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Abstract

Using the dynamics of information propagation on a network as our illustrative
example, we present and discuss a systematic approach to quantifying hetero-
geneity and its propagation that borrows established tools from Uncertainty
Quantification, specifically, the use of Polynomial Chaos. The crucial assump-
tion underlying this mathematical and computational “technology transfer” is
that the evolving states of the nodes in a network quickly become correlated
with the corresponding node “identities”: features of the nodes imparted by the
network structure (e.g. the node degree, the node clustering coefficient). The
node dynamics thus depend on heterogeneous (rather than wuncertain) param-
eters, whose distribution over the network results from the network structure.
Knowing these distributions allows us to obtain an efficient coarse-grained repre-
sentation of the network state in terms of the expansion coefficients in suitable
orthogonal polynomials. This representation is closely related to mathemati-
cal/computational tools for uncertainty quantification (the Polynomial Chaos
approach and its associated numerical techniques). The Polynomial Chaos coef-
ficients provide a set of good collective variables for the observation of dynamics
on a network, and subsequently, for the implementation of reduced dynamic
models of it. We demonstrate this idea by performing coarse-grained computa-
tions of the nonlinear dynamics of information propagation on our illustrative
network model using the Equation-Free approach.

Keywords: coarse-graining, social networks, Equation-Free approach, UQ),
Polynomial Chaos

1. Introduction

Our purpose in this paper is to establish a link between Uncertainty Quan-
tification in dynamical systems depending on (uncertain) parameters, and Het-
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erogeneity Quantification in dynamical systems consisting of (many) individual
dynamical units coupled in a network. These units differ in the way they are
structurally linked to form the network; their “structural identities” are hetero-
geneous, and the distribution of these heterogeneities derives from the network
structure itself.

Network models are increasingly being used to study large, complex real life
systems in a variety of contexts such as the internet, chemical and biochemi-
cal reaction networks, social networks and more [2, 3, 4, 5, 6]. A network is
a mathematical representation of individual subsystems called nodes (or ver-
tices), which are connected to one another through edges (or links). In the
specific example of a social network the nodes represent people, while the edges
connecting them represent relationships (friendships, coauthorships, etc.) be-
tween them. The following references provide useful reviews of basic network
concepts and of the study of dynamics of evolving networks [7, 8, 9, 10, 11, 12].
Dynamic evolution in a network context can be broadly classified into two cat-
egories: dynamics of networks, and dynamics on networks. The former refers
to problems where the network structure itself changes over time according to
some pre-specified rules of evolution; the latter refers to problems where there
is a static network structure and the states of the nodes (variables associated
with the nodes) evolve following pre-specified rules. These two categories are
not mutually exclusive: one can model systems where both the nodal states and
the network structure change over time (the term “adaptive networks” has been
used for this combination, [13]).

In this work, we are interested in studying dynamics on networks at a coarse-
grained level using a systematic model reduction framework called the Equation-
Free approach [1, 15]. In this approach, short bursts of simulation at the (“fine”)
level of nodes and edges using the detailed rules of dynamic evolution of the
problem are performed in order to estimate enough information to carry out
computational tasks at a more coarse-grained level. The Equation-Free ap-
proach has been, in the past, successfully implemented for a variety of specific
network models [16, 17, 18]. The success of this approach rests heavily on (a)
defining a suitable set of coarse observables in terms of which a closed, reduced
description of the evolution on the network may theoretically be obtained, and
(b) the ability to convert back and forth between the two levels of description
of the system - the “fine” and the “coarse-grained” levels. Thus, one of the
most important steps in coarse graining using this approach is the selection of
appropriate coarse variables.

We propose a useful (and hopefully efficient) representation of coarse vari-
ables specifically for models describing dynamics on networks, when the states
of the nodes of the network quickly become correlated with features of the nodes
imparted by the network, such as the node degree and/or the node clustering
coefficient. In such cases we show that one can expand the function representing
the dependence of node state to node structural identity in terms of suitable
orthogonal polynomials depending on the distribution from which the node fea-
ture(s) is sampled (i.e. depending on the topology of the underlying network).
This idea is analogous to the study of the effects of random parameters with



a known distribution on uncertain dynamical systems [19], and we will discuss
this analogy in more detail below.

