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Neural field models of firing rate activity typically take the form of integral equations with space-dependent
axonal delays. Under natural assumptions on the synaptic connectivity we show how one can derive an
equivalent partial differential equation �PDE� model that properly treats the axonal delay terms of the integral
formulation. Our analysis avoids the so-called long-wavelength approximation that has previously been used to
formulate PDE models for neural activity in two spatial dimensions. Direct numerical simulations of this PDE
model show instabilities of the homogeneous steady state that are in full agreement with a Turing instability
analysis of the original integral model. We discuss the benefits of such a local model and its usefulness in
modeling electrocortical activity. In particular, we are able to treat “patchy” connections, whereby a homoge-
neous and isotropic system is modulated in a spatially periodic fashion. In this case the emergence of a
“lattice-directed” traveling wave predicted by a linear instability analysis is confirmed by the numerical simu-
lation of an appropriate set of coupled PDEs.
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I. INTRODUCTION

In many regions of mammalian neocortex, synaptic con-
nectivity patterns follow a laminar arrangement, with strong
vertical coupling between layers. Consequently, cortical ac-
tivity is considered as occurring on a two-dimensional plane,
with the coupling between layers ensuring near instantaneous
vertical propagation. Hence, it is highly desirable to obtain
solutions to fully planar neural field models. The most popu-
lar Wilson-Cowan �1� or Amari �2� style neural field models
are typically written in the language of integrodifferential or
purely integral equations �see �3–5� for recent reviews�. In
recent years there has been a growing interest in neural field
models where the communication between different parts of
the domain is delayed due to the finite conduction speed of
action potentials �6–10�. The advent of this work can be
traced back to that of Nunez �11�. However, the set of math-
ematical techniques for the analysis of nonlocal models with
space-dependent delays is not yet as thoroughly developed as
it is for local partial differential equation �PDE� models. As
discussed in �12� a local PDE model would offer a number of
advantages over its nonlocal counterpart, allowing the use of
�i� powerful techniques from nonlinear PDE theory, �ii� stan-
dard numerical techniques for the solution of PDEs, and �iii�
a more numerically straightforward analysis of the effects of
spatial inhomogeneities. To date progress in this area has
been made by Jirsa and Haken �13� for neural field models in
one spatial dimension with axonal delays, and by Laing and
Troy �14� in two spatial dimensions for models lacking ax-
onal delays. In both cases integral transform techniques are
exploited and a PDE description is obtained only when the
integral models under consideration are defined by spa-

tiotemporal kernels whose Fourier transform has a rational
polynomial structure. It is the goal of this paper to address
the physiologically important case of a model in two spatial
dimensions with axonal delays and to obtain an equivalent
PDE model. Previous work on this problem by Liley et al.
�12� has shown that for synaptic connectivity functions that
fall off exponentially with distance, there is an equivalent
local model consisting of an infinite set of PDEs involving
fractional derivative terms. Although not particularly useful
in its own right this system can be approximated by a single
hyperbolic PDE. This PDE has been shown to provide a
so-called long-wavelength approximation to the underlying
integral model, and equations of this type have been used in
several EEG modeling studies �see, for example, �15–17��.

In Sec. II we introduce the class of neural field population
models that we study in this paper. Next, in Sec. III we
derive the equivalent PDE model, and compare it to the
model obtained using the long-wavelength approximation. In
Sec. IV we present a Turing instability analysis of the origi-
nal integral model. Importantly we show that numerical
simulations of the PDE model are in precise agreement with
the behavior predicted at the onset of a Turing instability.
The case of spatially modulated synaptic connectivity is
treated in Sec. V. Finally, in Sec. VI we discuss natural ex-
tensions of the work in this paper.

II. INTEGRAL NEURAL FIELD MODEL

We consider planar neural field models that incorporate
delayed synaptic interactions between distinct neuronal
populations where the activity of synapses in population a
induced by activity in population b can be written as
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uab = �ab � �ab. �1�

Here uab=uab�r , t�, r= �r ,�� (r�R+, �� �0,2��, t�R+), and
a and b label functionally homogeneous neuronal popula-
tions. The activity variable uab�r , t� can be interpreted as a
spatially averaged synaptic activity centered about r. The
symbol � represents a temporal convolution in the sense that

�� � ���r,t� = �
0

t

ds��s���r,t − s� . �2�

The variable �ab�r , t� describes the presynaptic input to
population a arriving from population b, which we write as

