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Although variability is a ubiquitous characteristic of the nervous system, under appropriate
conditions neurons can generate precisely timed action potentials. Thus considerable attention
has been given to the study of a neuron’s output in relation to its stimulus. In this study,
we consider an increasingly popular spiking neuron model, the adaptive exponential integrate-
and-fire neuron. For analytical tractability, we consider its piecewise linear variant in order to
understand the responses of such neurons to periodic stimuli. There exist regions in parameter
space in which the neuron is mode locked to the periodic stimulus, and instabilities of the mode
locked states lead to an Arnol’d tongue structure in parameter space. We analyze mode locked
solutions and examine the bifurcations that define the boundaries of the tongue structures. The
theoretical analysis is in excellent agreement with numerical simulations, and this study can be
used to further understand the functional features related to responses of such a model neuron
to biologically realistic inputs.

Keywords : periodic stimuli; mode locked solutions; Arnol’d tongue; piecewise-linear adaptive
exponential integrate-and-fire neuron

1. Introduction

Frequency selectivity in the form of mode locking has been shown in stimulated nervous systems, such as
complex sounds in the auditory nerve [Moller, 1983], hair cells in amphibian cochlea [Koch, 1999], and
thalamocortical relay neuron response [Smith et al., 2000; Knight, 1972; McCormick & Huguenard, 1992].
To understand the mechanisms behind these phenomena, spiking neuron models have been used to study
the precise timing of firing events thought to underlie frequency mode locking [Rieke et al., 1997]. Among
them, various one-dimensional neuron models, such as variants of leaky integrate-and-fire model, are of
particular interest for their reduced complexity. The disadvantages of these models are their limitations in
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producing a variety of neuronal behaviors, and having parameters of little biophysiological relevance. On
the contrary, high dimensional neuron models such as variants of the Hodgkin-Huxley model, though more
capable of producing various neuronal behaviors and with biophysiologically relevant parameters, generally
pose difficulty in their mathematical analysis.

In recent years substantial efforts have been exerted to develop single neuron models of reduced com-
plexity that can produce a large repertoire of neuronal behaviors, in attempts to develop an understanding
of brain function, while reducing computation demands and maintaining analytical tractability. A number
of variants of two-dimensional leaky integrate-and-fire neuron models have been proposed. A popular ex-
ample is the adaptive exponential leaky integrate-and-fire (aEIF) model, proposed by Brette and Gerstner
[Brette & Gerstner, 2005; Gerstner & Brette, 2009], which includes a sub-threshold and a spike-triggered
adaptation component in one adaptation current, and the exponential description of nearly instantaneous
spike initiation. More importantly, this model’s parameters are of biophysiological relevance, and its sub-
threshold and spike triggered adaptation are shown to mediate spike frequency adaptation [Ladenbauer
et al., 2012], behaving in a way similar to a low threshold outward current, such as the muscarinic voltage-
dependent K+-current (Im), and a high threshold outward current, such as the Ca2+-dependent after-
hyperpolarization K+-current (Iahp), respectively, in biophysical neuron models [Ermentrout et al., 2001;
Jeong & Gutkin, 2007; Ermentrout et al., 2011; Ladenbauer et al., 2012]. Despite its simplicity, the aEIF
model can capture a broad range of neuronal dynamics [Touboul & Brette, 2008; Naud et al., 2008], hence
it is appropriate for applications in large-scale networks [Destexhe, 2009]. Furthermore, the aEIF model
has been successfully fit to Hodgkin-Huxley-type neurons, as well as to recordings from cortical neurons
[Brette & Gerstner, 2005; Clopath et al., 2007; Touboul & Brette, 2008; Jolivet et al., 2008]. This model
has also been implemented in neuromorphic hardware systems [Brderle et al., 2011], and can be tuned
to reproduce the behavior of all major classes of neurons, as defined electrophysiologically in vitro [Naud
et al., 2008].

Based on the increasingly common use of the aEIF model, here we explore mode locked solutions,
where the neuron is periodically driven by an external stimulus. To gain explicit results, we adopt the
piecewise linear variant of the aEIF (PWL-aEIF) model to study these mode locked solutions. Specifically,
we perform the analysis of arbitrary mode locked states for a sinosuidal external stimulus.

The work presented here is similar to that in other papers considering periodically-forced neuron
models [Coombes et al., 2001, 2012; Laing & Coombes, 2005; Alijani, 2009; Svensson & Coombes, 2009],
however, the mode locking instabilities in this study are shown to largely be related to period-doubling of
solutions and the saddle-node bifurcation of orbits which cross a particular manifold multiple times, which
has not been previously observed. We first present the discontinuous differential equations describing the
periodically forced PWL-aEIF neuron model. This is followed by the construction of general solutions
and then the description of mode-locked solutions and their stability. We then show numerical results
demonstrating our analysis, and discuss the maximal Lyapunov exponent of an arbitrary orbit. We conclude
with a discussion.