In order to illustrate these ideas we consider a simple agent-based model
of opinion propagation where the agents are connected by a social network;
simulations of this model indicate that the states of the agents become quickly
correlated to the connectivity degrees of these agents as nodes in the network.
The paper is organized as follows: Our illustrative model is described in Sec. 2,
along with a quick overview of its nonlinear dynamic behavior. Sec. 3 defines and
describes the coarse representation that forms the basis of our computational
reduced model. A few details of the coarse variable description are relegated to
the Appendix, in order to maintain the simplicity and flow of the discussion.
A Dbrief outline of the Equation-Free approach employed to computationally
implement the reduced model is described in Sec. 4, along with the results of
Equation-Free computations. In Sec. 5, we summarize the results and briefly
discuss possible extensions and directions for future work.

2. The Model

We consider a simple, illustrative model of information propagation in a
population of agents connected by a social network structure, as described in
[20]. We briefly describe the individual-based rules of evolution of the model,
that is, the dynamics at the level of agents /nodes and connections between them.
We consider a population of N agents (numbered from 1 to N) connected in
a network G with corresponding adjacency matrix A (i.e., if agents i and j
are connected to each other, A(i,7) is 1; if not, A(é,5) = 0). Each agent ¢ is
associated with a single scalar variable X;, that denotes the emotional state of
the agent. The variables X; are bounded between —1 and 1. The agents receive
“public information” at discrete time instances from the external environment;
the information arrival times are modeled as a Poisson process. In addition to
this public information, the agents also receive “private information” from their
social environment (from their immediate neighbors in the social network). The
emotional state of each agent changes according to the following rules:

1. The emotional state of each agent decays exponentially in time to zero.
Thus, if At is the time interval between two consecutive arrivals of in-
formation, the emotional state of every agent decreases by a factor of
exp(—yAt) in this time interval, where v is the decay parameter.

2. Public information is classified as “good” or “bad”, both modeled as Pois-
son processes with arrival rates v+ and v~ respectively. Whenever agents
receive good (respectively, bad) public information, their emotional state
jumps by a small, finite positive constant (resp., negative) value ¢t (resp.,
€).

3. The occurrence of private information transfer through the social network
is also modeled as a Poisson process, similar to public information ar-
rivals; but private information arrival rates are taken to be proportional
to the connectivity degree of the receiving agent. Hence, the time interval
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Figure 1: Left: The degree histogram of the illustrative network structure (i.e., the number of
agents with a given degree plotted versus the degree) used in numerical simulations is plotted
as (blue) dots. The theoretical degree histogram from which our particular degree sequence
is sampled is plotted as a (red) solid line. Right: Evolution in time of the average emotional
state of all the agents in the network for the parameter settings listed in the text. Depending
on the initial conditions, the system reaches one of three stable steady states (marked 1, 2
and 3).

between arrivals of private information for agent ¢ with degree d; is mod-
eled as a Poisson process with mean ad; where « is a positive constant.
Whenever an agent is due to receive private information he/she compares
his/her state with the state of an immediate neighbor, chosen at random.
If the emotional state of this neighbor is larger (resp., smaller) than the
emotional state of the agent, then a constant parameter e™ (resp., e7) is
added to the agent’s emotional state. Note that e™ and e~ are positive
and negative respectively.

4. In order to ensure that the emotional states stay within the lower and
upper bounds of —1 and 1, whenever the emotional state of an agent
reaches these bounds, the state is locked to that value for the remaining
fragment of the time interval, regardless of the arrival of new information.
This can be thought of as a saturation event where the agent finalizes
his/her decision.

