage to reach the firing threshold but with dV 
 dt � 0 at
that time, rather than dV 
 dt � 0 [Coombes et al., 2001]. This would also cause the
solution to be lost in a non-smooth fashion and could be detected by appending
the condition V � (tn) � 0 to the p � 1 equations defining the mode-locked orbit (11)-
(12). However, we have not observed this type of bifurction in the system under
study, so any subsequent discussion of grazing bifurcations will refer to the type
described in the previous paragraph.

By considering both smooth bifurcations of the firing map and non-smooth
bifurcations of the underlying discontinuous flow, we can construct the Arnol’d
tongue structure of the periodically forced ghostbursting model neuron. For in-
stabilities of the firing map (saddle-node, period-doubling and Neimark-Sacker
bifurcations) we need to solve p � 2 nonlinear algebraic equations (p � 1 defining
the mode-locked solution and one of (32)-(34)). For the grazing bifurcation de-
scribed above we need to solve p � 3 equations, the extra two being (35) and (36).
For this type of bifurcation we need to take care with specifying between which
two existing firing times the graze occurs.

In practice, numerical integration of (1)-(2) is used to determine approximate
solutions of the simultaneous equations we wish to solve and these are used as
initial guesses for Newton’s method. Once Newton’s method has converged we
continue the solution in the appropriate system parameters using pseudoarclength
continuation [Doedel et al., 1991].

5 Numerical Results

In this section we show some numerical results, both from direct numerical simu-
lation of (1)-(2) and from numerical continuation of solutions of the simultaneous
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equations defining the edges of various Arnol’d tongues.
Figures 3, 6, 8 and 10 show the most positive Lyapunov exponent associated

with the linearised map (17). This is one way of indicating the asymptotic behavior
of the system at a particular point in parameter space. The maximal exponent is
defined in the usual way:

� � lim
n � � 1

n
log ���  (n)v � � 	 (38)

where v is randomly chosen vector in � 3 and  (n) is given in (31). At each point
in these Figures, only one vector v was chosen to calculate

�
, i.e. we did not av-

erage several values of
�

calculated using (38) with different v’s. In some regions
of these Figures there are “speckles” — this reflects multistability of the underly-
ing dynamical system in these regions. At each point in the parameter plane the
system (1)-(2) was integrated for 300 time units, and the first 10 firing times were
ignored as transients.

Figure 3 shows the maximal Lyapunov exponent as a function of both I0 and
I1 for � � 3. Other parameters are as in the caption of Fig. 2. We see that when
I1
� 0, i.e. there is no temporal modulation of the input current, the model moves

from periodic (
� � 0) to chaotic (

� � 0) behavior as I0 increases through approx-
imately 1  22. In fact, the model moves from periodic firing to bursting, which
is known to be chaotic [Laing & Longtin, 2002]. It can also be seen from Fig. 3
that when I1

� 0 and I0 is greater than about 1  38, the system behaves period-
ically. In this parameter region the model neuron is firing “doublets” — alter-
nating long and short ISIs — behavior seen in other models of this type of neu-
ron [Doiron et al., 2002, Laing & Longtin, 2002]. Also, when I1

� 0, the frequency
of firing for I0  1  22 increases as I0 is increased. Thus we see Arnol’d tongues
emanating from the I0 axis, the largest being the 1 : 1 tongue.

In Fig. 4 we see boundaries of several tongues, calculated using the ideas pre-
sented in Sec. 4. Here, as in other Figures, the Arnol’d tongues are constructed from
the union of smooth bifurcations of the firing map and non-smooth bifurcations of
the underlying discontinuous flow. Neither Neimark-Sacker nor period-doubling
bifurcations seem to play a large role in the determination of the tongue struc-
ture, although both are present. For example, there is period-doubling within the
2 : 1 tongue shown in Fig. 4, and a horizontal slice through this Figure at I0

� 1  22
is shown in Fig. 5. The first few period-doublings can be seen, which strongly
suggests that the system may pass through a period-doubling cascade to chaotic
behavior as parameters are varied. Neimark-Sacker bifurcations have previously
been found for this model and are discussed by Laing & Longtin [2002]. It is in-
teresting to note that the 2 : 1 border of Fig. 4 has two distinct pieces. Moreover,
within the upper 2 : 1 border we find 2(q � 1) : (q � 1) solutions that bifurcate in
turn from 2q : q solutions as one moves deeper into the interior of the 2 : 1 tongue.
In this, and indeed all Arnol’d tongue diagrams, we find excellent agreement be-
tween theory and direct numerical simulations.

In Fig. 6 we show the maximal Lyapunov exponent as a function of � and I1 for
I0
� 1  25. From Fig. 3 we see that when I1

� 0 and I0
� 1  25, the system is chaoti-

cally bursting. Thus Fig. 6 shows that in this situation, increasing the amplitude of
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the forcing can move the system from chaotic behavior to periodic, by forcing it to
become mode locked to the forcing. The minimum amplitude required for this de-
pends on the frequency of forcing. In Fig. 7 we plot the corresponding boundaries
of several tongues shown in Fig. 6.

