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The importance of different timings of excitatory and inhibitory
pathways in neural field models

Abstract

In this paper we consider a neural field model comprised of two distinct populations of neurons,
excitatory and inhibitory, for which both the velocities of action potential propagation and the time
courses of synaptic processing are different. Using recently-developed techniques we construct the
Evans function characterising the stability of both stationary and travelling wave solutions, under
the assumption that the firing rate function is the Heaviside step. We find that these differences in
timing for the two populations can cause instabilities of these solutions, leading to, for example,
stationary breathers. We also analyse “anti-pulses,” a novel type of pattern for which all but a
small interval of the domain (in moving coordinates) is active. These results extend previous work
on neural fields with space-dependent delays, and demonstrate the importance of considering the
effects of the different time-courses of excitatory and inhibitory neural activity.

1 Introduction

Models of neural fields have been studied extensively over the last few decades [5, 19, 32, 33, 13, 30,
6, 7], in the hope that they will provide information about possible macroscopic patterns of activity
in the cortex. These patterns are on a much larger spatial scale than that of individual neurons, so
the models take a continuum limit in which space is continuous and the mean firing rate of neurons
is the variable of interest. Among some of the patterns of interest are stationary, spatially-localised
“bumps” of activity [1, 33, 30]. These are thought to be involved in working memory and feature
selectivity in the visual system [19]. Travelling waves of activity are also of interest. Experimentally,
these can be induced by stimulating pharmacologically treated neural tissue slices [20, 32]; they have
also been observed in several different areas of the cortex of awake animals, often when no stimula-
tion is present [10]. An important question is: Given a neural model, what sorts of spatiotemporal
patterns can exist and which features of the model are important in determining the existence and
stability of these patterns? In this paper we answer these questions, concentrating on delays and
differences in timing relating to neural processing.

It is well-known that different types of synaptic events have quite different time-courses. For
example, inhibitory GABAA synapses decay with a time constant of approximately 15ms, while ex-
citatory NMDA synapses have a time constant of approximately 80ms [27]. Also, the speed of prop-
agation of an action potential along an axon depends on the diameter of the axon, as well as whether
it is myelinated or not [27]. Measured axonal conduction velocities in the cortex can differ by a factor
of 10, depending on the type of neuron examined, and can be as low as 1m/s [38]. These velocities
are also use-dependent and can change over time [37]. Interestingly, anaesthetics have been shown
to increase conduction velocity in myelinated fibres — the consequences of this are discussed in [40].
In this paper we study a neural field model that explicitly includes differences in timing (in both the
speed of synaptic processing and the conduction speed) for two populations of neurons, excitatory
and inhibitory.

Many authors modelling neural systems have assumed instantaneous communication between
different parts of the domain [19, 33, 13, 30], but recently the effects of delays due to finite conduction
speeds and synaptic processing have been investigated. Some of these more recent studies have
involved rate models, in which the firing rate of neurons is the variable of interest [6, 7, 32, 22,
21], while several others have investigated networks of spiking neurons [2, 15, 17]. In all of these
papers only one type of neuron is considered, and hence there is only one delay. (Golomb and
Ermentrout [17] consider both excitatory and inhibitory neurons, but only one conduction velocity.)
In this paper we study the more realistic case of a network of excitatory and inhibitory neurons, each
of which have their own associated conduction velocities (and therefore delays), and their own time-
constants for synaptic processing. We would like to know whether this extra level of complexity
brings with it any new phenomena that cannot occur in simpler models.

The structure of the paper is as follows. In Sec. 2 we discuss the model integral equations and
show that for certain choices of connectivity functions, they can also be formulated as PDEs. In
Sec. 3 we discuss stationary (i.e. time-independent) localised solutions, while we discuss travelling
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solutions in Sec. 4. In both cases we use an Evans function approach [7] to determine the stability of
solutions and the conditions necessary for both drift and breathing bifurcations. In Sec. 5 we examine
the collision of two fronts, which leads us to study anti-pulses. We also briefly consider networks
in which excitatory connections have longer spatial range than inhibitory ones. We finish with a
discussion in Sec. 6.

2 The model

We analyze a neural field model with synaptic activity u � ue(x � t) � ui(x � t), x ��� , t ����� , where ua,
a �	� e � i 
 , is given by the integral equation

ua
���

a 
�� a � (1)

� a(x � t) ������ � dywa(y) f � u(x � y � t ��� y � � va) (2)

where “e” and “i” label excitatory and inhibitory populations, respectively. Here, the symbol 
 rep-
resents a temporal convolution in the sense that

( � 
 f )(x � t) ��� t

0

� (s) f (x � t � s)ds � (3)

The function �
a(t) (with �

a(t) � 0 for t � 0) represents a synaptic filter, whilst wa(x) � wa( � x � ) is a
synaptic footprint describing the anatomy of network connections and va is the speed of axonal
transmission for population a. The function f represents the firing rate of a single neuron. For the
rest of this paper we shall take

wa(x) � Γa

2 � a
e
��� x � � � a (4)

often choosing Γe
� 1 and Γi

� Γ. Thus Γ is a measure of the strength of the inhibitory population
relative to that of the excitatory. It should be noted that Golomb and Ermentrout [15] found some
qualitatively different results in systems with exponential coupling (as above) as opposed to systems
with other forms of coupling (Gaussian, square), and the same may happen for the system studied
here.