2. Neuron Model

We consider a piecewise linear approximation of the adaptive exponential integrate-and-fire (PWL-aEIF)
neuron [Naud et al., 2008] with state variables V (t) and w(t) representing the cell membrane potential and
adaptive current, respectively, of the neuron. (PWL neuron models have been studied a number of times
over the past 10 years [Karbowski & Kopell, 2000; Coombes et al., 2001; Coombes & Zachariou, 2009;
Coombes et al., 2012; Tonnelier, 2002].) The evolution of these variables between firing events is described
according to the following equations,

C
dV

dt
= f(V )− w + I(t), (1)

τw
dw

dt
= a(V − EL)− w, (2)

where f(V ) = −gL(V − EL), for V ≤ VT , and f(V ) = gL∆T (V − E), for V > VT , with E = VT + VT−EL

∆T
.

The function f(V ) is continuous and the V -nullcline, on which dV/dt = 0, is shown schematically in
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Fig. 1 for the case I(t) = 0. For analytical tractability, the parameter a is set to be a = 0 (in (2)) in
this study resulting in a horizontal w-nullcline. The physiological interpretation of the parameters is as
follows [Touboul & Brette, 2008]. Eq. (1) states that the capacitive current through the membrane is the
sum of the ionic currents and the injected current, I(t) (C is the membrane capacitance). The term f(V )
represents the leak current, with gL being the leak conductance, EL being the leak reversal potential, and
the membrane time constant being C/gL. The V -nullcline has its minimum at V = VT , and the slope factor
∆T quantifies the sharpness of the spike. The variable w in (2) is an adaptive current with time constant
τw, and may model ionic currents such as potassium, or a dendritic compartment. The neuron is assumed
to fire whenever V (t) reaches a threshold Vth, and then V (t) is instantaneously reset to Vr and w(t) is
instantaneously incremented by an amount b (b ≥ 0) as

{

V (t) 7→ Vr,
w(t) 7→ w(t) + b.

We denote by {tn}n∈N the set of firing times, where V (t−n ) = Vth and V (t+n ) = Vr.
We can further write the system (1)-(2) as

Ẋ =

{

A1X + g1(t), if V ≤ VT ,
A2X + g2(t), if V > VT ,

(3)

where X = (V,w)T ,

A1 =

[

−gL
C

−1
C

0 −1
τw

]

, (4)

A2 =

[ gL∆T

C
−1
C

0 −1
τw

]

, (5)

g1(t) =

[

I(t)+gLEL

C
0

]

, (6)

and

g2(t) =

[

I(t)−gL∆TE
C
0

]

. (7)

The general solution of this type of linear system with the initial condition X(t0) is (writing eAt ≡ G(t))

X(t) = G(t− t0)X(t0) +

∫ t−t0

0
G(s)g(t − s)ds. (8)

where A ∈ {Ai} and g ∈ {gi}, i = 1, 2. More specifically,

eA1t ≡ G1(t) =









e
−gL
C

t −τw(e
−gL
C

t
−e

−1
τw

t
)

C−gLτw

0 e
−1
τw

t









=

[

G1
11(t) G

1
12(t)

G1
21(t) G

1
22(t)

]

=

[

G1
11(t) k1(G

1
11(t)−G1

22(t))
0 G1

22(t)

]

,

(9)

where k1 =
−τw

C−gLτw
and

eA2t ≡ G2(t) =









e
gL∆T

C
t −τw(e

gL∆T
C

t
−e

−1
τw

t
)

C+gL∆T τw

0 e
−1
τw

t









=

[

G2
11(t) G

2
12(t)

G2
21(t) G

2
22(t)

]

=

[

G2
11(t) k2(G

2
11(t)−G2

22(t))
0 G2

22(t)

]

,

(10)

where k2 =
−τw

C+gL∆T τw
, and G1

22(t) = G2
22(t).
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Figure 1. Schematic of the phase plane. Solid: the V -nullcline. Circles: part of a typical orbit from reset (V = Vr) to threshold
(V = Vth) when I(t) = 0. Regions I (Vr ≤ V ≤ VT ) and II (VT < V ≤ Vth) are shown.

