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Abstract. Degree assortativity refers to the increased or decreased probability of

connecting two neurons based on their in- or out-degrees, relative to what would be

expected by chance. We investigate the effects of such assortativity in a network of theta

neurons. The Ott/Antonsen ansatz is used to derive equations for the expected state of

each neuron, and these equations are then coarse-grained in degree space. We generate

families of effective connectivity matrices parametrised by assortativity coefficient and

use SVD decompositions of these to efficiently perform numerical bifurcation analysis

of the coarse-grained equations. We find that of the four possible types of degree

assortativity, two have no effect on the networks’ dynamics, while the other two can

have a significant effect.

1. Introduction

Our nervous system consists of a vast network of interconnected neurons. The network

structure is dynamic and connections are formed or removed according to their usage.

Much effort has been put into creating a map of all neuronal interconnections; a so-called

brain atlas or connectome. Given such a network there are many structural features and

measures that one can use to characterise it, e.g. betweenness, centrality, average path-

length and clustering coefficient [27].

Obtaining these measures in actual physiological systems is challenging to say the

least; nevertheless, insights into intrinsic connectivity preferences of neurons were ob-

served via their growth in culture [8, 35]. Neurons with similar numbers of processes

(e.g., synapses and dendrites) tend to establish links with each other – akin to socialites

associating in groups and vice-versa. Such an assortativity, typically referred to as a pos-

itive assortativity, or a tendency of elements with similar properties to mutually connect,

emerges as a strong preference throughout the stages of the cultured neuron develop-

ment. Furthermore, this preferential attachment between highly-connected neurons is

suggested to fortify the neuronal network against disruption or damage [35]. Moreover,

a similar positive assortativity is inferred in human central nervous systems as well [8]

at both a structural and functional level, where a central “core” in the human cerebral

cortex may be the basis for shaping overall brain dynamics [14]. It seems that in no

instance, however, is the directional flow of information (e.g., from upstream neuron via

axon to synapse and downstream neuron) observed – either in culture or in situ.

Little is known about if and how this positive assortativity or its negative analogue (a

tendency for highly connected elements to link with sparsely connected – akin to a “hub-

and-spoke” system) influences the dynamics of the neurons networked together. We here

consider these effects of assortativity with a network of idealised mathematical neurons

known as theta neurons, and represent their connections of downstream (outbound) and
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Figure 1. Assortativity in undirected and directed networks. An undi-

rected network (left column) is assortative if high degree nodes are more

likely to be connected to high degree nodes, and low to low, than by chance

(top left). Such a network is disassortative if the opposite occurs (bottom

left). In directed networks (right column) there are four possible kinds of

assortativity. The probability of a connection (red) is thus influenced by

the number of red shaded links of the sending (left) and receiving (right)

node.

upstream (inbound) synapses in a directed graph of nodes and edges. Each neuron then

is a node with in- and out-degrees depicting the number of such connections within the

network. Assortativity in this context refers to the probability that a neuron with a

given in- and out-degree connects to another neuron with a given in- and out-degree. If

this probability is what one would expect by chance, given the neurons’ degrees (and this

is the case for all pairs of neurons), the network is referred to as neutrally assortative.

If the probability is higher (lower) than one would expect by chance — for all pairs —

the network is assortative (disassortative). Interchangeably, we will use the term postive

assortativity (negative assortativity).

Assortativity has often been studied in undirected networks, where a node simply has

a degree, rather than in- and out-degrees (the number of connections to and from a node,

respectively) [30, 27, 26]. Since neurons form directed connections, there are four types

of assortativity to consider [12]: between either the in- or out-degree of a presynaptic

neuron, and either the in- or out-degree of a postsynaptic neuron (Figure 1).
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We are aware of only a small number of previous studies in this area [31, 16, 1, 7].