The interpretation of this model is that it is the value of the synaptic activity, u(x � t), that deter-
mines whether neurons at position x are firing at time t. If they are, action potentials from population
a then propagate at speed va to other positions in the network, where they are synaptically filtered
by other neurons in population a with function �

a. Thus we have assumed that interactions of this
form within a population are much stronger than those between populations. The two populations
only interact through the difference, ue � ui, driving both populations. This model is novel in its
consideration of different conduction velocities for the two types of neuron. In Sec. 6 we discuss a
more general model, in which we have different firing rate functions for both populations and the
possibility of synaptic interactions between the two populations of neurons, not just within them.

This non-local description of neural tissue neglects local delays (say within a hypercolumn of spa-
tial scale 1mm), though incorporates delays due to the finite velocity of action potential propagation
between distinct cortical regions. For conduction velocities in the range 1.5–7 m/s (typical of white
matter axons) these are expected to be significant over scales ranging from a single cortical area (of
spatial scale 10mm) up to the scale of inter-hemispherical collosal connections. Anatomical surveys
show that 80% of the synapses of long-range lateral connections connect directly between pyramidal
cells, which are thought to make excitatory synapses only [31]. The other 20% of the connections tar-
get inhibitory interneurons which in turn contact the pyramidal cells, and thus represent inhibitory
connections. Even though the inhibitory connections are outnumbered, the net effect of having two
distinct delayed pathways has often been ignored in modelling studies.
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2.1 A PDE description

For the particular choice of synaptic footprint (4) it is possible to obtain an equivalent PDE descrip-
tion of the integral equation (2), using ideas developed by Jirsa and Haken [23]. To see this we write

� a(x � t) � � �� �
� �� � Ga(x � y � t � s) � (y � s) ds dy � (5)

where
Ga(x � t) ��� (t � � x � � va)wa(x) (6)

and we use the notation � (x � t) � f � u(x � t). Introducing Fourier transforms of the following form

� a(x � t) � 1
(2 � )2

� �� �
� �� � e

� i(kx ��� t) � a(k ��� )dkd � � (7)

allows us to write � a(k ��� ) � Ga(k ��� ) � (k ��� ) � (8)

It is straightforward to show that the Fourier transform of (6) is

Ga(k ��� ) �	�
a( � � va 
 k) 
 � a( � � va � k) � (9)

where �
a(E) � ���

0
wa(x)e

� iExdx � �
Γa

2 � a � 1
� � 1

a 
 iE
� (10)

We have using (9) and (10) that

Ga(k ��� ) � Γa(1 
 i � �
� a)�
1 
 i � �
� a � 2 
 � 2

a k2
� (11)

where � a
� va � � a. We may now write (8) as� �

1 
 i � �
� a � 2 
 � 2
a k2 � � a(k ��� ) � Γa

�
1 
 i � �
� a � � (k ��� ) � (12)

which upon inverse Fourier transforming gives the PDE:�
tt � a 
 � � 2

a � v2
a
�

xx � � a 
 2 � a
�

t � a
� Γa

� � 2
a 
 � a

�
t � � � (13)

If we choose the synaptic response �
a(t) to be the exponential: �

a(t) ���
aΘ(t) exp( � � at), where Θ(t)

is the Heaviside function, defined by Θ(t) � 1 for t � 0 and zero otherwise, we can also write the
integral equation (1) as the differential equation

1�
a

�
ua�
t

� � ua(x � t) 
 � a(x � t) (14)

In numerical simulations of the model we integrate (13) and (14) using finite difference approxima-
tions to the spatial derivatives and work with the choice

f (u) � 1
1 
 e ��� (u � h) � (15)

where h can be thought of as a threshold and � as a gain parameter.
Note that if we set ve

� vi
� v and �

e
� �

i
� � , i.e. we remove the differences in timings for the

two neural populations, our system reduces to

u ��� 
�� � (16)

� (x � t) ��� �� � dyw(y) f � u(x � y � t ��� y � � v) (17)

where w(y) � we(y) � wi(y), which is typically of “Mexican hat” shape. This equation has been stud-
ied elsewhere [32, 6, 7], and provides a useful comparison. We now consider stationary spatially-
localised patterns, or “bumps.”
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Figure 1: A plot showing stationary bump width ∆ as a function of the threshold parameter h, as
determined by solving (20). Parameters are � e

� 1 � i
� 2, and Γ � 1.

3 Stationary bump solutions

For general time-independent solutions, Eqn. (14) gives ua(x � t) � � a(x � t), and u(x � t) can be replaced
by q(x), where q(x) satisfies

q(x) � ���� � dyw(y) f � q(x � y) � (18)

where w(x) � we(x) � wi(x). Throughout the rest of this paper we shall focus on the particular choice
of a Heaviside firing rate function, f (u) � Θ(u � h). In this case, once the position of the threshold
crossings are known, the explicit dependence on q of the right hand side of (18) is removed. Apart
from allowing an explicit construction of travelling bumps and waves this choice also allows for a
direct calculation of wave stability via the construction of an Evans function [7]. Although often
chosen for mathematical reasons the Heaviside function may be regarded as a natural restriction of
sigmoidal functions (such as (15)) to the regime of high gain ( � ��� ). Importantly, numerical sim-
ulations show that many of the qualitative properties of solutions in the high gain limit are retained
with decreasing gain [11, 32, 6].