3. A General Spiking Orbit

With the PWL-aEIF system written as (3), we can construct a typical spiking orbit from a reset point
(Vr, wn) immediately after the nth spike time tn, to the (n+1)th spike time (Fig. 1). After moving through
region I (Vr ≤ V ≤ VT ), the orbit reaches the transition point at (V,w) = (VT , w(tn+T ∗

1 )) ≡ (VT , w(t̂n)) ≡
(VT , ŵn), with its flight time being T ∗

1 . The orbit then moves through region II (VT < V ≤ Vth) and
the neuron spikes when V reaches the threshold voltage at the point (V,w) = (Vth, w(tn + T ∗

1 + T ∗

2 )) =
(Vth, w(t

−

n+1)), with its flight time being T ∗

2 , and we have wn+1 ≡ w(t+n+1) = w(t−n+1) + b. Note that we
assume that once the orbit enters region II it does not then re-enter region I, but instead leaves through
the boundary V = Vth. This is not necessarily the case, as we will see later. A typical orbit from firing time
tn to tn+1 is formulated as follows,

X(tn + T ∗

1 ) =

[

VT

ŵn

]

≡ G1(T ∗

1 )

[

Vr

wn

]

+

∫ T ∗

1

0
G1(s)g1(tn + T ∗

1 − s)ds (11)

and

X(tn + T ∗

1 + T ∗

2 ) =

[

Vth

wn+1 − b

]

≡ G2(T ∗

2 )

[

VT

ŵn

]

+

∫ T ∗

2

0
G2(s)g2(tn + T ∗

1 + T ∗

2 − s)ds (12)

Rewriting eqs. (11)-(12) in terms of their components, we have

0 = −VT +G1
11(T

∗

1 )Vr +G1
12(T

∗

1 )wn +
1

C

∫ T ∗

1

0
G1

11(s)[I(tn + T ∗

1 − s) + gLEL]ds, (13)

0 = −ŵn +G1
22(T

∗

1 )wn, (14)

0 = −Vth +G2
11(T

∗

2 )VT +G2
12(T

∗

2 )ŵn +
1

C

∫ T ∗

2

0
G2

11(s)[I(tn + T ∗

1 + T ∗

2 − s)− gL∆TE]ds, (15)

0 = −wn+1 + b+G2
22(T

∗

2 )ŵn. (16)
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Solving for w(t): From (14) and (16), the evolution of w(t) from tn to tn+1 and resetting after the firing
time tn+1 gives

wn+1 = e
−(tn+1−tn)

τw wn + b ≡ H(tn+1 − tn, wn). (17)

Solving for V (t): The solution of V (t) from tn to tn+1 can be found by rewriting (13) and (15) as

f1(T
∗

1 ; tn, wn) =0 = −VT +G1
11(T

∗

1 )Vr +G1
12(T

∗

1 )wn

+
1

C

∫ T ∗

1

0
G1

11(s)[I(tn + T ∗

1 − s) + gLEL]ds, (18)

f2(T
∗

2 ; tn, T
∗

1 , wn) =0 = −Vth +G2
11(T

∗

2 )VT +G2
12(T

∗

2 )G
1
22(T

∗

1 )wn

+
1

C

∫ T ∗

2

0
G2

11(s)[I(tn + T ∗

1 + T ∗

2 − s)− gL∆TE]ds. (19)

respectively. From now on we will specify that the periodic input current is given by I(t) = I0 + ε sin(Ωt),
where I0 is a constant current that drives the neuron up to spike, and Ω = 2πω, with ω being the input
frequency. In this case f1 and f2 can be expressed explicitly as,

f1(T
∗

1 ; tn, wn) =0

=− VT + e
−gL
C

T ∗

1 Vr + k1(e
−gL
C

T ∗

1 − e
−1
τw

T ∗

1 )wn

− (e
−gL
C

T ∗

1 − 1)(I0 + gLEL)/gL

+
ε/C

(gLC )2 +Ω2

{

−Ωcos(Ω(tn + T ∗

1 )) +
gL
C

sin(Ω(tn + T ∗

1 ))

+ e
−gL
C

T ∗

1

[

Ωcos(Ωtn)−
gL
C

sin(Ωtn)
]}

, (20)

and

f2(T
∗

2 ; tn, T
∗

1 , wn) =0

=− Vth + e
gL∆T

C
T ∗

2 VT + k2(e
gL∆T

C
T ∗

2 − e
−1
τw

T ∗

2 )e
−1
τw

T ∗

1 wn

+ (e
gL∆T

C
T ∗

2 − 1)(I0 − gL∆TE)/(gL∆T )

+
ε/C

(gL∆T

C )2 +Ω2

{

−Ωcos(Ω(tn + T ∗

1 + T ∗

2 ))−
gL∆T

C
sin(Ω(tn + T ∗

1 + T ∗

2 ))

+e
gL∆T

C
T ∗

2

[

Ωcos(Ω(tn + T ∗

1 )) +
gL∆T

C
sin(Ω(tn + T ∗

1 ))

]}

.

(21)

We also have

tn+1 = tn + T ∗

1 + T ∗

2 . (22)

We can compute T ∗

1 by solving f1(T
∗

1 ; tn, wn) = 0, where tn and wn are specified, then compute T ∗

2 by
solving f2(T

∗

2 ; tn, T
∗

1 , wn) = 0. The next firing time is given by (22), and wn+1 is computed via (17). We
can thus calculate the sequence of firing times {tn} using (20), (21), (22) and (17), provided that the initial
conditions, (t0, w0), are specified. Note that (20) and (21) may have more than one solution, but we solve
them using a root-finder with an initial guess close to the relevant value, as found from a full simulation
of (1)-(2).