Kähne et al. [16] considered networks with equal in- and out-degrees and investigated

degree assortativity, effectively correlating both in- and out-degrees of pre- and post-

synaptic neurons. They mostly considered networks with discrete time and a Heav-

iside firing rate, i.e. a McCulloch-Pitts model [24]. They found that positive assor-

tativity created new fixed points of the model dynamics. Schmeltzer et al. [31] also

consider networks with equal in- and out-degrees and investigated degree assortativ-

ity. These authors considered leaky integrate-and-fire neurons and derived approximate

self-consistency equations governing the steady state neuron firing rates. They found,

among other things, that positive assortativity increased the firing rates of high-degree

neurons and decreased that of low-degree ones. Positive assortativity also seemed to

make the network more capable of sustained activity when the external input to the

network was low. De Fransciscis et al. [7] considered assortative mixing of a field of

binary neurons, or Hopfield networks. They concluded that assortativity of such simple

model neurons exhibited associative memory (similar to bit fields of a magnetic storage

medium), and robustly so in the presence of noise that negatively assortative networks

failed to withstand. Avalos-Gaytan et al. [1] considered the effects of dynamic weightings

between Kuramoto oscillators — effectively a dynamically evolving network — on assor-

tativity. They observed that if the strength of connections between oscillators increased

when they were synchronised, a strong positive assortativity evolved in the network,

suggesting a potential mechanism for the creation of assortative networks, as observed

in cultured neurons mentioned above, and as we study here.

To briefly summarise our results, we find that only two out of the four types of degree

assorativity have any influence on the network’s dynamics: those when the in-degree of

a presynaptic neuron is correlated with either the in- or out-degree of a postsynaptic

neuron. Of these two, (in,in)-assortativity has a greater effect than (in,out)-assortativity.

For both cases, negative assortativity widens the parameter range for which the network

is bistable (for excitatory coupling) or undergoes oscillations in mean firing rate (for

inhibitory coupling), and positive assortativity has the opposite effect.

Our work is similar in some respects to that of Restrepo and Ott [30] who considered

degree assortativity in a network of Kuramoto-type phase oscillators. They found that

for positive assortativity, as the strength of connections between oscillators was increased

the network could undergo bifurcations leading to oscillations in the order parameter, in

contrast to the usual scenario that occurs for no assortativity. However, their network

was undirected, and thus there is only one type of degree assortativity possible.

The outline of the paper is as follows. In Sec. 2 we present the model and then derive

several approximate descriptions of its dynamics. In Sec. 3 we describe the method for

creating networks with prescribed types of degree assortativity, and in Sec. 4 we discuss

aspects of the numerical implementation of the reduced model. Results are given in

Sec. 5 and we conclude with a discussion in Sec. 6. Appendix A contains the algorithms

we use to generate networks with prescribed assortativity.
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2. Model description and simplifications

We consider a network of N theta neurons:

(1)
dθj
dt

= 1− cos θj + (1 + cos θj)(ηj + Ij)

for j = 1, 2, . . . N where

(2) Ij =
K

〈k〉

N∑
n=1

AjnPq(θn)

ηj is a constant current entering the jth neuron, randomly chosen from a distribution

g(η), K is strength of coupling, 〈k〉 is mean degree of the network, and the connectivity

of the network is given by the adjacency matrix A, where Ajn = 1 if neuron n connects

to neuron j, and zero otherwise. The connections within the network are either all

excitatory (if K > 0) or inhibitory (if K < 0). Thus we do not consider the more

realistic and general case of a connected population of both excitatory and inhibitory

neurons, although it would be possible using the framework below.

The theta neuron is the normal form of a Type I neuron which undergoes a saddle-

node on an invariant circle bifurcation (SNIC) as the input current is increased through

zero [10, 11]. A neuron is said to fire when θ increases through π, and the function

(3) Pq(θ) = aq(1− cos θ)q; q ∈ {2, 3, . . . }

in (2) is meant to mimic the current pulse injected from neuron n to any postsynaptic

neurons when neuron n fires. aq is a normalisation constant such that
∫ 2π

0
Pq(θ)dθ = 2π

independent of q.

The in-degree of neuron j is defined as the number of neurons which connect to it, i.e.

(4) kinj =
N∑
n=1

Ajn

while the out-degree of neuron n is the number of neurons it connects to, i.e.