3.1 Existence

One-bump solutions with q(x) � h for 0 � x � ∆ are given by

q(x) � � x

x � ∆
dyw(y) �

��� �� 1
2 � � ex � � e � e(x � ∆) � � e � � Γ

�
ex � � i � e(x � ∆) � � i �	� x � 0

1
2 � Γ � e(x � ∆) � � i 
 e � x � � i � 2 � � �

e(x � ∆) � � e 
 e � x � � e � 2 �
� 0 � x � ∆
1
2 � � e � (x � ∆) � � e � e � x � � e � � Γ

�
e � (x � ∆) � � i � e � x � � i �	� x � ∆

� (19)

Note that the system (18) is translationally invariant, so we can choose one end point of the bump to
be at x � 0. The width of the bump is then determined by the self-consistent solution of q(0) � h �
q(∆), which gives the equation:

h � 1 � e � ∆ � � e

2
� Γ

�
1 � e � ∆ � � i �

2
� (20)

In Fig. 1 we show a typical plot of bump width ∆ as a function of the threshold parameter h, for par-
ticular values of the other parameters. We note that the differences in timings for the two populations
do not affect the existence of stationary patterns, only their stability, as seen below.
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3.2 Stability via the Evans function

We can find the stability of stationary one-bump solutions by constructing the associated Evans func-
tion. Evans functions were first developed to study the stability of travelling waves in PDEs [12]. In
essence the Evans function is an analytic tool whose zeros correspond to eigenvalues of the linearised
problem obtained after considering perturbations around a travelling wave solution. Moreover, the
order of the zero and the multiplicity of the eigenvalue match. A recent review of their use in de-
termining the stability of travelling pulses in dissipative systems can be found in [25]. This theory
has recently been extended to cover travelling waves in systems with nonlocal interactions, such as
studied here [26, 7, 34].

Generalising results in [7] we may construct the Evans function of the stationary one-bump solu-
tion as E(

�
) � det(A (

�
) � I), where

A (
�

) � �
A(0 � � ) A(∆ � � )
A(∆ � � ) A(0 � � ) � � (21)

where A( � � � ) � Ae( � � � ) � Ai( � � � ) and

Aa( � � � ) � 1� q � (0) ��� � a( � i
�

)wa( � )e
���
	 � va � � � a(k) � ���� �

�
a(x)e

� ikxdx � (22)

For our choice of an exponential synaptic response �
a(t) �	�

aΘ(t) exp( � � at), we have simply that

� � a( � i
�

) � 1
1 
 � � � a

� (23)

Note that we can obtain q � (0) by using

q � (x) � we(x) � we(x � ∆) � Γ[wi(x) � wi(x � ∆)] (24)

The discrete spectrum for the one-bump solution is then given by the zeros of the Evans function
E(

�
) � 0, so that a solution is stable if the spectrum only resides in the left hand complex plane

(i.e. Re
� � 0). Note that a zero eigenvalue (satisfying E(0) � 0) is always expected due to transla-

tional invariance of the one-bump solution (with the corresponding eigenfunction q � (x)). One natural
way to find the zeros of E(

�
) is to write

� � � 
 i � and plot the zero contours of Re E(
�

) and Im E(
�

)
in the ( � ��� ) plane. The Evans function is zero where the contours intersect. Note that it is sufficient
for us to determine the location of the isolated spectrum for wave stability, since the systems under
study in this paper are such that the real part of the continuous spectrum has a uniformly negative
upper bound [7].

3.3 Examples

We now show several examples. If � e
� 1 � � i

� 2 and Γ � 1, we see from Fig. 1 that at h � 0 � 1 we
have two stationary bumps with widths ∆ � 0 � 64701 and ∆ � 2 � 5719. If we set � e

� �
i
� 1 and

vi
� 1 and decrease ve, we find that the wide stationary bump becomes unstable due to a single

eigenvalue passing from the left half plane to the right half plane along the real axis. This is shown
in Fig. 2, where we plot contours of the real and imaginary parts of the Evans function over part
of the complex (

�
) plane for ve

� 0 � 25 and ve
� 0 � 15. The Evans function has zeros where the two

contours cross. Note that we always have a zero at the origin, as expected. This instability manifests
itself as a transition to a moving, or drifting, bump, as shown in Fig. 3. Here we run the system with
ve

� 0 � 25 up until t � 100, when we switch to ve
� 0 � 15, and add a small random perturbation to the

solution. We see that the previously stable stationary bump is replaced by a stable moving bump. If
the position of a bump of activity is used to encode some aspect of an action to be performed in the
future [14], this instability is undesirable. For simulations of the full system we use (15) as the firing
rate function with � � 150. This moving bump will be discussed later in Sec. 4.2.

Conversely, by holding ve constant and decreasing vi we can make the wide stationary bump in
Fig. 1 go unstable through a Hopf bifurcation, in which a pair of complex eigenvalues pass through
the imaginary axis. This is shown in Fig. 4, where the Evans function is represented for vi

� 0 � 4 (left)
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Figure 2: Zero contours of the real part (blue, dashed) and the imaginary part (red, solid) of the
Evans function of a stationary bump for ve

� 0 � 25 (left) and ve
� 0 � 15 (right). Other parameters are� e

� 1 � � i
� 2 � Γ � 1 � � i

�	�
e
� 1 � h � 0 � 1 � vi

� 1.
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Figure 3: Instability of a stationary bump due to an eigenvalue passing through zero. At t � 100, ve
was changed from 0.25 to 0.15 (and a small random perturbation was added). ue is plotted, red is
high, blue is low. Other parameters are � e

� 1 � � i
� 2 � Γ � 1 � � i

�	�
e
� 1 � h � 0 � 1 � vi

� 1. The domain
was discretised with 200 spatial points and periodic boundary conditions were used.
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Figure 4: Zero contours of the real part (blue, dashed) and the imaginary part (red, solid) of the
Evans function for a stationary bump for vi

� 0 � 4 (left) and vi
� 0 � 2 (right). Other parameters are

ve
� 1 � � i

�	�
e
� 1 � h � 0 � 1 � � e

� 1 � � i
� 2 and Γ � 1.

and vi
� 0 � 2 (right). We see that between these values, a complex pair of eigenvalues moves into the

right half plane. The instability is shown in Fig. 5, where we switch vi from 1 to 0.2 halfway through
the simulation. We see an oscillatory instability develop, but it appears to be subcritical, and the
system moves to the all-off state. Clearly this is also undesirable in the context of working memory.