Figure 8 also shows the maximal Lyapunov exponent in the ( � 	 I1) plane, but for
I0
� 1  15. For this value of I0, the system fires periodically when I1

� 0, in contrast
to the case shown in Fig 6. Here we clearly see Arnol’d tongues emanating from
the zero forcing amplitude line. The corresponding theoretical Arnol’d tongue
structure is shown in Fig. 9, and nicely illustrates another organizing feature of the
Arnol’d tongues; namely that those emanating from the zero forcing amplitude
line are arranged such that between a p : q and a p � : q � tongue one can expect to
see a p � p � : q � q � tongue.

Figure 10 shows the maximal Lyapunov exponent as a function of both � and
I0 for I1

� 0  4. Recalling that when I1
� 0, the system switches from periodic to

chaotic firing at I0
� 1  22, we see that the nonzero forcing amplitude can either

delay the onset of chaotic behavior as I0 is increased (for example, when � � 5)
or hasten it (for example, when � � 7). Finally in Fig. 11 we plot the correspond-
ing Arnol’d tongue structure for Fig. 10. For these parameter values we note the
extensive overlap of tongue borders, highlighting the multi-stable nature of mode-
locked solutions, thus accounting for the speckled nature of Fig. 10.

6 Discussion

We have exactly analysed the response of a model ghostbursting neuron to an ar-
bitrary periodic modulation of its input current, and compared these results with
those from numerical integration of the model undergoing sinusoidal forcing. The
agreement is very good. Despite the fact that the unforced system undergoes a
bifurcation from periodic firing to chaotic bursting as the injected current is in-
creased, its behavior when periodically forced can be largely understood by trac-
ing boundaries of Arnol’d tongues. The boundaries of these tongues correspond
to either local bifurcations of the firing time map, or non-smooth bifurcations of
the underlying flow, caused by its discontinuous nature.

Unlike many other bursting systems [Izhikevich, 2000] the ghostburster does
not have a wide range of timescales, and all ISIs lie in a relatively small interval.
We have only examined forcing frequencies for which the period of forcing is of
the same order of magnitude as typical ISIs of the unforced system. In biological
terms, this would correspond to frequencies around the range 50-500 Hz. Much
lower frequencies are presumably also of biological interest, but for these frequen-
cies there would typically be many spikes per period. The practical analysis of
mode-locked solutions in this situation would be hampered by the need to solve
large numbers of simultaneous nonlinear algebraic equations, and the correspond-
ing Arnol’d tongues would likely be very small. In this case it is likely that the
development of an alternative firing rate approach may be more appropriate.
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Figure 1: An example of “ghostbursting” in the model of Doiron et al. [2002]. The
somatic voltage is shown as a function of time. Note the progressive shortening
of successive ISIs during each burst, and the large ISIs that separate bursts. The
injected current is I � 10; other parameters are as in Doiron et al. [2002].
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Figure 2: Typical behavior of the model (1)-(2). The top panel shows A (dashed)
and V (solid), while the lower shows c. The neuron “fires” when V reaches 1 from
below. Compare with Fig. 1. Parameter values are B � 0  35 	 C � 0  9 	 � � 1 	 � �
0  4 	 r � 0  7 	 I0

� 1  27 	 I1
� 0  1 	 � � 3.
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Figure 3: Maximal Lyapunov exponent (color coded) as a function of I0 and I1, on
a mesh of size 300 � 300, for � � 3. Other parameters are as in the caption of Fig. 2.
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Figure 4: Arnol’d tongue diagram corresponding to Fig. 3, for a 1 : 1 mode-locked
solution (red), 2 : 1 solution (dark blue) and a 3 : 2 solution (light blue) Solid lines
indicate a saddle-node bifurcation of the firing map and dashed lines a non-smooth
grazing bifurcation of the underlying flow. The dotted line indicates a period-
doubling bifurcation of the 2 : 1 orbit (see Fig. 5). Note that there are two distinct
2 : 1 tongues.
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Figure 5: This shows 50 successive values of ci at each value of I1, for I0
� 1  22 and� � 3. The first few period-doublings are clear. Compare with Fig. 4.
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Figure 6: Maximal Lyapunov exponent (color coded) as a function of � and I1 for
I0
� 1  25. Other parameters are as in the caption of Fig. 2.
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Figure 7: Arnol’d tongue diagram corresponding to Fig. 6, for a 1 : 1 mode-locked
solution (red), 3 : 1 solution (dark blue) and a 3 : 2 solution (light blue).
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Figure 8: Maximal Lyapunov exponent (color coded) as a function of � and I1 for
I0
� 1  15. Other parameters are as in the caption of Fig. 2. Compare with Fig. 6.
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Figure 9: Corresponding Arnol’d tongue structure for Fig. 8. Note that between
a p : q and a p � : q � tongue one can expect to see a p � p � : q � q � tongue, for low
amplitude forcing.
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Figure 10: Maximal Lyapunov exponent (color coded) as a function of � and I0 for
I1
� 0  4. Other parameters are as in the caption of Fig. 2.
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Figure 11: Arnol’d tongue structure corresponding to Fig. 10.
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