�ab�r,t� = �
R2

dr�wab�r,r��fb � hb�r�,t − �r − r��/vab� ,

�3�

where � denotes composition. The function �ab�t� �with
�ab�t�=0 for t�0� represents a normalized synaptic filter,
while wab�r ,r�� is a synaptic footprint describing the
anatomy of network connections. One common choice for
the synaptic filter is the so-called delayed difference of ex-
ponentials: �ab�t�=��t−�ab ;�ab ,	ab�, where ��t ;� ,	�
= �1/�−1/	�−1�e−�t−e−	t�
�t� and �ab is a mean synaptic
processing delay between populations a and b. Here, 
�t� is
the Heaviside step function. In the absence of detailed ana-
tomical data it is common practice to consider cortico-
cortical connectivity functions to be homogeneous and iso-
tropic so that wab�r ,r��=wab��r−r���. The function fa

represents the firing rate of population a, and vab is the mean
synaptic axonal velocity along a fiber connecting population
b to population a. For conduction velocities in the range
1.5−7 m/s �typical of white matter axons� axonal delays are
significant over scales ranging from a single cortical area �of
spatial scale 10 mm� up to the scale of interhemispherical
collosal connections.

In a Wilson-Cowan or Amari style neural field model the
variables ha are taken to be of the form ha=�buab+ha

0, with
ha

0 a constant drive term. In more sophisticated models of
electroencephalogram �EEG� activity, such as in the work of
Liley et al. �12�, ha is interpreted as the average soma mem-
brane potential of a population and chosen to obey a nonlin-
ear equation of the form

�1 + �a�t�ha = �
b

�ab�ha�uab + ha
0. �4�

Here the activity-dependent functions �ab weight the contri-
butions from the various contributing neuronal populations,
and take into account the shunting nature of synaptic inter-
actions �see �12� for details�.

III. EQUIVALENT PDE MODEL

The numerical solution of the neural field model defined
in Sec. II is challenging for two reasons in particular. The
first being that the nonlocal presynaptic input term �3� is
defined by an integral over a two-dimensional spatial do-
main, and the second that it involves an argument that is

delayed in time. In fact since this delay term is space depen-
dent it requires keeping a memory of all previous synaptic
activity. One of the key motivations of our work is to cir-
cumvent the huge numerical overheads in simulating such a
delayed nonlocal system.

Introducing Gab�r , t�=Gab�r , t� �where r= �r�� with

Gab�r,t� = wab�r���t − r/
ab� , �5�

allows us to rewrite Eq. �3� as

�ab�r,t� = �
−�

�

ds�
R2

dr�Gab��r − r��,t − s��b�r�,s� , �6�

where �a= fa �ha. Importantly, the right-hand side of Eq. �6�
has a convolution structure. Introducing the 3D Fourier
transform according to

��r,t� =
1

�2��3�
R3

dkd���k,��ei�k·r+�t�, �7�

then we find that Gab�k ,��=Gab�k ,��, �k= �k�� where

Gab�k,�� = 2��
0

�

wab�r�J0�kr�re−i�r/vabdr . �8�

Here J0�z�= �2��−1�0
2�d�eiz cos � is the Bessel function of the

first kind of order zero. We recognize Eq. �8� as the Hankel
transform of wab�r�e−i�r/vab.

If Gab�k ,�� can be represented in the form
Rab�k2 , i�� / Pab�k2 , i�� then we have that
Pab�k2 , i���ab�k ,��=Rab�k2 , i���b�k ,��. By identifying
k2↔−�2 and i�↔�t, then a formal inverse Fourier trans-
form will yield a local model in terms of the operators �2

and �t. However, unless the functions Pab and Rab are poly-
nomial in their arguments then the interpretation of functions
of these operators is unclear. To illustrate this we revisit the
common choice as follows:

wab�r� = wab
0 e−r/�ab/�2�� , �9�

for which

Gab�k,�� = wab
0 Aab���

�Aab
2 ��� + k2�3/2 , �10�

where Aab���=�ab
−1+ i� /vab. Introducing the operator Aab,

Aab = 	 1

�ab
+

1

vab
�t
2

, �11�

then the problem arises as how to interpret �Aab−�2�3/2. In
the long-wavelength approximation one merely expands
Gab�k ,�� around k=0 for small k, yielding a “nice” rational
polynomial structure, which is then manipulated as described
above to give the PDE as follows:

	Aab −
3

2
�2
�ab = wab

0 �b. �12�

We refer to Eq. �12� as the long-wavelength model. Higher
order approximations can be obtained by expanding to
higher powers in k �18�, although all resulting higher order
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PDE models will still be long-wavelength approximations.
To obtain a PDE model that sidesteps the need to make

the long-wavelength approximation we use the observation
that e−r can be fitted with a two-parameter function of the
form �19�

E�r� = ��1
2 − �2

2�−1�K0�r/�1� − K0�r/�2�� , �13�

where K0 is the modified Bessel function of the second kind
of order zero. The prefactor ��1

2−�2
2�−1 ensures a common

normalization for e−r and E�r�.
The form of Eq. �13� motivates the approxima-

tion e−r/�e−i�r/v���1
2−�2

2�−1�K0(Aab;�1
���r)−K0(Aab;�2

���r)�,
where Aab;���� is obtained under the replacement of � by ��
in Aab���. This form is particularly useful since K0�ar� has a
simple Hankel transform given by 1/ �a2+k2�. For this choice
Gab�k ,�� takes the form

wab
0

�1
2 − �2

2� 1

�Aab;�1

2 ��� + k2�
−

1

�Aab;�2

2 ��� + k2�
 . �14�

In this case we obtain the PDE model,

�Aab;�1
− �2��Aab;�2

− �2��ab = wab
0 Bab�b, �15�

where

Bab =
1

�1
2�2

2�ab
2 �1 +

2�1�2�ab

vab��1 + �2�
�t
 . �16�

For want of a better name we shall refer to Eq. �15� as the
rational model. Note that the long-wavelength model can
also be obtained using the approximation e−r�L�r�
=2K0��2/3r� /3. However, this approximation is poor for
both small and large values of r since limr→0,� L�r� /e−r=�.
Note that limr→0 E�r�= ��1

2−�2
2�−1 ln��1 /�2�, and so is well

behaved at the origin. A plot of E�r� �rational model� and
L�r� �long-wavelength model� is shown in Fig. 1. The long-
wavelength model is recovered from the rational model with
the choice ��1 ,�2�= ��3/2 ,0�.

We note that the formulation of the rational model �and
indeed the long-wavelength model� provides only an ap-
proximation to the original relationship Gab�r , t�=wab�r���t

−r /vab�. As a result synaptic activity does not just arrive at
t=r /vab. This is best seen by deriving Gab�r , t� for the choice
�14�. Writing the inverse transform of 1/ �Aab

2 ���+k2� as
Hab�r , t� �calculated in Appendix A� we have that Gab�r , t�
= ��1

2−�2
2�−1wab

0 �Hab;�1
�r , t�−Hab;�2

�r , t��, which gives

Gab�r,t� = wab
0 vab
�vabt − r�

2��vab
2 t2 − r2

��1
2 − �2

2�−1�e−vabt/��1�ab�

− e−vabt/��2�ab�� . �17�

Although the shape of G�r , t� is consistent with our physical
expectations, namely, a positive decaying pulse beyond t
=r /vab, we have as yet not fixed the parameters ��1 ,�2� of
the rational model. To do this we could try and approximate
the complex function �10� of the full model Eq. �14�. How-
ever, a simpler approach is to consider fitting a projection of
Eq. �10� that describes the linear stability of the homoge-
neous steady state. We do this in the next section. Here we
show that the dynamic pattern forming instability borders for
the rational model are in closer quantitative agreement to
those of the full model than the long-wavelength model. In
this sense we argue that the rational model is an improve-
ment over the long-wavelength model �which it recovers as a
special case�.

We can also interpret the above in terms of a distance-
dependent distribution of velocities qab�v ,r� for the spread-
ing of synaptic activity by writing

Gab�r,t� = wab�r��
0

�

dvqab�v,r���t − r/v�

= �wab�r�
v2

r
qab�v,r��

v=r/t
, �18�

with the normalization �0
�dvqab�v ,r�=1. The original defini-

tion �8� is recovered for a single conduction velocity
qab�v ,r�=��v−vab�. Rearranging Eq. �18� gives the velocity
distribution as

qab�v,r� =
r

v2

Gab�r,r/v�
wab�r�

. �19�

Using Eq. �17� we find that, for both the rational and long-
wavelength model, the distribution qab�v ,r� has a peak at v
=vab as expected, as well as one for small r and v. This
second peak, however, is strongly localized and hence
merely introduces an insignificant overall delay to a traveling
pulse.