(5) koutn =
N∑
j=1

Ajn

Since each edge connects two neurons, we can define the mean degree

(6) 〈k〉 =
1

N

N∑
j=1

kinj =
1

N

N∑
n=1

koutn =
1

N

N∑
j=1

N∑
n=1

Ajn

Networks such as (1) have been studied by others [22, 3, 17], and note that under the

transformation V = tan (θ/2) the theta neuron becomes the quadratic integrate-and-fire

neuron with infinite thresholds [25, 21].

2.1. An infinite ensemble. As a first step we consider an infinite ensemble of networks

with the same connectivity, i.e. the same Ajn, but in each member of the ensemble, the

value of ηj associated with the jth neuron is randomly chosen from the distribution
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g(η) [2]. Thus we expect a randomly chosen member of the ensemble to have values of

η in the ranges

η1 ∈ [η′1, η
′
1 + dη′1]

η2 ∈ [η′2, η
′
2 + dη′2]

...(7)

ηN ∈ [η′N , η
′
N + dη′N ]

with probability g(η′1)g(η′2) . . . g(η′N)dη′1dη
′
2 . . . dη

′
N . The state of this member of the

ensemble is described by the probability density

(8) f(θ1, θ2, . . . , θN ; η1, η2, . . . ηN ; t)

which satisfies the continuity equation

(9)
∂f

∂t
= −

N∑
j=1

∂

∂θj
{[1− cos θj + (1 + cos θj) (ηj + Ij)] f)}

If we define the marginal distribution for the jth neuron as

(10) fj(θj, ηj, t) =

∫
f(θ1, θ2, . . . θN ; η1, η2, . . . ηN ; t)

∏
k 6=j

dθkdηk

we can write

(11) Ij(t) =
K

〈k〉

N∑
n=1

Ajn

∫ ∞
−∞

∫ 2π

0

Pq(θn)fn(θn, ηn, t)dθndηn

where we have now evaluated Ij as an average over the ensemble rather than from a

single realisation (as in (2)). This is reasonable in the limit of large networks [2].

Multiplying (9) by
∏

k 6=j dθkdηk and integrating we obtain

(12)
∂fj
∂t

= − ∂

∂θj
{[1− cos θj + (1 + cos θj) (ηj + Ij)] fj}

A network of theta neurons is known to be amenable to the use of the Ott/Antonsen

ansatz [29, 22, 17] so we write

(13) fj(θj, ηj, t) =
g(ηj)

2π

[
1 +

∞∑
k=1

{αj(ηj, t)}keikθj +
∞∑
k=1

{ᾱj(ηj, t)}ke−ikθj
]
.

The dependence on θj is written as a Fourier series where the kth coefficient is the kth

power of a function αj. Substituting this into (12) and (11) we find that αj satisfies

(14)
∂αj
∂t

= −i
[
ηj + Ij − 1

2
+ (1 + ηj + Ij)αj +

(
ηj + Ij − 1

2

)
α2
j

]
and

(15) Ij(t) =
K

〈k〉

N∑
n=1

Ajn

∫ ∞
−∞

H(αn(ηn, t); q)dηn
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where

(16) H(α; q) = aq

[
C0 +

q∑
n=1

Cn(αn + ᾱn)

]
where an overbar indicates complex conjugate, and

(17) Cn =

q∑
k=0

k∑
m=0

δk−2m,nq!(−1)k

2k(q − k)!m!(k −m)!

Assuming that g is a Lorentzian:

(18) g(η) =
∆/π

(η − η0)2 + ∆2

we can use contour integration to evaluate the integral in (15), and evaluating (14) at

the appropriate pole of g we obtain

(19)
dzj
dt

=
−i(zj − 1)2

2
+

(zj + 1)2

2
[−∆ + iη0 + iJj]

where

(20) Jj =
K

〈k〉

N∑
n=1

AjnH(zn; q)

and zj = 〈eiθj〉, where the expected value is taken over the ensemble.

Now (19) is a set of N coupled complex ODEs, so we have not simplified the original

network (1) in the sense of decreasing the number of equations to solve. However,

the states of interest are often fixed points of (19) (but not of (1)), and can thus be

found and followed as parameters are varied. At this point the network we consider,

with connectivity given by A, is arbitrary. If A was a circulant matrix, for example,

this would represent a network of neurons on a circle, where the strength of coupling

between neurons depends only on the distance between them [17].