These instabilities are summarised in Fig. 6, where we plot the curves of drift instabilities and
Hopf bifurcations in the ve � vi plane. Note that we have followed only the curve of Hopf bifurcations
corresponding to the imaginary roots with smallest imaginary part. Although we have not proven
it, numerical computation of the Evans function at various points in the ve � vi plane suggests that
the stationary bump is always stable in the wedge between the two curves.

We can also find supercritical Hopf bifurcations if we relax the restriction that � i
���

e
� 1, i.e. if

we allow different time-courses for the synaptic processing in the two populations. In Fig. 7 we
show the effect of decreasing ve from 0.8 to 0.5, where � i

� 1 � 8 and � e
� 3. Oscillations appear, and

their amplitude rapidly saturates. Presumably, by changing other parameters it would be possible to
observe higher codimension bifurcations, such as the Takens-Bogdanov (double zero eigenvalue) [9].

3.4 Discussion

It is possible to show that bifurcations of a stationary bump with an eigenvalue passing through zero
are not possible for (1)-(2) if ve

� vi, � e
���

i, and � e ��� i (as here) i.e. this is a novel instability due to
the differences in timings for the two populations. To show this, one calculates E(

�
) and obtains

E(
�

) � 1
(1 
 � � � )2

1� q � (0) � 2
���

(1 
 � � � )w(∆) � (
� � � )w(0) � 2 ��� w(∆)e ��� ∆ � v � 2 � (25)

where ve
� vi

� v, � e
� �

i
� � , and we have used the fact that w(0) � w(∆). Clearly E(0) � 0 � If

w(∆) � 0, we also have that E � ( � ) � 0 for all
� � 0, and hence there can be no other positive real roots

of E(
�

). The condition w(∆) � 0 means that we are on the upper branch in Fig. 1.
Similarly, it is possible to show that there are no purely imaginary roots of E(

�
). We substitute� � i � into (25), where � � � ������ 0 and set the real and imaginary parts equal to zero, obtaining

[w(∆)]2(1 � cos 	 ) � ( � � � )2[w(∆) � w(0)]2 � 0 (26)
w(∆) � w(∆) sin 	 � 2( � � � )[w(∆) � w(0)] 
 � 0 (27)

where 	 � 2 � ∆ � v. Assuming that w(∆) �� 0, solving (27) for w(∆) � w(0) and substituting into (26) we
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Figure 5: Instability of a stationary bump due to a subcritical Hopf bifurcation. At t � 70 we switched
vi from 1 to 0.2 (and a small random perturbation was added). Other parameters are ve

� 1 � � i
� �

e
�

1 � h � 0 � 1 � � e
� 1 � � i

� 2 and Γ � 1. ue is plotted, with red high and blue low. 200 spatial points were
used.
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Figure 6: The curve of drift instabilities, defined by E � (0) � 0 (solid), and the curve of Hopf bifurca-
tions, for which E(

�
) has a conjugate pair of purely imaginary roots (dashed). Other parameters are�

e
���

i
� 1 � h � 0 � 1 � � e

� 1 � � i
� 2 and Γ � 1. The stationary bump appears to be stable in the wedge

between the two curves and unstable otherwise.
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Figure 7: Supercritical Hopf bifurcation of a stationary bump. At t � 100 we switched ve from 0.8
to 0.5 (and a small perturbation was added). 200 spatial points were used. Other parameters are� e

� 1 � � i
� 2 � � i

� 1 � 8 � � e
� 3 � vi

� 1 � h � 0 � 1 � Γ � 1 � ue is plotted; red high, blue low.

obtain
[w(∆)]2

�
1 � cos 	 � (1 � 4) sin2 	 � � 0 (28)

which is only true if 	 � 0 � 2 � � 4 � � � � Substituting these values of 	 back into (27) we see that it cannot
simultaneously be satisfied, i.e. E(

�
) has no purely imaginary roots. If w(∆) � 0 the only root of E(

�
)

is
� � 0, which corresponds to the saddle-node bifurcation in Fig. 1. Thus both types of instabilities

are a result of the differences in timings for the two populations.
Bifurcations of the types discussed in this section have recently been observed in a system with

one neural population but in which the threshold is a dynamic variable [8]. There, the authors also
saw a stationary bump start to move as an eigenvalue moved through zero, and stationary breathers
caused by a supercritical Hopf bifurcation. Breathers have also been observed in neural field equa-
tions by Bressloff et al. [4, 13], but in those papers the authors made the domain inhomogeneous,
inducing a bump to occur over a spatially-localised input. During normal awake operation the cor-
tex continuously receives inhomogeneous inputs, so the response of a neural model with such inputs
is of interest. However, under general anaesthesia the cortex will receive less input (and conduction
velocities may be increased [40]) so it is also of interest to study the existence and stability of patterns
in this situation.

Blomquist et al. [1] recently studied a two-layer neural field model that can be best thought of as a
generalisation of that studied by Pinto and Ermentrout [33]. In contrast with Pinto and Ermentrout,
Blomquist et al. included inhibitory-to-inhibitory connections and did not assume that the firing
rate function for the inhibitory population was linear. They did not include conduction delays, but
obtained both stable and unstable breathers that were created in Hopf bifurcations, as seen here.