We used N = 20,000 agents in the model, and the network was constructed
so that the degree distribution is a modified form of the discrete geometric
distribution with degrees up to an upper limit of 140. The parameter p of
this truncated geometric degree distribution is taken to be 0.05. The degree
histogram for the network structure that we use for numerical simulations is
plotted as (blue) dots in the left plot of Fig. 1. The theoretical histogram
corresponding to the truncated degree distribution is plotted as a (red) curve
for comparison. The following values were used for the remaining parameters
of the model for the purpose of numerical simulations: v = 20; v~ = 20;et =
0.075;¢~ = —0.072;e™ = 0.033;¢~ = —0.035;a = 2;v = 0.5. Of course, it
would be interesting to investigate the effects of systematically varying these
parameters, but we do not address that question here.



-

Steady state

s & =
A @

Average Emotional State
(=]
)

Average Emotional State

1} 20 40 60 80 100 120 140
Time Degree

Degree, d B

Figure 2: A 3D plot of the evolution of the average emotional state of agents with a given
degree versus the degree is shown evolving over time on the left. The steady state of this
average emotional state versus degree is shown on the right. The initial condition for the
simulation gave all agents a uniform emotional state of 0.8.

2.1. Nonlinear model behavior

The dynamical behavior of the model is described in considerable detail in
[20]. We briefly recount some basic features of these dynamics here. Direct
simulations, using the model rules, initialized at different initial conditions are
presented. The state of the system at any moment in time is completely specified
by the states of each of the 20,000 agents in the network. Certain properties
of the system can be best conveyed through chosen collective observables that
are hopefully representative of the overall dynamics of the system. The average
emotional state of all network agents is one such observable of interest. The
evolution of average emotional state of all the agents in the network from various
distinct initializations is shown in Fig. 1; for simplicity, the states of all the
agents were initialized uniformly at fixed values over the network (but different
fixed values for each initialization). The figure shows that the system reaches
one of three stable steady states depending on the initial conditions; parameter
settings leading to a single stable, or to two stable stationary states also exist
in a detailed bifurcation diagram and have been discussed in [20].

3. Coarse representation

To obtain a reduced model, one must first select a set of coarse variables
that accurately capture the long-term evolution of the system. To motivate our
choice, we examined the detailed profiles of system states along an ensemble of
trajectories like the ones summarized in Fig. 1. For this model, we observed
that the states of the agents quickly become highly correlated with their degrees.
Fig. 2 shows the evolution in time of the average state of all agents in a degree
class (i.e., all agents having the same degree) as a function of the degree. The
curve evolves smoothly in time, and it was demonstrated in [20] that such a
correlation could indeed be used to obtain a reduced description of the model.
A method of “binning” was employed in that work to construct good collective
variables: this involved partitioning the network nodes into different groups



(based on the node degrees) and required 80 such groups, leading to 80 coarse
variables.

We now realize that what, in that paper, was an ad hoc reduction is just a
special case of a very general, and potentially powerful approach to systemati-
cally reducing the dynamics of large/complex networks. Instead of following the
behavior of each agent, we exploit the (assumed) fact that structurally similar
agents have similar behavior and can be tracked together. We assume here that
the key variable that describes structural similarity is the degree of the agent
in the network. The extension to more identities encompassing more structural
features, and to possibly intrinsic heterogeneities between the agents, over and
beyond the network-imparted structural heterogeneities will be addressed in our
Discussion section. Finding the relationship between agent structural charac-
teristics (here, agent degrees) and agent states generates a coarse description,
whereby the system state can be encoded in (hopefully drastically) fewer inde-
pendent variables. Previous work coarse-graining in terms of network properties
has used the graph Laplacian [16], and we have previously used expansions in
terms of intrinsic heterogeneities [29, 18].