We note here that the general problem of strongly-forced neurons is a difficult one to study, whereas
much progress has been made in the weakly-forced (or coupled) case [Schultheiss et al., 2011]. Because the
model we study can be solved explicitly for all strengths of forcing, i.e. all ε, the issue as to whether forcing
is weak or strong does not arise. Next we discuss mode-locked solutions and their existence.
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4. Mode-locked Solutions

Instead of computing a series of firing times {tn} from (20), (21), (22) and (17), we describe mode-locked
solutions by the phase(s) of the periodic forcing at which the neuron fires [Laing & Coombes, 2005;
Coombes et al., 2001]. We describe solutions for which the neuron fires p times in every q periods of the
forcing function as p : q mode-locked solutions, where p and q are positive integers. For such a mode-locked
solution, the firing times can be expressed in terms of the firing phases as

tn =
(

⌊n/p⌋+ φn(p)

)

qT, n = 0, 1, 2, · · ·

where ⌊n/p⌋ is the integer part of n/p, n(p) = n mod p, and T is the period of the forcing (2π/Ω). Instead
of computing the firing times {tn}, we compute the p associated firing phases φ0, · · · , φp−1 ∈ [0, 1). These
distinct firing phases can be computed from (20), (21), (22) and (17), as follows.

Firstly, given q and T , we define T ∗

1 (φn, wn) to be the solution of

f1(T
∗

1 (φn, wn);φnqT,wn) = 0, (23)

and T ∗

2 (φn, wn) to be the solution of

f2(T
∗

2 (φn, wn);φnqT, T
∗

1 (φn, wn), wn) = 0, (24)

We then have, from (22) and (17),

φn+1 = φn +
T ∗

1 (φn, wn) + T ∗

2 (φn, wn)

qT
, (25)

wn+1 = H((φn+1 − φn)qT,wn), (26)

for n = 0, 1, . . . p − 1, where φp = 1 + φ0 and wp = w0. Therefore, we can find p : q mode-locked solutions
by simultaneously solving the 2p eqs. (25)-(26) for the 2p unknowns: {φn}, {wn}, n = 0, 1 . . . p− 1.

5. Stability of Mode-locked Orbits

We first discuss the evolution of perturbations to a solution using a well-established approach [Alijani, 2009;
Coombes & Bressloff, 1999; Coombes, 1999; Chacron et al., 2004]. For convenience, we further express the
model (1)-(2) as

dV

dt
= f(V,w, t), (27)

dw

dt
= g(w), (28)

where

f(V,w, t) =

{

[−gL(V − EL)− w + I0 + ε sin (Ωt)]/C, V ≤ VT

[gL∆T (V − E)−w + I0 + ε sin (Ωt)]/C, V > VT

and E = VT + (VT − EL)/∆T and

g(w) = −w/τw,

with the firing rule that if V (t−) = Vth then V (t+) = Vr and w(t+) = w(t−) + b. Suppose we have one
trajectory (V (t), w(t)) and a slightly perturbed trajectory (Vp(t), wp(t)). We define the perturbations to
be δV (t) = V (t)− Vp(t) and δw(t) = w(t)− wp(t). Between firing times these perturbations evolve via

d

dt

(

δV
δw

)

=

(

α −1/C
0 −1/τw

)(

δV
δw

)

(29)

where α = −gL/C, if V ≤ VT , and α = gL∆T /C, if V > VT . Let

δX =

(

δV
δw

)

.
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That is

d

dt
δX =

{

A1δX, V ≤ VT

A2δX, V > VT
(30)

where A1 and A2 are (4) and (5) respectively. Suppose V reaches Vth at time t1 and Vp reaches Vth at a
later time t1 + δ1. Then we have

V (t−1 ) = Vth, (31)

V (t+1 ) = Vr, (32)

Vp([t1 + δ1]
−) = Vth, (33)

Vp([t1 + δ1]
+) = Vr, (34)

w(t+1 ) = w(t−1 ) + b, (35)

wp([t1 + δ1]
+) = wp([t1 + δ1]

−) + b. (36)

From these we have

Vth = Vp([t1 + δ1]
−) ≈ Vp(t

−

1 ) + δ1V̇p(t
−

1 ) ≈ Vth − δV (t−1 ) + δ1V̇ (t−1 ),

where an overdot indicates derivative, and thus

δ1 ≈
δV (t−1 )

V̇ (t−1 )
=

δV (t−1 )

f(Vth, w(t
−

1 ), t1)

Now

δV ([t1 + δ1]
+) = V ([t1 + δ1]

+)− Vp([t1 + δ1]
+) ≈ δ1f(Vr, w(t

−

1 ) + b, t1),

and thus

δV ([t1 + δ1]
+) ≈

[

f(Vr, w(t
−

1 ) + b, t1)

f(Vth, w(t
−

1 ), t1)

]

δV (t−1 ).