The common theme between our results and those of Coombes and Owen [8], Bressloff et al. [4, 13]
and Blomquist et al. [1] is the presence of a second variable describing either another population of
neurons or a local field such as an adaptation current.

4 Travelling wave solutions

We now discuss travelling wave solutions, both fronts (which connect a region of high activity to one
of low activity) and pulses (travelling bumps, before and after which the medium is quiescent). We
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introduce the coordinate � � x � ct and seek functions U( � � t) � u(x � ct � t) that satisfy the full integral
model equations. In the ( � � t) coordinates, these integral equations can be expressed as U( � � t) �
Ue( � � t) � Ui( � � t), with

Ua( � � t) � � �� � dywa(y) � �
0

ds � a(s) f � U( � � y 
 cs 
 c � y � � va � t � s ��� y � � va) � (29)

The travelling wave is a stationary solution U( � � t) � q( � ) (independent of t), that satisfies q( � ) �
qe( � ) � qi( � ), with

qa( � ) � � �
0

ds � a(s) � a( � 
 cs) � (30)

where

� a( � ) � ���� � dywa(y) f � q( � � y 
 c � y � � va) � (31)

4.1 Fronts

We look for travelling front solutions such that q( � ) � h for � � 0 and q( � ) � h for � � 0. It is then a
simple matter to show that (for the special case of the Heaviside firing rate function chosen earlier)

� a( � ) � ��� �	 � (1 � c � va) dywa(y) � Γa exp (m �
a � ) � 2 � � 0� �	 � (1 � c � va) dywa(y) � Γa

�
1 � exp (m �

a � ) � 2 � � � 0
� m �a � � a

c � va
(32)

The choice of origin, q(0) � h, gives an implicit equation for the speed of the wave as a function of
system parameters:

2h � 1
1 � cm �

e � � e
� Γ

1 � cm �
i � � i

c � 0 (33)

2h � 2(1 � Γ) 
 Γ
1 � cm �

i � � i
� 1

1 � cm �
e � � e

c � 0 (34)

Both equations may be written as quadratic equations in c. To ensure that lim 	�� � � q( � ) � h, we must
have

���
w(y)dy � 1 � Γ � h. We note that a standing front (c � 0) occurs when 2h � 1 � Γ. Also, it

is not necessary to have different propagation velocities and synaptic processing time-constants for
such fronts to exist; they are seen robustly in simpler systems where these parameters are equal [32].

Once again the Evans function is easily obtained using the techniques described in [7] and may
be written in the form

E(
�

) � 1 � H (
�

)
H (0)

� (35)

where H (
�

) � He(
�

) � Hi(
�

) and

Ha(
�

) � � �
0

dywa(y) � a(y � c � y � va)e
��� y � c � (36)

For the exponential synaptic response we have simply that

Ha(
�

) � �
aΓa

2 � a

�
1� a

 � a

�
1
c

� 1
va � 
 �

c � � 1 � (37)

For a standing front it is a simple matter to check that E(
�

) � 0 when� � Γ � e � e � � i � i� i � Γ � e
� (38)

Hence, there is a bifurcation of the standing front when Γ � e � e
� �

i � i and 2h � 1 � Γ. To determine the
type of bifurcation, one examines various partial derivatives of the functions in (33)-(34), evaluated
at the bifurcation point (see, e.g. Sec. 3.1 of [41]). It can be determined that the bifurcation is a
simultaneous pair of transcritical bifurcations, each creating a branch with c �� 0. (This bifurcation
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Figure 8: (a): Speed of a front for 2h � 1 � Γ, in blue (h � 0 � 1 � Γ � 0 � 8). Solid lines are stable while
dashed are unstable, as determined by the Evans function. Note the pair of transcritical bifurcations
at � e

���
i � i � (Γ � e). (b): Speed of a front when 2h �� 1 � Γ, in blue (h � 0 � 1 � Γ � 0 � 85). The red curves

correspond to travelling pulses, discussed later. For Γ � 0 � 8, the blue curves in the left panel break
in the opposite sense to those shown in the right panel. Other parameters are � i

� 0 � 1, ve
� vi

� 1,� i
� 2 and � e

� 1.

was misidentified as a pitchfork bifurcation in Refs. [3, 7].) The transcritical bifurcations are shown
in Fig. 8 (left) for specific values of the other parameters. When the condition 2h � 1 � Γ does not
hold, the transcritical bifurcations generically break into a single saddle-node bifurcation, as seen
in Fig. 8 (right). Similar results have been seen before in a one-layer model with a linear recovery
variable [7, 3]. Although we have not seen Hopf bifurcations of fronts, it is known that making the
domain inhomogeneous can induce these [4].

Figure 9 shows another plot of front speed, now as a function of h. We see that for these parameter
values there is a minimum speed below which stable fronts do not exist. We will return to this
figure later in Sec. 5. Finally, we see in Fig. 10 a result of choosing different parameters. For these
parameters, only fronts with slow enough speeds are stable. This is in strong contrast with results
from networks with purely excitatory coupling [2, 15] in which travelling structures cannot travel
with arbitrarily slow speeds.