Let x4 denote the average emotional state of all agents with degree d, where
d € [1,140]. Then, the curve in Fig. 2 can be represented by a function
xq = f(d). Note that since the degrees of the nodes in the network range
between 1 and 140, this “curve” is, in effect, a vector of 140 values. An intuitive
approach to obtaining a reduced description of the function f is to expand it in
terms of suitable basis functions. Consider, for example, some set of orthogonal
polynomials p; as basis functions, where i € [1,k]. One can then expand the
function f in terms of these basis functions as

fd) =Y cipi(d). (1)

=1

If the k basis functions suffice to accurately capture the shape of the function,
one can then use the k coefficients ¢; as the coarse representation of f(d). Once
the polynomials are selected, the common method to evaluate the coeflicients is
to find the optimal values of these coefficients that minimize the residual defined
below:

k k
<f(d) = capi(d), f(d) = Cipi(d)> : (2)
i=1 i=1 w(d)

Note that the inner product in the residual is defined with respect to a weight
function w(d). In our example, the values of the function f(d) which describes
the average state for every degree class is computed using different numbers of
agents at each d. It is therefore reasonable to use a weight function which mirrors
this sampling. In simple terms, if there are many agents with a given degree
d, the average emotional state of agents in that degree class is calculated with
more fidelity; more weight should be given to the corresponding degree class,
so that the value corresponding to the degree class is given more importance
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Figure 3: Left: The steady state average emotional state of all the agents with a specified
degree (as in the right plot of Fig. 2) is plotted versus the degree as (blue) dots. The curve
fit obtained by using 10 of our orthogonal polynomials is plotted as a (red) solid curve for
comparison. Right: For the same case, the total emotional state of all the agents with a
specified degree is plotted versus the degree as (blue) dots. This plot on the right is just a
product of the plot on the left and the degree histogram shown in Fig. 1. The (red) solid lines
correspond to the results from our polynomial approximation procedure.

in the approximation procedure. We choose simple proportional weights which
implies w(d) = h(d), where h(d) represents the histogram of degrees (i.e., h(d)
is the number of agents in the network with degree d).

The polynomials p; are thus chosen to be orthogonal with respect to the
degree distribution h(d) = w(d). This orthogonality condition can be described
as follows:

(pi(d),p; (d)>w(d) = 0ij- (3)

Since the polynomials are orthogonal with respect to the weight distribution,
the coefficients that minimize the residual (with respect to the same weights) in
Eq. 2 can be directly evaluated by the following simple expression:

ci = (pi(d), f(d)>w(d) : (4)

What remains to be discussed is the selection of suitable polynomials. For this
portion, we borrow tools developed in the context of uncertainty quantification
in dynamical systems with random parameters. In such problems, the effect
of a random parameter (e.g. normally distributed) on the system state can be
represented through orthogonal polynomial expansions in terms of appropriate
random variables [19]. These orthogonal polynomials are termed “polynomial
chaos” (PC), and projections of the system states onto the Polynomial Chaos
(PC) coefficients evolve deterministically in time. Such polynomials were ini-
tially proposed for Gaussian random parameters, but a generalized approach for
other random parameter probability measures based on the Askey scheme was
developed in [21]. These generalized polynomials, the “Wiener-Askey polyno-
mial chaos”, are constructed so that they are orthogonal with respect to a variety
of known probability distributions. In our case, the random parameter of inter-
est is the degree distribution itself, and it is a truncated geometric distribution. If
we approximate this as a (continuous) geometric distribution, the Wiener-Askey



scheme suggests Meixner polynomials as basis functions. The derivation of or-
thogonal polynomials for any (discrete, possibly truncated/empirical) weight
function w(d) (which we used for our numerical computations) is discussed in
the Appendix.