2.2. Lumping by degree. The next step is to assume that for a large enough network,

the dynamics of neurons with the same degrees will behave similarly [3]. Such an as-

sumption has been made a number of times in the past [16, 15, 30]. We thus associate

with each neuron the degree vector k = (kin, kout) and assume that the value of z for

all neurons with a given k are similar. There are Nk = NkinNkout distinct degrees where

Nkin and Nkout are the number of distinct in- and out-degrees, respectively. We define bs
to be the order parameter for neurons with degree ks, where s ∈ [1, Nk], and now derive

equations for the evolution of the bs.

Let z be the vector of ensemble states zj, where j ∈ [1, N ] and the degree index of

neuron j be d(j), such that kd(j) is its degree. We assume that for all neurons with the

same degree kd(j) = ks the ensemble state zj is similar in sufficiently large networks and

thus we only care about the mean value 〈zj〉d(j)=s = bs with s ∈ [1, Nk]. We say that

degree ks occurs hs times and thus write

b = Cz,(21)
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where the Nk × N matrix C has hs entries in row s, each of value 1/hs, at positions

j where d(j) = s and zeros elsewhere, i.e. Csj = δs,d(j)/hs with δ being the Kronecker

delta.

To find the time derivative of b we need to express z in terms of b, which we do with

an N ×Nk matrix B which assigns to zj the corresponding bs value, such that

z = Bb,(22)

with components Bjs = δd(j),s. Note that CB = INk
, the Nk × Nk identity matrix.

Differentiating (21) with respect to time, inserting (19) into this and writing z in terms

of b using (22) we obtain

ḃs =
N∑
j=1

Csj

−i
(∑Nk

t=1Bjtbt − 1
)2

2
+ i

(∑Nk

t=1Bjtbt + 1
)2

2
(η0 + i∆)


︸ ︷︷ ︸

local

+
N∑
j=1

Csj

i
(∑Nk

t=1Bjtbt + 1
)2

2
Jj


︸ ︷︷ ︸

non-local

.(23)

Considering that for all t there is only a single non-zero entry Bjt, equal to 1, the

identity  Nk∑
t=1

Bjt︸︷︷︸
=δd(j),t

bt


n

= bnd(j)(24)

holds for any power n. Further we find that

N∑
j=1

Csj︸︷︷︸
=1/hs·δs,d(j)

bd(j) = bs.(25)

Thus, the local term in (23) is

ḃs
local

= −i(bs − 1)2

2
+ i

(bs + 1)2

2
(η0 + i∆) .(26)

For the non-local term we write

ḃs
non-local

=
N∑
j=1

1

hs
δs,d(j)i

(
bd(j) + 1

)2

2
Jj(27)

= i
(bs + 1)2

2

N∑
j=1

1

hs
δs,d(j)Jj︸ ︷︷ ︸

=
∑N

j=1 CsjJj=J̃s

,



8 CHRISTIAN BLÄSCHE, SHAWN MEANS, AND CARLO R. LAING

where J̃s describes the synaptic current of the ensemble equations averaged over nodes

sharing the same degree ks. The identity (24) also applies to (20), so that

H(zn; q) = H

(
Nk∑
t=1

Bntbt; q

)
=

Nk∑
t=1

BntH(bt; q)(28)

and the current can be written as

J̃s =
N∑
j=1

Csj
K

〈k〉

N∑
n=1

Ajn

Nk∑
t=1

BntH(bt; q)

=
K

〈k〉

Nk∑
t=1

N∑
j=1

N∑
n=1

CsjAjnBnt︸ ︷︷ ︸
Est

H(bt; q)(29)

The effective connectivity between neurons with different degrees is therefore expressed

in the matrix E = CAB and we end up with equations governing the bs:

(30)
dbs
dt

=
−i(bs − 1)2

2
+

(bs + 1)2

2

[
−∆ + iη0 + iJ̃s

]
where

(31) J̃s =
K

〈k〉

Nk∑
t=1

EstH(bt; q)

These equations are of the same form as (19)-(20) except that A has been replaced by

E. Note that the connectivity matrix A is completely general; we have only assumed

that neurons with the same degrees behave in the same way. We are not aware of a

derivation of this form being previously presented.