4.2 Travelling Pulses

We now study travelling pulses, which are bumps of the form studied in Sec. 3, but which have speed
c �� 0. The travelling pulses have the form q( � ) � h for � � [0 � ∆] and q( � ) � h otherwise. In this case
the expression for � a( � ) is given by [6]

� a( � ) �
����� ����
Fa

� � 	
1 � c � va

� ∆ � 	
1 � c � va � � � 0

Fa

�
0 � 	

1 � c � va � 
 Fa

�
0 � ∆ � 	

1 � c � va � 0 � � � ∆

Fa

� 	 � ∆
1 � c � va

� 	
1 � c � va � � � ∆

� (39)

where

Fa(x1 � x2) � � x2

x1

wa(y)dy � Γa

�
exp ( � x1 � � a) � exp ( � x2 � � a) �

2
� x2 � x1 � 0 � (40)

The dispersion relation c � c(∆) is then implicitly defined by the simultaneous solution of q(0) � h
and q(∆) � h (∆ � 0). For an exponential synapse these two conditions are
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2h � 2(1 � Γ) 
 2
�
Γ exp( � � i∆ � c) � exp ( � � e∆ � c) �


 �
exp ( � � e∆ � c) � 1

1 � cm �
e � � e � 
 �

exp ( � � e∆ � c) � exp ( � m �
e ∆)

1 � cm �
e � � e �

� Γ
�
exp ( � � i∆ � c) � 1

1 � cm �
i � � i � � Γ

�
exp ( � � i∆ � c) � exp ( � m �

i ∆)
1 � cm �

i � � i � (41)

2h � �
1 � exp (m �

e ∆)
1 � cm �

e � � e � � Γ
�
1 � exp (m �

i ∆)
1 � cm �

i � � i � (42)

Note that as c � 0, both (41) and (42) reduce to the equation governing the width of a stationary
bump, (20), as expected.

The Evans function takes the same form as in Sec. 3.2, with (21) replaced by

A (
�

) � �
A(0 � � ) B(0 � � )
A(∆ � � ) B(∆ � � )� � (43)

where A( � � � ) � Ae( � � � ) � Ai( � � � ), B( � � � ) � Be( � � � ) � Bi( � � � ), and

Aa( � � � ) � 1
c � q � (0) � � �	 � (1 � c � va)

dywa(y) � a( � � � c 
 y � c � y � va)e
��� (y � 	 ) � c (44)

Ba( � � � ) � 1
c � q � (∆) � ���

( 	 � ∆) � (1 � c � va)
dywa(y) � a((∆ � � ) � c 
 y � c � � y � � va)e

��� (y � ( 	 � ∆)) � c � (45)

Explicitly, we have

Aa(0 � � ) � �
aΓa

2 � q � (0) � (c � � a � m �
a 
 � � a)

(46)

Aa(∆ � � ) � exp [ � ∆(va 
 � a
�

) � ( � a(va � c))]Aa(0 � � ) � (47)

Ba(0 � � ) � �
aΓa

2 � q � (∆) �
�

exp [ � ∆( � a 
 �
) � c] � exp [ � ∆(va 
 � � a) � ( � a(va 
 c))]

c � � a � m �
a � � � a
 exp [ � ∆( � a 
 �

) � c]
c � � a � m �

a 
 � � a

�
(48)

B(∆ � � ) � �
�
�
�
q � (0)
q � (∆)

�
�
�
� A(0 � � ) � (49)

Note that as c � 0, the matrix (43) reduces to the matrix associated with the stability of a stationary
bump, (21), as expected. To evaluate the derivatives of q in (46)-(49) we use q � � q �e � q �i, where
q �a �	�

a(qa � � a) � c. Specifically, we have

� a(0) � Γa[1 � exp ( � m �
a ∆)] � 2 � � a(∆) � Γa[1 � exp (m �

a ∆)] � 2 � (50)

qa(0) � Γa

�
1 � exp ( � � a∆ � c) 
 1 � exp ( � � a∆ � c)

2(cm �
a � � a � 1) 
 exp ( � m �

a ∆) � exp ( � � a∆ � c)
2(cm �

a � � a � 1) � (51)

and

qa(∆) � Γa[1 � exp (m �
a ∆)]

2(1 � cm �
a � � a)

(52)

We now discuss several examples. In Fig. 11 we plot the speeds and widths of a pair of travelling
pulses (one stable and one unstable) as ve is varied. The other parameter values are the same as
those in Fig. 3, and the instability seen in that figure can can now be understood with reference to
Fig. 11. For ve

� 0 � 25 there is no stable travelling pulse, but for ve
� 0 � 15 there is one, with speed

c � 0 � 05 � (Of course, a similar stable pulse moving in the opposite direction also exists.) Interestingly,
this pair of stable pulses seem to be created in a pair of transcritical bifurcations, in the same way
that fronts were created in Sec. 4.1. This is in contrast with the pitchfork bifurcation in speed seen in
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line indicates stability, while a dashed one indicates instability. There is a Hopf bifurcation on the top
branch. Other parameters are Γ � 1 � � e
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other neural field models [29]. Note that for these parameters a moving front does not exist, as the
condition 1 � Γ � h does not hold.

In Fig. 12 we show the width and speed of a moving pulse as a function of h. For a range of values
of h, there are two pulses, a fast, wide one and a slow, narrow one. By plotting the Evans function on
the upper branch (not shown) we see that there is a Hopf bifurcation as h increases through h � 0 � 07.
We use this information to indicate the stability of the branches in Fig. 12. This Hopf bifurcation
appears to be subcritical. In Fig. 13 we show a simulation that starts with h � 0 � 05, for which the
moving pulse on the upper branch in Fig. 12 is stable. At t � 100, h is switched to 0.07. The pulse
starts to oscillate, but the oscillations grow in magnitude until the pulse is destroyed. Other families
of travelling pulses are shown in Fig. 8 (red curves).

Supercritical Hopf bifurcations of moving pulses, leading to travelling breathers or “lurching”
waves, have been observed in several other neural systems [8, 15]. However, we could not find
parameters for the system under study for which this type of bifurcation occurred.