In Fig. 3, we re-plot the curve of average emotional state versus degree at
the “top” steady state branch (steady state 1 in Fig. 1) using (blue) dots. We
evaluate the first 10 polynomials that are orthogonal to the degree distribution
of our particular network, sampled empirically from the “theoretical” truncated
geometric distribution. The corresponding 10 coefficients are evaluated using
Eq. 4 and our approximation of the system state f(d) is then reconstructed using
Eq. 1 with k£ = 10. This reconstructed curve is plotted as a (red) continuous
line in the same figure, for comparison to the original curve. Notice that the
fit is more accurate at lower degree values, compared to that at higher values;
this is due to the small probability of high degrees - in other words, due to the
weight function used in our approximation procedure. As can be seen in the
left plot of Fig 1, the degree histogram is heavily concentrated at lower degrees,
and hence the states corresponding to these degrees are better approximated
in the reduction/reconstruction. When we plot the total emotional state of a
given degree class (the sum of the emotional states of all the agents with the
same degree) versus the degree, as shown on the right side of Fig. 3, the error
associated with our reduction/approximation procedure is clearly much more
uniformly spread across the degree classes.

4. Coarse modeling and computational results

Once the coarse variables of the model have been defined, the Equation-Free
approach [1, 15] can be used to computationally implement the coarse model.
The Equation-Free (EF) approach to modeling/computation is a framework that
has been developed for problems that can, in principle, be described at multiple
-here, two- levels. The evolution equations are available at a “fine”, microscopic
scale (here at the level of individual nodes/agents and edges/connections) while
the equations for the “coarse”, macroscopic behavior (here, a handful of expan-
sion coefficients for the function f(d)) are not available in an explicit, closed
form. In this approach, short bursts of simulations at the “microscopic” node
level are used to estimate information such as time-derivatives, or actions of
Jacobians, pertaining to the coarse variables. This is accomplished through the
definition of operators that allow us to “translate” between coarse variables and
consistent detailed, fine variables. The transformation from coarse to fine vari-
ables is called the lifting operator (L), while the reverse transformation is called
the restriction operator (R).

In our example, the fine variables of the model are the individual states of all
the agents in the social network, while the coarse variables are the coefficients
¢; referred to in Sec. 3. The microscopic rules of evolution defined in Sec. 2 con-
stitute the detailed, microscopic time-evolution operator defined by ¢; (where ¢
represents the number of time steps or iterations). The macroscopic evolution



operator can then be defined in terms of this microscopic evolution operator as
well as the lifting and restriction operators as follows:

®u(-) = RodpoL(:). (5)

In other words, the evolution of the coarse variables can be represented as:
c(T +1t) = D(c(T)),

where ®; is defined in Eq. 5 and c¢ represents the vector of coefficients [c1, ca,...
Ck].

We will illustrate the EF approach by describing two particular algorithms:
coarse projective integration [22, 23] and coarse fixed point computation [24].
In coarse projective integration, the detailed system is integrated forward in
time using short bursts of fine-scale, microscopic simulations, and the results
are used to estimate time derivatives of the coarse variables, which are then
used to project these latter variables forward in time. Starting from a specified
initial condition in terms of the “microscopic” variables (the emotional states of
the agents), the following steps are carried out to implement coarse projective
integration:

1. Simulation: The detailed model is run for a specified period of time, say
10 time steps (to be exact, 1000 sample realizations are run and averaged).

2. Restriction: The coarse variables are evaluated at each time-step of the
simulation. For our example, this involves computing the coefficients ¢;
given in Eq. 4.

3. Projection: The last few observations of the coarse variables ¢; from
the previous step are used to estimate their time-derivative. The coeffi-
cients are then projected forward in time over another 10 time steps using
a simple linear extrapolation. Consider a standard differential equation
dxz/dt = f(z). The forward Euler scheme would read

z(t + At) ~ z(t) + Atf(z(t)).

Our projection is similar to this, except the time derivative (f(z(t)) above)
does not come from a closed formula (f(z)), but is instead estimated from
the computational observations of the fine scale model.

4. Lifting: Since estimates of the coarse variables ¢; are available at the
projected time, we have to transform them to a consistent set of agent
states for all the agents before the fine scale model can evolve again. This
can be achieved by expanding the polynomials according to Eq. 1. Once
the states of all the agents in the network are computed, they can be used
as the initial condition to restart simulations as given in Step 1. Note
that, if any of the agent states lie outside the acceptable range of values
(above 1 or below —1), the states are revised to the limiting values (1 and
—1 respectively).