IV. TURING INSTABILITY ANALYSIS

Here we explore the stability of the homogeneous steady
state for the choice ha=�buab+ha

0. The extension of this
analysis to include the Liley model given by Eq. �4� is
straightforward. Let ha�r , t�=ha

ss denote the homogeneous
steady state, defined by ha

ss=�bWabfb�hb
ss�+ha

0, where Wab

=�R2dr�wab�r��. Linearizing around this solution and consid-

ering perturbations of the form ha�r , t�= h̄ae�teik·r, gives the
system of equations

0 1 2 3 4 50

0.5

1

r

E(r)
L(r) long-wavelength model

rational model

FIG. 1. �Color online� A plot of E�r� �rational model� with
��1 ,�2�= ��3/2 ,��, and L�r� �long-wavelength model� is shown to-
gether with a plot of e−r. In this illustrative plot we have chosen � as
the root of �1

2−�2−ln��1 /��, so as to fix E�0�=1.
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h̄a = �
b

�̃ab���Gab�k,− i���bh̄b. �20�

Here �̃ab���=�0
�dse−�s�ab�s� is the Laplace transform of

�ab�t� and �a= fa��ha
ss�. Demanding nontrivial solutions yields

an equation for the continuous spectrum �=��k� in the form
E�k ,��=0, where E�k ,��=det�D�k ,��− I�, and

�D�k,���ab = �̃ab���Gab�k,− i���b. �21�

Note that for a delayed difference of exponentials function
we have simply that

�̃ab��� =
e−��ab

�1 + �/�ab��1 + �/	ab�
. �22�

An instability occurs when for the first time there are values
of k at which the real part of � is non-negative. A Turing
bifurcation point is defined as the smallest value of some
order parameter for which there exists some nonzero kc sat-
isfying Re(��kc�)=0. It is said to be static if Im(��kc�)=0
and dynamic if Im(��kc�)��c�0. The dynamic instability is
often referred to as a Turing-Hopf bifurcation and generates
a global pattern with wave number kc, which moves coher-
ently with a speed c=�c /kc, i.e., as a periodic traveling wave
train. Generically one expects to see the emergence of dou-
bly periodic solutions that tessellate the plane, namely, trav-
eling waves with hexagonal, square, or rhombic structure. If
the maximum of the dispersion curve is at k=0 then the
mode that is first excited is another spatially uniform state. If
�c�0, we expect the emergence of a homogeneous limit
cycle with temporal frequency �c.

For computational purposes it is convenient to split the
dispersion relation into real and imaginary parts and write
�=
+ i� to obtain

ER�
,�� = 0, EI�
,�� = 0, �23�

where ER�
 ,��=Re E�k ,
+ i�� and EI�
 ,��=Im E�k ,
+ i��.
Solving the system of Eqs. �23� gives us a curve in the plane
�
 ,�� parametrized by k. A static bifurcation may thus be
identified with the tangential intersection of �=��
� along
the line 
=0 at the point �=0. Similarly a dynamic bifurca-
tion is identified with a tangential intersection at ��0. This
is equivalent to tracking points where 
����=0, given by the
equation �kER��EI−�kEI��ER=0.

For example, consider two populations, one excitatory
and one inhibitory, and use the labels a� �E , I�, with
wEE,IE

0 �0 and wII,EI
0 �0. In this case

E�k,�� = �1 − �̃IIGII�I��1 − �̃EEGEE�E� − �̃EI�̃IEGEIGIE�I�E,

�24�

where Gab=Gab�k ,−i�� and �̃ab= �̃ab���. For simplicity we
shall set �aI=	aI=1 and �aE=	aE=� and ignore synaptic
delays by taking �ab=0. In neocortex the extent of excitatory
connections WaE is broader than that of inhibitory connec-
tions WaI, and so we take �aE��aI. Again for simplicity we
set �aI=�I=1 and �aE=�E. For a common choice of firing
rate function fa= f we may also set �a=�. Finally, we focus
on only a single axonal conduction velocity and set vab=v.