5 Other solutions

In this section we discuss colliding fronts, “anti-pulses,” and the patterns seen when inverted Mexican-
hat connectivity is used. Returning to Fig. 9, we see that for these parameters and h in some interval
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Figure 13: A subcritical Hopf bifurcation of a moving pulse. At t � 100, h is switched from 0.05 to
0.07. ue is plotted, red high and blue low. Periodic boundary conditions are used. Other parameters
are as in Fig. 12.
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Figure 14: A wide moving pulse for which the back travels faster than the front. The eventual solu-
tion is a moving pulse, of the type analysed in Sec. 4.2. ue is plotted, with black being high and white
low. Periodic boundary conditions are used. h � 0 � 115 and other parameters are as in Fig. 9.

whose lower endpoint is h � 0 � 075, if we were to start a wave consisting of a large active interval
the “front” of the wave would move more slowly than the “back.” The back would eventually catch
up with the front. A simulation showing this can be seen in Fig. 14, and we see that the result is a
moving pulse from the stable family shown in Fig. 8 (b).

If, however, we choose h slightly less than 0.075, the opposite will occur, i.e. the back moves more
slowly than the front and the active region expands in width. On a periodic domain this occurs until
the front meets the back, from behind, as seen in Fig. 15 (top). We call the final solution a moving
“anti-pulse,” since all but a small part of the domain is active.

The formation of a moving pulse by the catching up of a back to a front was seen in Ref. [7],
but these authors did not mention the formation of anti-pulses, although they are most certainly
expected even when ve

� vi and � e
�	�

i. We now analyse anti-pulses.
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are as in Fig. 9.

17



5.1 Anti-pulses

For anti-pulses, q( � ) � h for 0 � � � ∆ and q( � ) � h otherwise. Using
� �� � wa(x)dx � Γa, we have

� a( � ) �
����� ����

Γa � Fa

� � 	
1 � c � va

� ∆ � 	
1 � c � va � � � 0

Γa � Fa

�
0 � 	

1 � c � va � � Fa

�
0 � ∆ � 	

1 � c � va � 0 � � � ∆

Γa � Fa

� 	 � ∆
1 � c � va

� 	
1 � c � va � � � ∆

� (53)

where Fa is given by (40). The conditions q(0) � h � q(∆) are then easily determined using q( � ) �
qe( � ) � qi( � ) and

qa( � ) � ���
0

�
a(s) � a( � 
 cs)ds (54)

and the fact that these integrals have essentially been done in the determination of (41)-(42). They
are

2h � � 2
�
Γ exp( � � i∆ � c) � exp ( � � e∆ � c) �

�
�
exp ( � � e∆ � c) � 1

1 � cm �
e � � e � �

�
exp ( � � e∆ � c) � exp ( � m �

e ∆)
1 � cm �

e � � e �

 Γ

�
exp ( � � i∆ � c) � 1

1 � cm �
i � � i � 
 Γ

�
exp ( � � i∆ � c) � exp ( � m �

i ∆)
1 � cm �

i � � i � (55)

and

2h � 2(1 � Γ) �
�
1 � exp (m �

e ∆)
1 � cm �

e � � e � 
 Γ
�
1 � exp (m �

i ∆)
1 � cm �

i � � i � (56)

The width and speed of anti-pulses is determined by the simultaneous solution of (55)-(56). The
Evans function for antipulses has the same form as that for pulses, since only the fact that q(0) �
q(∆) � h is used, the sign of q( � ) � h for � � (0 � ∆) being irrelevant.

In fact, the analysis of anti-pulses does not bring any new results, as the system under study is
symmetric about the “balanced” parameter point 2h � 1 � Γ, at which there are stationary fronts
(see Sec. 4.1). If we make the replacement h � 1 � Γ � h in (55)-(56), we obtain (41)-(42), and vice
versa. Thus, for a given value of h, say h

�

, at which there exists a pulse, there exists a corresponding
antipulse when h � 1 � Γ � h

�

(all other parameters being the same). It will have the same width (as
determined by the zeros of q( � ) � h), speed and stability as the pulse.

5.2 Inverted Mexican hat connectivity

Although much work on pattern formation in neural field models has used one layer of neurons
with Mexican-hat connectivity, for which inhibitory connections have a wider spatial extent than
excitatory, there is evidence that the opposite is true, at least in some contexts [39]. We now briefly
analyse (1)-(2) with coupling function (4), but with � e � � i, i.e. with the excitatory connections having
a greater spatial extent than the inhibitory, which we refer to as inverted Mexican-hat connectivity.

As before, we can find families of moving pulses. In Fig. 16 we show solutions of (41)-(42) as h
is varied for inverted Mexican-hat connectivity. Note that not every point on the curves in Fig. 16
corresponds to a one-pulse solution, as some of the solutions may have q( � ) � h for more than one
interval. In Fig. 17 we show a stable travelling one-pulse solution from the curve in Fig. 16 (top
panel), and the complex transients that can occur when two such pulses interact (bottom panel, same
parameters). For this connectivity, we can also obtain families of travelling fronts (not shown).

6 Discussion

We have studied stationary and travelling bump and front solutions of a two-layer neural field model
with different conduction velocities and synaptic processing time-constants for the two populations.
By varying these parameters we have found bifurcations of stationary bumps to both travelling and
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breathing bumps. These bifurcations can be found by explicitly constructing an Evans function for
these solutions and, as shown in Sec. 3.4, they cannot occur if the synaptic time-constants and con-
duction velocities are the same for both layers.