We also have

δw([t1 + δ1]
+) ≈ δw(t−1 ) + δ1

[

g(w(t−1 ) + b)− g(w(t−1 ))
]

,

and thus

δw([t1 + δ1]
+) ≈ δw(t−1 ) +

[

g(w(t−1 ) + b)− g(w(t−1 ))

f(Vth, w(t
−

1 ), t1)

]

δV (t−1 ).

Combining these into matrix form, we have
(

δV ([t1 + δ1]
+)

δw([t1 + δ1]
+)

)

=

(

A 0
B 1

)(

δV (t−1 )
δw(t−1 )

)

, (37)

where

A ≡
f(Vr, w(t

−

1 ) + b, t1)

f(Vth, w(t
−

1 ), t1)

and

B ≡
g(w(t−1 ) + b)− g(w(t−1 ))

f(Vth, w(t
−

1 ), t1)
.

In the limit of δ1 → 0, system (37) gives the contribution of the discontinuous dynamics to the evolution
of the vector δX = (δV, δw)T . Thus by integrating (30) between firing times (either analytically or nu-
merically), and updating using (37) at each firing time, we can determine the evolution of δX and thus
measure the stability of the underlying solution.
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5.1. Orbits which cross V = VT once between firing times

We first consider the 1 : 1 locked orbit which crosses V = VT once per period. We know that w0 is the
solution of w0 = e−T/τww0 + b where T is the period of forcing. The only unknown is φ0. It satisfies the
scalar equation

T ∗

1 (φ0, w0) + T ∗

2 (φ0, w0) = T. (38)

To find the orbit’s stability, based on (30), which correspond to motion in regions I and II (see Fig. 1),
respectively. Consider a perturbation to the solution

δX =

(

δV
δw

)

just after firing. At a time T ∗

1 after firing, this perturbation will have evolved to be eA1T ∗

1 δX. After a
further time T ∗

2 (= T − T ∗

1 ), this perturbation will be eA2T ∗

2 eA1T ∗

1 δX. After firing again it will be
(

A 0
B 1

)

eA2T ∗

2 eA1T ∗

1 δX,

where

A ≡
f(Vr, w0, φ0T )

f(Vth, w0 − b, φ0T )

and

B ≡
g(w0)− g(w0 − b)

f(Vth, w0 − b, φ0T )
.

Writing

Dφ0 ≡

(

A 0
B 1

)

,

we see that the stability of this particular solution is given by the eigenvalues of the 2× 2 matrix

κ ≡ Dφ0e
A2T ∗

2 eA1T ∗

1 . (39)

If both eigenvalues of κ are less than one in magnitude, this 1 : 1 orbit is stable, and it will become unstable
as parameters are varied if one or more of the eigenvalues leave the unit circle in the complex plane. It
is also noted that, within each tongue, there are generally one stable and one unstable orbits that may
emerge into a saddle-node, as I0 varied, defining the edge of the tongue.

As an example, Fig. 2 shows the relevant eigenvalues for the pair of 1 : 1 locked orbits which cross
V = VT once per period, as a function of I0. More specially, at I0 = 210, the stable orbit is associated
with eigenvalues of approximately 0.6 and −0.25 (blue dots). The other unstable orbit is associated with
eigenvalues of ∼ 0.3 and ∼ 55 (red dots). As I0 is decreased, the stable orbit undergoes a period-doubling
bifurcation (eigenvalue of −1 at I0 ≈ 206). As I0 is further decreased, the stable and unstable orbits collide
and go through a saddle-node bifurcation (eigenvalue of 1 at I0 ≈ 191). To find the value of I0 at which the
saddle-node bifurcation occurs we simultaneously solve (38) together with det(κ − I2×2) = 0, and to find
where the period-doubling bifurcation occurs we simultaneously solve (38) together with det(κ+I2×2) = 0,
where I2×2 is the 2× 2 identity matrix.

Now consider the stability of a general p : q locked orbit which only crosses V = VT once every
firing, with p > 1. The firing phases are φ0, φ1, . . . φp−1, and the values of w after each of these firings are
w0, w1, . . . wp−1. Assume that we have found such an orbit, i.e. we know the {φn}. Then

wn+1 = H((φn+1 − φn)qT,wn), n = 0, . . . , p− 2, (40)

and wp = w0, i.e. given the phases, the {wn} are specified. For a given (φn, wn), 0 ≤ n ≤ p − 1, there are
two times, T n