In Fig. 2 we show a plot of the critical curves in the �v ,��
plane above which the homogeneous steady state is unstable
to dynamic instabilities with kc=0 �bulk oscillations� and
kc�0 �traveling waves�. The upper panel in Fig. 2 shows
results for the full model �defined by Eq. �9��, the middle
panel that for the long-wavelength model, and the lower is
that for the rational model. We note that there are no quali-
tative differences between the models in the sense that, at the
linear level, all models support Hopf and Turing-Hopf insta-
bilities, with a switch from one to the other with increasing
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FIG. 2. Critical curves showing the instability thresholds for
dynamic instabilities in the �v ,�� plane. Top, full model. Middle,
long-wavelength model. Bottom, rational model with ��1 ,�2�
= �0.6,0.6�. Parameters �=1, wEE

0 =wIE
0 =1, wII

0 =wEI
0 =−4, hE

0 =hI
0

=0, and �E=2.
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v. One obvious difference is that with an appropriate choice
of ��1 ,�2� the rational model is in far better quantitative
agreement with the full model. To test the predictions of our
linear stability analysis and to compare the nonlinear behav-
ior of the two models we resort to direct numerical simula-
tions. Necessarily this requires the choice of a firing rate
function.

In all direct numerical simulations of the PDE models we
take the sigmoidal form

f�h� =
1

1 + e−	h . �25�

Here 	 is a gain parameter. Without loss of generality we set
the steady state value of hE,I to be zero, giving �= f��0�
=	 /4. The predictions of the linear stability analysis are
found to be in excellent agreement with the behavior of the
PDE models. Figure 3 shows a pattern seen in the long-
wavelength model, beyond the Turing-Hopf bifurcation,
while Fig. 4 shows a pattern seen in the rational model, also
beyond the Turing-Hopf bifurcation. For both models paral-
lel moving stripes are very commonly seen beyond the
Turing-Hopf bifurcation, particularly for small domains, but
a variety of other patterns such as those shown here are also
possible, i.e., both systems have multiple attractors. There-
fore, based upon numerics alone it is not possible to make
the statement that there is a qualitative difference between
the types of possible patterns in the two models. A short
discussion of the numerical techniques used in this paper can
be found in Appendix B.

V. SPATIAL MODULATION

It is now known that the neocortex has a crystalline mi-
crostructure at the millimeter length scale, so that the as-
sumption of isotropic connectivity has to be revised �for a
recent discussion see �20��. For example, in visual cortex it
has been shown that long range horizontal connections �ex-
tending several millimeters� tend to link neurons having
common functional properties �as defined by their feature
maps�. Since the feature maps �for orientation preference,

spatial frequency preference, and ocular dominance� are ap-
proximately periodic this leads to patchy connections that
break continuous rotation symmetry �but not necessarily con-
tinuous translation symmetry�. With this in mind we intro-
duce a periodically modulated spatial kernel of the form

wab
P �r,r�� = wab��r − r���Jab�r − r�� , �26�

where Jab�r� varies periodically with respect to a regular
planar lattice L. Note that the patchy kernel wab

P is homoge-
neous, but not isotropic. Following recent work of Robinson
�21� on patchy propagators we show how to obtain an
equivalent PDE model for an integral neural field equation
with a spatial kernel given by Eq. �26�.

First we exploit the periodicity of Jab�r� and represent it
with a Fourier series as follows:

Jab�r� = �
q

Jab
q eiq·r. �27�

The vectors q are the reciprocal lattice vectors of the under-
lying lattice L, and Jab

q are Fourier coefficients given by
�2��−2�R2dre−iq·rJab�r�, with Jab

−q= �Jab
q �† �where † denotes

complex conjugation�. In this case �ab�k ,��
=Gab

P �k ,���b�k ,��, where

Gab
P �k,�� = �

q
Jab

q Gab��k − q�,�� , �28�

and Gab�k ,�� is given by Eq. �8�. We may then write
�ab�r , t�=�qJab

q �ab
q �r , t�, where �ab

q �k ,��=Gab��k
−q� ,���b�k ,��. Choosing Gab�k ,�� according to Eq. �14�
we see that �ab

q �r , t� satisfies

�Aab;�1
− �q

2��Aab;�2
− �q

2��ab
q = wab

0 Bab�b, �29�

where �q= ��−iq�. Hence, we have an infinite set of PDEs
for the complex amplitudes �ab

q indexed by the reciprocal
lattice vectors q. Since �ab

−q= ��ab
q �† then �ab�r , t�

=�qJab
q �ab

q �r , t��R as required. Assuming that there is a
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1.99