These steps, performed repeatedly, constitute coarse projective integration, which
is used to accelerate computations in systems with separations of time scales. In
our illustrative EF computations, we retained all model parameter values men-
tioned above; for the coarse representation we used 10 polynomials, constructed
to be orthogonal to our network’s degree distribution. Using the corresponding
10 coefficients as coarse variables, we implemented coarse projective integration
for the trajectory shown in Fig. 2. The evolution of the 10 coefficients are shown
as solid lines in Fig. 4. The first 5 coeflicients are shown on the left and the next
5 are shown on the right. The results of coarse projective integration, where
fine scale simulations are carried out for only half of the computed trajectory
(leading to a factor of two in acceleration) are shown as dots for comparison in
the same figure. It can be seen that the coarse evolution can be captured well
by our implementation of the reduced model.

In addition to accelerating simulations, we can use the Equation-Free frame-
work to also quickly find coarse steady states (corresponding to stationary states
of the detailed, stochastically evolving model). This is done using a coarse fixed
point solver: to compute the steady states values of the coefficients ¢, we have
to solve the following equation:

F(c):=c— ®19(c) =0, (6)

where ®; is the coarse time-stepper over ¢ time steps. The roots of F' can

be found using a damped Newton-Krylov GMRES iteration scheme [25, 26]. In

the standard Newton-Raphson algorithm, the value of ¢ would be updated by
the equation

Cnt1 = €y + Ac, (7)

where Ac is found as the solution to

[DF(cp)]Ac = —F(cy). (8)

The action of the Jacobian DF'(c,) can be estimated indirectly (since an
analytical expression would require analytically differentiating the coarse time-
stepper ®;(c) in Eq. 6) using the coarse time stepper. We use a Krylov-based
approach where the action of this Jacobian on known vectors, its matrix-vector
products, is required to solve the equation; this Jacobian can be estimated
through numerical differentiation (i.e., evaluating the coarse time-stepper at
appropriately selected perturbations of the ¢ values). Such iterative matriz-
free computations are naturally suitable for Equation-Free computation, where
explicit Jacobians are not available in closed form.

The results of coarse fixed point computations are shown in Fig. 5. The
first two plots in this figure show the actual steady state (resp., the average and
total emotional state of agents with a given degree plotted against the degree
class) computed using direct simulations as (red) dots. The coarse steady state
computed using the procedure described in the previous section is plotted as a
solid blue line. The convergence of the norm of F' as defined in Eq. 6 is shown
on the right plot of the same figure.

10
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Figure 5: Left: The steady state average emotional state of agents of a specified degree
versus the degree is plotted as (red) dots. The lifting of the coarse steady state computed
by Newton-GMRES algorithm is plotted as a (blue) solid curve. Center: The steady state
total emotional state of agents of a specified degree versus the degree is plotted as (red) dots.
The lifting of the coarse steady state computed by Newton-GMRES algorithm is plotted as
a (blue) solid curve. Right: Convergence of Newton-GMRES: The Lo norm of the coarse
residual is plotted against the iteration number. Computations were performed with a 10
polynomial coarse basis.
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Figure 6: Left: The steady state average emotional state of agents of a specified degree
versus the degree is plotted as (red) dots. The lifting of the coarse steady state computed by
Newton-GMRES algorithm is plotted as a (blue) solid curve. Center: The steady state total
emotional state of agents of a specified degree versus the degree is plotted as (red) dots. The
lifting of the coarse steady state computed by Newton-GMRES algorithm is plotted as a (blue)
solid curve. Right: Convergence of Newton-GMRES: The Lo norm of the coarse residual is
plotted against the iteration number. Computations were performed with a 6 polynomial
coarse basis.