1 and T n
2 , such that T n

2 + T n
1 = (φn+1 − φn)qT . T

n
1 is the amount of time that the solution
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Figure 2. Eigenvalues of the two 1 : 1 locked orbits which cross V = VT once per period. Blue dots are for one orbit and red
for the other. The lower panel is an enlargement of the upper. Parameters: b = 50 pA,Vr = −60 mV, Vth = −36 mV, τw =
25 ms,C = 100 pF,∆T = 3 mV, gL = 10 nS, VT = −50 mV,ω = 0.04, EL = −70 mV, ε = 200.

spends in region I and T n
2 is the amount of time it spends in region II, between the nth firing and the

(n + 1)th. We find T n
1 by solving

f1(T
n
1 , φnqT,wn) = 0,

and then we have T n
2 = (φn+1 − φn)qT − T n

1 .
As above, consider a perturbation to the solution

δX =

(

δV
δw

)

just after firing at phase φ0. After times T 0
1 and T 0

2 the perturbation has evolved to eA2T 0
2 eA1T 0

1 δX, and
after firing at phase φ1 the perturbation is

(

A1 0
B1 1

)

eA2T 0
2 eA1T 0

1 δX,
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where

A1 ≡
f(Vr, w1, φ1T )

f(Vth, w1 − b, φ1T )

and

B1 ≡
g(w1)− g(w1 − b)

f(Vth, w1 − b, φ1T )
.

Writing

Dn ≡

(

An 0
Bn 1

)

, n = 1, . . . p,

where

An ≡
f(Vr, wn, φnT )

f(Vth, wn − b, φnT )

and

Bn ≡
g(wn)− g(wn − b)

f(Vth, wn − b, φnT )
,

we see that the stability of this mode-locked solution is given by the eigenvalues of the matrix

κ ≡
(

Dpe
A2T

p−1
2 eA1T

p−1
1

)

×
(

Dp−1e
A2T

p−2
2 eA1T

p−2
1

)

× · · · ×
(

D1e
A2T 0

2 eA1T 0
1

)

.

Note that explicit expressions for the exponentials of these matrices are given in (9) and (10).

5.2. Orbits which cross V = VT three times between firing times

For ε (the magnitude of the periodic forcing) large enough, V may not increase monotonically between
firing times, and may cross the line V = VT several times between successive firings, as shown in Fig. 3.
To identify such orbits we need to derive a new set of equations which are satisfied by these orbits. To find
their stability we will need to know the amounts of time spent in the two regions, I and II.

Suppose we have a 1 : 1 orbit for which the neuron fires at time tn, then spends T1 in region I, then
T2 in region II, then crosses V = VT from above, spending T3 in region II before crossing again and taking
time T4 to reach Vth at time tn+1, as shown in Fig. 3. The equations satisfied by T1, . . . T4 are given in
the appendix, and using arguments similar to those above we see that the stability of such an orbit is
determined by the eigenvalues of the matrix

κ ≡ Dφ0e
A2T4eA1T3eA2T2eA1T1 . (41)

The parameter values at which the 1 : 1 orbit transitions from crossing V = VT once per period to
crossing three times per period can be found as follows. We note that immediately following firing we have

V (t) = F (t) ≡ e−gLt/CVr + k1(e
−gLt/C − e−t/τw )w0 + (1/C)P (−gL/C, tn, t, gLEL), (42)

where P is given by

P (a, b, c, d) ≡

∫ c

0
eas[I(b+ c− s) + d] ds = (eac − 1)(I0 + d)/a

+
ε

a2 +Ω2
{−Ωcos [Ω(b+ c)]− a sin [Ω(b+ c)] + eac[Ω cos (Ωb) + a sin (Ωb)]}. (43)

We can find the first time T ∗ (measured from tn) at which V ′(T ∗) = 0 by solving F ′(T ∗) = 0, where

CF ′(t) = −gLe
−gLt/CVr + k1(−gLe

−gLt/C + Ce−t/τw/τw)w0 + P ′(−gL/C, tn, t, gLEL), (44)

where P ′(a, b, c, d) = ∂P (a, b, c, d)/∂c. Having found T ∗ the transition occurs when F (T ∗) = VT . Note that

P ′(a, b, c, d) = eac(I0 + d)

+
ε

a2 +Ω2
{Ω2 sin [Ω(b+ c)]− aΩcos [Ω(b+ c)] + aeac[Ω cos (Ωb) + a sin (Ωb)]}. (45)
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Figure 3. A 1 : 1 mode locked orbit, crossing V = VT = −50 mV three times per period. Parameters as in Fig. 2, with
I0 = 291.6 pA.

Simultaneously solving the equations in the appendix for φ0 and F (T ∗) = VT for T ∗ we obtain the transition
of orbits crossing V = VT once to three times per period (purple in Fig. 4). While we have only discussed
this transition for the 1 : 1 mode locked orbit, a similar analysis can be undertaken for any p : q locked
orbit.