2.00

2.01

2.02

FIG. 3. �Color online� Left to right, top to bottom: Snapshots of
a periodic pattern for the long-wavelength model, each 1/4 of a
period later than the previous one. uEE is shown. Domain is 30
�30. v=12, �=20. Other parameters are as in Fig. 2.
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FIG. 4. �Color online� Left to right, top to bottom: Snapshots of
a periodic pattern for the rational model, each 1/4 of a period later
than the previous one. uEE is shown. Domain is 30�30. v=12, �
=15. Other parameters are as in Fig. 2.
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natural cutoff in q, then we need only evolve a finite subset
of these PDEs to see the effects of patchy connections on
solution behavior. Note also that the Turing instability analy-
sis for the patchy model is identical to that of the isotropic
model under the replacement of Gab by Eq. �28� in Eq. �21�,
so that now � depends on the direction as well as the mag-
nitude of k. For the mode selected by the Turing mechanism
all other modes generated by discrete rotations of the recip-
rocal lattice will also be selected. Thus periodic patchy con-
nections favor the generation of periodic patterns.

For example, consider a square lattice with length scale d.
The generators of the reciprocal lattice are k1=2� /d�1,0�
and k2=2� /d�0,1�. Now choose Jab�r�= �cos�k1 ·r�
+cos�k2 ·r�� /2. In this case Jab

q = ���q−k1�+��q+k1�+��q
−k2�+��q+k2�� /4, and we need only consider two coupled
complex PDEs �indexed by k1,2�.

In Fig. 5 we plot the dispersion surfaces Re ��k�, k
= �kx ,ky�, for parameters selected just beyond the instability
of the homogeneous steady state. In the limit d→� we re-
cover the unmodulated model. For finite d we find that each
lattice wave vector ±k1,2 introduces a shifted copy of the
peak of the dispersion surface from the unmodulated case
�Fig. 5�a��. When these peaks are widely separated �for lat-
tice spacing d�3� the interaction between them is weak and
the bifurcation parameter portrait is expected to be analogous
to that of the unmodulated model �Fig. 2� �at least up to a
factor of 4 coming from the particular choice of Jab

q above�.
In Fig. 6 we plot the bifurcations for the modulated model.
Compared to the unmodulated case the Hopf bifurcation is
transformed to a Turing-Hopf bifurcation with critical wave
vectors coinciding with those of the lattice and independent
of the axonal velocity v. This is associated with the central
peaks at ±k1,2 in Fig. 5�c� crossing through zero from below.
With increasing v the dominant bifurcation is also of Turing-
Hopf type. However, in this case it is a ring of wave vectors
surrounding ±k1,2 that go unstable first, as in Fig. 5�d�. In
both cases this suggests the emergence of traveling waves
aligned to the lattice size and direction, which are indeed
observed in direct numerical simulations. We shall refer to

FIG. 5. �Color online� The dispersion surfaces Re ��k� for fixed
parameters: �a� d=� �unmodulated model�, v=4, �=5; �b� d=4,
v=4, �=15; �c� v=4, d=2, �=20; �d� v=10, d=4, �=50. The
values of � are chosen so that the homogeneous steady state is just
unstable. The peaks in the surfaces are pinned by the lattice wave
vectors ±k1,2, �k1,2�=2� /d.
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FIG. 6. Critical curves showing the Turing-Hopf instabilities in
the �v ,�� plane for the rational model �15�, with a periodically
modulated kernel. In this example the underlying lattice is square,
with spacing d. Parameters are as in Fig. 2 with d=1.
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these as lattice-directed traveling waves. In the regime 3
�d�6 four wave vectors become unstable with �kx�= �ky�, as
in Fig. 5�b�, and for d�6 the system is effectively that of the
unmodulated case described by Fig. 5�a�.

In Fig. 7 we plot the speed of a traveling wave at the
Turing-Hopf bifurcation at v=1. The speed of the wave is
seen to increase almost linearly with the spacing of the
square lattice d. This reflects the fact that for small d, the
emergent frequency �c is independent of d and kc coincides
with �k1,2�. The linear analysis predicting emergent wave
speed is found to be in excellent agreement with direct nu-
merical simulations. Figure 8 shows a lattice-directed travel-
ing wave created in the Turing-Hopf bifurcation shown in
Fig. 6, for v=1.