It is important to note here that although we need 10 coefficients to get a
visually acceptable fit for the curve of average emotional state versus degree, we
can use an even smaller number of coefficients for an even more parsimonious
coarse-graining. For instance, in Fig. 6, we show the results of coarse fixed point
computations through Newton-GMRES using just 6 polynomials. The plots in
the figure are similar to the ones shown in Fig. 5. Although the polynomial fit
truncated at 6 coefficients deviates visibly from the steady state function value,
especially at higher degrees (for reasons mentioned earlier), (a) the plot on the
right shows that the procedure with 6 coarse variables does converge, and (b)
the actual steady state can be easily recovered by running simulations for a
very short time from the lifting of the computed coarse steady state. Instead
of truncating (setting higher order polynomial coefficients in the reconstruction
to zero), “slaving” these coeflicients to the lower ones -in effect, constructing
a six-dimensional “slow manifold” for the process dynamics- will provide even
more accurate/more reduced models.

5. Discussion

In this work we discussed a systematic approach to coarse graining dynamics
of coupled networks of units (nodes, agents), and demonstrated its application
through the illustrative computational coarse-graining of an agent-based model
with an underlying network structure. In this model, the state of the agents
was observed to quickly become highly correlated with the degree of the agents;
our coarse graining methodology takes advantage of this fact in constructing a
set of appropriate collective variables. The resulting reduced model was com-
putationally implemented using the Equation-Free approach.

In the selection of our collective variables we took advantage of concepts
developed in the context of Uncertainty Quantification for studying the effect
of a random parameter in differential equations; in effect, we are performing

12



“Heterogeneity Quantification” rather than Uncertainty Quantification. In UQ
problems, the effect of a random parameter with a known distribution on the
system state is captured by expanding the state in terms of orthogonal poly-
nomials of the random variables. The orthogonal polynomials used depend on
the distribution from which the random variables are sampled. In our case,
the states of the agents depend on the agent structural identities (here, agent
degrees, whose distribution is prescribed by the network) -and, of course, on
time. By analogy, we can think of the degrees as a “random heterogeneity pa-
rameter” with a given distribution, and parsimoniously capture its effect on the
agent states by expanding the states in terms of suitable orthogonal functions
of the degree. It is clear that the approach can be extended to states that de-
pend on “higher order” structural identities - identities that do not only depend
on the degree, but also on more/different network statistics: for example, de-
gree and clustering coeflicients for each node. The joint distribution of these
latter two features will again be dictated by the network, and the basis func-
tions will be now two-dimensional - clearly, the integrals involved in computing
the corresponding coefficients will start becoming cumbersome as the number
of “determining features” grows. For such problems, there has already been
considerable progress on collocation-based computations, and the use of sparse
grids in the UQ literature [27, 28, 29] and we expect that these tools will also
become useful in network coarse-graining when multiple network features affect
the system state. Still, there is no reason for the roots of polynomials orthogonal
with a given degree distribution weight to be themselves integers, and so collo-
cation approaches to approximating integrals over degree distributions must be
addressed.

We demonstrated how to computationally take advantage of a coarse model
through coarse projective integration and coarse fixed point computations. It is
well known, and reasonably straightforward to extend the EF approach to other
system-level computational tasks, such as coarse bifurcation analysis, coarse
stability analysis etc. as reviewed in [15]. It is also worth mentioning that the
approach described here is in principle broadly applicable to coarse-graining
other dynamical problems consisting of heterogeneous coupled units. Here the
relevant heterogeneity was the number of connections for each node (its degree);
in other network problems the heterogeneity may involve a non-network feature
(an “intrinsic feature) of the node (e.g., age or fitness of a node), or even possi-
bly joint distributions of “network (structural)” and “non-network (intrinsic)”
heterogeneity features. We are currently working on such “joint heterogeneity
quantification” problems.