6. Numerical Results

We now show some numerical results illustrating our analysis. Fig. 4 demonstrates the bifurcations asso-
ciated with the 1 : 1 orbit. Shown are the saddle-node bifurcations of the 1 : 1 orbit under the assumption
that V = VT once per period, the period-doubling bifurcation of this orbit, the curve on which the orbit
makes the transition from crossing V = VT once per period to three times per period, and the saddle-node
bifurcation of the orbit which crosses V = VT three times per period. The 1 : 1 mode locked orbits are
stable in the region bounded by the period-doubling curve, sn3, and the lower parts of both branches of
sn1.

Numerical results for other low-order tongues are shown in Fig. 5, where only the bifurcations at
which solutions lose stability are shown. We find certain features that have not been observed in some
periodically forced systems studied previously. For example, in [Coombes et al., 2012; Laing & Coombes,
2005; Svensson & Coombes, 2009] and [Alijani, 2009], many tongue boundaries (away from the limit
of small forcing amplitude) involved non-smooth “grazing” bifurcations of the underlying flow, where a
solution reaches a firing threshold tangentially. Due to the fast increase of V in region II, particularly
near Vth, the voltage of this model neuron rises to a spike nearly instantaneously, in order to mimic more
realistic neuronal spiking. Therefore, we do not observe this type of bifurcation but instead consistently
see period-doubling bifurcations which mark the low-I0 edge of tongues, and saddle-node bifurcations (of
orbits which cross V = VT three times between firings) which mark the high-I0 edge of tongues.

7. Computing the Maximal Lyapunov Exponent

Given the general analysis of the stability of an orbit in Sec. 5, we can easily find the maximal Lyapunov
exponent [Coombes, 1999] associated with any orbit (not just a periodic one). In parallel with integration
of the original system (1)-(2), we numerically integrate (30) between firing times, and update at firing
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Figure 4. Bifurcations of the 1 : 1 orbit. sn1: saddle-node bifurcations assuming V = VT once per period. PD: period-doubling.
sn3: saddle-node bifurcation assuming V = VT three times per period. 1 → 3: orbit transitions from crossing V = VT once
per period to three times per period. Parameters: b = 50 pA,Vr = −60 mV, Vth = −36 mV, τw = 25 ms,C = 100 pF,∆T =
3 mV, gL = 10 nS, VT = −50 mV,ω = 0.04, EL = −70 mV .

times using (37). The maximal Lyapunov exponent, λ, is then defined in the usual way as

λ = lim
t→∞

1

t
log |δX(t)|, (46)

where δX = (δV, δw)T . Fig. 6 shows the maximal Lyapunov exponent associated with the tongue structure
shown in Fig. 5.

For the parameter values we have investigated, chaotic behaviour is rare. However, by increasing b
and Vr, and decreasing τw, we are able to obtain chaotic behavior, as seen in Fig. 7. Note that for these
parameter values, the reset value Vr is greater than VT (often resulting in bursting behavior), and the
system is qualitatively similar to that studied by [Coombes et al., 2012].

8. Discussion

In this paper we studied the periodically-forced piecewise-linear variant of the adaptive exponential
integrate-and-fire neuron. The piecewise-linear nature of the model allowed us to explicitly construct ar-
bitrary solutions, and in particular, p : q mode-locked ones, in which the neuron fires p times for every
q periods of the forcing. Such solutions satisfy a number of simultaneous nonlinear algebraic equations,
which can be solved using Newton’s method; these solutions can be numerically continued as parameters
are varied. We derived expressions for the stability of an arbitrary orbit which has two components: one
from the smooth flow between firings, and one from the discontinuity at firing. This enabled us to detect
period-doubling and saddle-node bifurcations of mode-locked orbits. An interesting aspect of this model,
that we are not aware of occurring elsewhere, is that if the amplitude of periodic forcing is sufficiently
large, solutions can enter different regions of phase space multiple times between firing. Significant parts
of the boundaries of Arnol’d tongues are defined by saddle-node bifurcations of such orbits.
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Figure 5. Tongue structure of phase locking solutions is shown in ε vs I0 parameter space. Each boundary shows where a
phase-locked solution goes through a specific bifurcation. Blue indicates a period-doubling bifurcation, green and cyan indicate
saddle-node bifurcations, and red indicates a saddle-node bifurcation for solutions which cross V = VT three times betwen
firings. Parameters as in Fig. 4.

We also observed similar tongue structures when the spike triggered adaptation parameter, b, was
increased (not shown). More specifically, while similar tongue structures are maintained, the associated
phase locked solutions are shifted to higher values of I0 (in the ε vs I0 plane), as the parameter b is
increased. This is consistent with the findings shown in [Ladenbauer et al., 2012] that higher values of
input current I0 are required to maintain the same spiking frequency, when higher values of b are used.