In Fig. 9 we show a pattern generated in the Turing-Hopf
bifurcation for the system with a periodically modulated ker-
nel for v=10. It emerged from the spatially uniform state at
the value of � predicted from Fig. 6. The pattern is compat-
ible with the wave number k for which the spatially uniform
state is unstable.

VI. CONCLUSIONS

Neural field models of firing rate activity have had a ma-
jor impact in helping to develop an understanding of the
dynamics of EEG �12,22,23�. In this paper we have shown
how to write down an equivalent PDE model for a neural
field model in two spatial dimensions with a particular form
of decaying connectivity and a space-dependent axonal de-
lay. Importantly this has avoided the so-called long-
wavelength approximation that has been used in many EEG
models to date. Direct numerical simulations of the equiva-
lent PDE model have been shown to be consistent with a
linear instability analysis of the original integral neural field
model. Moreover, we have extended our approach to allow
for patchy connections and used simulations of an appropri-
ate set of coupled PDEs to confirm the existence of lattice-
directed traveling waves.

A number of natural extensions of the work presented
here are possible. The first concerns pattern selection; linear
stability analysis alone cannot distinguish which of the dou-
bly periodic solutions �hexagon, square, rhombus� will be
excited first. To do this requires a further weakly nonlinear
analysis. Techniques to do this for integral models in one
spatial dimension with axonal delays have recently been de-
veloped in �24�, and are naturally generalized to two spatial
dimensions. To further cope with patchy connections one
may well be able to borrow from techniques developed for
the study of amplitude equations in anisotropic PDE models
�25�. Another extension would be to use the ideas presented
here to discover if axonal delays have any significant effect
on the existence and stability of other patterns seen in two-
dimensional neural fields such as spiral waves �26� and spa-
tially localized bumps �14,27�. The treatment of distributed
transmission speeds �28–30� is another important area, as is
the extension to heterogeneous connection topologies �more
realistic of real cortical structures� �20,31� and addressing
parameter heterogeneity �describing more realistic physi-
ological scenarios� �17�. All of these are topics of ongoing
activity and will be reported upon elsewhere.
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FIG. 7. Speed �c=�c /kc� of a lattice-directed traveling wave at
the Turing-Hopf bifurcation shown in Fig. 6 for v=1 as a function
of square lattice spacing d. The speed of the wave is seen to in-
crease almost linearly with d. Here v=1 and other parameters are as
in Fig. 2. The circles denote the results from direct numerical
simulations.
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FIG. 8. Turing-Hopf pattern for patchy propagation. uEE is
shown at one instant in time. v=1, �=10, d=1. The speed is
�0.182 in the x direction. Other parameters are as in Fig. 2.
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FIG. 9. �Color online� Left to right, top to bottom: Snapshots of
a periodic pattern for the rational model with patchy connections,
each 1/4 of a period later than the previous one. uEE is shown. The
domain is 7�7, v=10, �=50, d=1, and other parameters as in Fig.
2.
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APPENDIX A

We calculate Hab�r , t� as an inverse Fourier transform
�32�, namely,

Hab�r,t� =
1

�2��3�
R3

dkd�
ei�k·r+�t�

�1/�ab + i�/vab�2 + k2

=
vabe−vabt/�ab

2�
�

0

�

dk sin�kvabt�J0�kr�

=
vabe−vabt/�ab

2�

1

�vab
2 t2 − r2


�vabt − r� . �A1�

APPENDIX B

Here we provide some details on the simulation strategy
for equations of the form �15�. By defining some auxilliary
variables and applying the chain rule this can be written as
four first-order �in time� PDEs. For our choice of �, Eq. �1�
can be written as

� 1

�ab	ab

�2

�t2 + 	�ab + 	ab

�ab	ab

 �

�t
+ 1
uab = �ab�t − �ab� .

�B1�

Note that for simplicity we set �ab=0 in our simulations. To
solve an equation like Eq. �29� we let �ab

q =eiq·r�̂ab
q , which

converts Eq. �29� to

�Aab;�1
− �2��Aab;�2

− �2��̂ab
q = e−iq·rwab

0 Bab�b, �B2�

and then proceed as above. The square domains were dis-
cretized with a regular grid and the spatial derivatives were
approximated using finite differences. Periodic boundary
conditions were used. The resulting ODEs were integrated
using ODE45 in MATLAB with default tolerances. Figure 3
had a discretization of 60�60, Fig. 4 was 51�51, Fig. 8
was 20�20, and Fig. 9 used 50�50.
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