We conclude by mentioning an additional, possibly important, consideration.
In recent literature on coupled oscillators (an area where our approach can also
be exploited) mean-field theories have been developed, expressing the behavior
of the network (the statistics of the distribution of oscillator angles) as a func-
tion of the network degree [14]. What is of particular interest in our discussion
is that, in order to derive explicit mean field equations for behavior as a function
of degree, the authors could also include additional structure in the form of a
prescribed “degree assortativity”, the probability that a node with degree k; is
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connected with a node of degree k;; they also considered the case of no assor-
tativity. In our case, we do not derive such equations explicitly, but we solve
them through our equation-free approach. All our computations above were
performed with a fixed, static network, with a particular, prescribed degree dis-
tribution; choosing that particular network, also de facto selected all additional
high order statistics through the network construction (including a particular
assortativity). In that sense, our equations constitute a coarse-graining of the
particular network.

It is also conceivable that one may want to construct (and average over) sev-
eral sample networks with the same statistics, here the same degree distribution
(see, e.g., the discussion in [30]). Then the equation-free approach does not solve
for a coarse-graining of a particular realization, but rather for the expected be-
havior over realizations with a prescribed degree distribution. Creating several
such network samples will be used to estimate the common degree distribution
needed to compute our orthogonal polynomial basis. It is thus our lifting step
that determines what coarse-grained problem we are solving. Lifting to always
the same network (resp. lifting to networks with prescribed degree distribu-
tions only (and averaging over them), resp. lifting to networks with prescribed
degrees and assortativities (and averaging over them)) yields different coarse-
grained problems. Our approach can be used to tackle all these problems (and
obvious variations/extensions of them) by judiciously selecting what subset of
realizations is constructed in the lifting step.

For our illustrations we focused on the identification of collective variables of
detailed individual-based models evolving on networks whose statistical proper-
ties can be described by the degree distribution. The degree distribution is one
of the most important features one would determine to assess the heterogeneity
of the underlying structure. It suffices to characterize the statistical properties
of uncorrelated networks such as ER [10, 9] and scale-free-like structures (under
certain assumptions) (see for example [31, 32]). While this is usually one of the
first statistical measures one would use to study the influence of the topology
on the emergent dynamics, the proposed methodology can be epxloited as a
basis for the investigation of more complex topologies. For example, for cor-
related structures such as small-world topologies and scale-free networks one
should also take into account other distributed characteristics such as cluster-
ing, degree correlation (assortativity) and betweenness. In such cases, for the
construction of consistent with these distributions networks one has to employ
relevant algorithms for their at-will adjustment (see for example [34, 35, 36, 37]).

Finally, it is conceivable that the approach may be extended to encompass
cases where not only the state of the nodes, but the statistics of the network
itself may evolve over time - so that not only dynamics on networks -like here-,
but adaptive network dynamics (dynamics simultaneously on and of networks)
could be tackled.

Acknowledgements This work was partially supported by the US AFOSR
and by the US Department of Energy. I.G.K and C.R.L. grateful to the Institute
for Advanced Study, T. U. Muenchen for support by a Hans Fischer Senior
Fellowship to I.G.K.; C.I.S acknowledges support by a Fulbright Fellowship for

14



a research visit to Princeton.

Appendix A. Finding a suitable basis of orthogonal polynomials tai-
lored to a given degree distribution

The procedure that we use to evaluate a set of polynomials orthogonal to
one another with respect to an empirical weight distribution [33] (defined over a
range of integers, here the node degrees) is described here. Let the i-th required
polynomial be denoted by p;, and let w(d) be the specified discrete weight
distribution. p; can be written using the following general representation:

i—1
Pi = oy 1+Zyi]‘d . (Al)
j=1
The orthogonality condition is written as

(Dis Pj)w(d)y = Oij- (A.2)
Since we are interested in evaluating the function at discrete values of d, we
may approximate the orthogonality condition by the following summation:

140

> pidp;(d)w(d) = 6. (A.3)
d=1

We are interested in finding the first k& polynomials. This implies that we need
to evaluate k(k + 1)/2 polynomial coefficients, i.e., k(k —1)/2 for y;;s and k for
a;s. These can be successively evaluated by using the k(k + 1)/2 orthogonality
conditions: k(k — 1)/2 for the case i # j and k for the case ¢ = j respectively.
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