For analytical tractability the subthreshold adaptation parameter, a, is set at a = 0 in this study.
Numerical studies (not shown) also show that tongue structures shift to the right (in the ε vs I0 plane) as
this parameter is increased. This again agrees with finding shown in [Ladenbauer et al., 2012] that higher
values of input current I0 are necessary to produce the same spiking frequency, when higher values of a
are used.
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Figure 6. Maximal Lyapunov exponent. Parameters as in Fig. 4.
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Appendix: Derivation for orbits crossing V = VT three times

Here we derive the equations governing the 1 : 1 solution which crosses V = VT three times per period.
Initially, at time tn, w = w0 and V = Vr. Then

X(tn + T1) =

(

VT

w0e
−T1/τw

)

= G1(T1)

(

Vr

w0

)

+

∫ T1

0
G1(s)g1(tn + T1 − s)ds, (47)

X(tn + T1 + T2) =

(

VT

w0e
−(T1+T2)/τw

)

= G2(T2)

(

VT

w0e
−T1/τw

)

+

∫ T2

0
G2(s)g2(tn + T1 + T2 − s)ds, (48)

X(tn + T1 + T2 + T3) =

(

VT

w0e
−(T1+T2+T3)/τw

)

= G1(T3)

(

VT

w0e
−(T1+T2)/τw

)

+

∫ T3

0
G1(s)g1(tn + T1 + T2 + T3 − s)ds, (49)

and

X(tn + T1 + T2 + T3 + T4) =

(

Vth

w0e
−(T1+T2+T3+T4)/τw

)

= G2(T4)

(

VT

w0e
−(T1+T2+T3)/τw

)

+

∫ T4

0
G2(s)g2(tn + T1 + T2 + T3 + T4 − s)ds. (50)
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Figure 7. Top: value of w after each firing. Bottom: maximal Lyapunov exponent. Parameters: b = 310 pA,Vr =
−40 mV,Vth = −36 mV, τw = 5 ms,C = 100 pF,∆T = 3 mV, gL = 10 nS, VT = −50 mV,ω = 0.04, ε = 60, EL = −70 mV .

As above, w0 = e−T/τww0 + b, and I(t) = I0 + ε sin (Ωt). Given w0 and tn, the next firing time, tn+1, is
found as follows. Find T1 by solving f1(T1; tn, wn) = 0, where

f1(T1; tn, w0) = −VT +G1
11(T1)Vr +G1

12(T1)w0 +
1

C

∫ T1

0
G1

11(s)[I(tn + T1 − s) + gLEL]ds

= −VT + e−gLT1/CVr + k1(e
−gLT1/C − e−T1/τw)w0 + (1/C)P (−gL/C, tn, T1, gLEL), (51)

and P is given by (43). We then find T2 by solving f2(T2;T1, tn, w0) = 0, where

f2(T2;T1, tn, w0) =− VT +G2
11(T2)VT +G2

12(T2)w0e
−T1/τw

+
1

C

∫ T2

0
G2

11(s)[I(tn + T1 + T2 − s)− gL∆TE]ds

=− VT + egL∆TT2/CVT + k2(e
gL∆TT2/C − e−T2/τw)w0e

−T1/τw

+ (1/C)P (gL∆T /C, tn + T1, T2,−gL∆TE). (52)
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We find T3 by solving f3(T3;T2, T1, tn, w0) = 0, where

f3(T3;T2, T1, tn, w0) =− VT +G1
11(T3)VT +G1

12(T3)w0e
−(T1+T2)/τw

+
1

C

∫ T3

0
G1

11(s)[I(tn + T1 + T2 + T3 − s) + gLEL]ds

=− VT + e−gLT3/CVT + k1(e
−gLT3/C − e−T3/τw)w0e

−(T1+T2)/τw

+ (1/C)P (−gL/C, tn + T1 + T2, T3, gLEL). (53)

We finally find T4 by solving f4(T4;T3, T2, T1, tn, w0) = 0, where

f4(T4;T3, T2, T1, tn, w0) =− Vth +G2
11(T4)VT +G2

12(T4)w0e
−(T1+T2+T3)/τw

+
1

C

∫ T4

0
G2

11(s)[I(tn + T1 + T2 + T3 + T4 − s)− gL∆TE]ds

=− Vth + egL∆T T4/CVT + k2(e
gL∆T T4/C − e−T4/τw)w0e

−(T1+T2+T3)/τw

+ (1/C)P (gL∆T/C, tn + T1 + T2 + T3, T4,−gL∆TE). (54)

Then tn+1 = tn + T1 + T2 + T3 + T4. In terms of phases, for the 1 : 1 locked orbit, we write tn = (n+ φ0)T
and successively solve

f1(T1;φ0T,w0) = 0, (55)

f2(T2;T1, φ0T,w0) = 0, (56)

f3(T3;T2, T1, φ0T,w0) = 0, (57)

f4(T4;T3, T2, T1, φ0T,w0) = 0. (58)

for T1, . . . T4. The correct value of φ0 is the one for which T1 + T2 + T3 + T4 − T = 0.
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