Our work has produced results similar to those of several other groups. For example, Curtu
and Ermentrout [9] recently studied an extension of the system first discussed by Hansel and Som-
polinsky [19]. This model had one neural population, Mexican-hat type connectivity, an adaptation
variable and no delays. The authors found travelling and standing waves, and stationary, spatially-
periodic patterns. However, their results were derived by linearising about the spatially-uniform
state, and are thus unable to say anything regarding spatially-localised patterns of the type studied
here.

Golomb and Ermentrout [15] studied the effects of delays on propagating activity. They included
a fixed delay and found that increasing this led to lurching waves. (We did not include a fixed delay,
but see below.) However, they used a spiking neural network in which each neuron could only
fire once, and only excitatory coupling. Because of this, they could not find stationary or arbitrarily
slowly moving patterns, as we have. In later work [16, 17] these authors studied a network with
both excitatory and inhibitory populations but did not include conduction delays for most of their
analysis, and still allowed neurons to fire at most once, thus precluding the existence of stationary
patterns. One interesting result that they found was the coexistence of both fast and slow propagating
pulses, which we have not found. However, these authors found that once neurons were allowed to
fire multiple times this bistability disappeared, with only the slow pulses persisting.

Blomquist et al. [1] studied a two-layer neuronal network without delays (an extension of that
studied by Pinto and Ermentrout [33]), and found both subcritical and supercritical Hopf bifurca-
tions of stationary bumps. Coombes and Owen [8] studied a single neural layer with Mexican-hat
connectivity and a variable representing spike frequency adaptation. They found both drifting and
breathing bifurcations of stationary bumps, as we have, and also supercritical Hopf bifurcations of
travelling bumps, which we have not found. We now discuss possible extensions of the work pre-
sented here.

One extension would be to break the homogeneity of the domain (reflected by the appearance of
x and y in (2) in only the combination x � y) as Jirsa and Kelso have done [24], but for the system
studied here. These authors modelled heterogeneity by putting a direct connection from one part of
the domain to another and studied the effect of varying the length of this connection.

Roxin et al. [35] recently studied a generalisation of a neural field model first presented by Hansel
and Sompolinsky [19] in which there is a fixed delay in the nonlinear term, as opposed to the space-
dependent delays that we have. This delay is meant to mimic those due to synaptic and dendritic
processing. These authors found a wide variety of spatiotemporal patterns. Including such a term
in our equations would involve replacing u(x � y � t ��� y � � va) in (2) by u(x � y � t ��� y � � va � D), where
D is a fixed positive delay. As mentioned above, this type of delay was studied by Golomb and
Ermentrout [15]. As an example of the effect of including such a term, it is straightforward to show
that the equations governing the speed of a front (33)-(34) would be modified to

2h � exp (Dcm �
e )

1 � cm �
e � � e

� Γ exp (Dcm �
i )

1 � cm �
i � � i

c � 0 (57)

2h � 2(1 � Γ) 
 Γ exp(Dcm �
i )

1 � cm �
i � � i

� exp (Dcm �
e )

1 � cm �
e � � e

c � 0 (58)

and it seems likely that all of the calculations performed here could also be done with such a term in-
cluded. Hutt [21] discussed a similar idea, but wrote the nonlinear term in (2) as a linear combination
of a term whose delay depends on distance and one whose delay is fixed.

Further extensions could include verifying some of the predictions here with a network of spiking
neurons. This would be computationally intensive due to the inclusion of delays, but similar work
has been performed [15]. An important extension that would make more valid the results here and
elsewhere [7, 8], would be to derive similar results for a continuous firing rate function, f [9]. Also
important is the consideration of a two-dimensional domain since the cortex is best thought of as a
two-dimensional sheet of interconnected neurons. There have been recent results on patterns (multi-
bump solutions, breathers and spiral waves) in two-dimensional neural fields [30, 13, 28], but none
of these models have included even one conduction velocity or delay. While it seems that including a
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finite conduction velocity does not destabilise travelling bumps or fronts in one spatial dimension [5,
15], it is not clear whether the same holds in two dimensions.

A more general model, more clearly differentiating the two neural populations, would be

ua
���

a 
 � a � a �	� e � i 
 (59)

� e(x � t) � � �� � dywee(y) fe � ue(x � y � t � � y � � ve)

� � �� � dywie(y) fi � ui(x � y � t ��� y � � vi) (60)

� i(x � t) � � �� � dywei(y) fe � ue(x � y � t ��� y � � ve)

� � �� � dywii(y) fi � ui(x � y � t � � y � � vi) (61)

Here we not only have different conduction velocities ve and vi and different synaptic filters �
e and�

i, but different firing rate functions fe and fi and four coupling functions, wee � wei � wie and wii instead
of the two in (1)-(2). Choosing fa(u) � Θ(u � ha), i.e. using the Heaviside function as the firing rate
function, with two different thresholds, we should be able to analyse (59)-(61) in much the same way
as we have analysed (1)-(2) in this paper. Some of the analysis in [8], in which the threshold is a
dynamic variable, should be applicable to the analysis of (59)-(61) when he �� hi. The model (1)-(2)
can be considered as intermediate between (59)-(61) and previous models in which there is only one
population of neurons, one synaptic filter, and one conduction velocity [6, 7].

Guo et al. [18] have recently studied a pair of coupled delay-differential equations that are sim-
ilar in structure to (59)-(61), as have Shayer and Campbell [36], although those systems have no
spatial structure. Note that after setting ve

� vi
� � in (60)-(61) and choosing �

e(t) � Θ(t)e � t and�
i(t) � Θ(t)e � t � � � � we recover the model originally presented by Pinto and Ermentrout [33] and later

analysed by Blomquist et al. [1].
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