3. Network assembly

We are interested in the effects of degree assortativity on the dynamics of the network

of neurons. We will choose a default network with no assortativity and then introduce

one of the four types of assortativity and investigate the changes in the network’s dy-

namics. Our default network is of size N = 5000 neurons where in- and out-degrees k

for each neuron are independently drawn from the interval [750, 2000] with probability

P (k) ∼ k−3 (i.e. a power law, as found in [9] and used in [3]). We create networks

using the configuration model [27], then modify them using algorithms which introduce

assortativity and then remove multiple connections between nodes (or multi-edges) (de-

scribed in Appendix A). Further, to observe any influence of multi-edges on the dynamics

investigated here, we also developed a novel network assembly technique permitting in-

troduction of very high densities of multi-edges also described in the Appendix; we refer

to this novel technique as the “permutation” method. We choose as our default param-

eters η0 = −2,∆ = 0.1, K = 3, for which a default network approaches a stable fixed

point. The sharpness of the synaptic pulse function is set to q = 2 for all simulations.

We first check the validity of averaging over an infinite ensemble. We assemble 20

different default networks and for each, run (19)-(20) to a steady state and calculate the

order parameter z, the mean of Bb. The real part of z is plotted in orange in Fig. 2. For
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Figure 2. Orange circles: steady state of (19)-(20) for 20 different default

networks. Blue circles: results from 50 different realisations of the ηi
for (1)-(2), for each network. Parameters: η0 = −2,∆ = 0.1, K = 3. The

orange line marks the ensemble mean value.

each of these networks we then generated 50 realisations of the ηi’s and ran (1)-(2) for

long enough that transients had decayed, and then measured the corresponding order

parameter for the network of individual neurons

(32) R =
1

N

N∑
j=1

eiθj

and plotted its real part in blue in Fig. 2. Note that the orange circles always lie

well within the range of values shown in blue. The fact that deviations within the 50

realisations are small relative to the value obtained by averaging over an infinite ensemble

provide evidence for the validity of this approach, at least for these parameter values.

We also investigate the influence of multi-connections (i.e. more than one connection)

between neurons on the network dynamics. The configuration model creates a network

in which the neuron degrees are exactly those specified by the choice from the appropri-

ate distribution, but typically results in both self-connections and multiple connections

between neurons. We have an algorithm for systematically removing such connections

while preserving the degrees, and found that removing such edges has no significant

effect (results not shown). We also have an algorithm (see “Permutation Method” in

Appendix A) for increasing the number of multi-edges from the number found using

the default configuration model. This novel network assembly method meets specified

neuron degrees and also produces specified densities of multi-connections ranging from

none to 97%; see Fig. 3 for the results of such calculations. We see that only when the
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Figure 3. Comparison of steady-state values of the order parameter

(top: magnitude of R; bottom: Re(R)) over a suite of adjacency ma-

trices with varied densities of multi-edge connections ranging from none

to 97%. Higher densities of multi-edges were obtained, but assortativities

exceeded the target neutral values of ±0.005. Values shown are from sim-

ulations of (1)-(2) after initial transients decay (i.e., time t ≥ 40). Each of

these 10 curves correspond to a unique realisation of default ηs from the

distribution g(η). Parameters: N = 5000, η0 = −2,∆ = 0.1, K = 3, q = 2.

fraction of multi-edges approaches 90% do we see a significant effect. However, in our

simulations we use simple graphs without multi-edges.

3.1. Assortativity. For a given matrix A we can measure its assortativity by calculat-

ing the four Pearson correlation coefficients r(α, β) with α, β ∈ [in, out] which read

r(α, β) =

∑Ne

e=1(skαe − 〈skα〉)(rkβe −
〈
rkβ
〉
)√∑Ne

e=1(skαe − 〈skα〉)2

√∑Ne

e=1(rkβe − 〈rkβ〉)2

(33)

where

〈skα〉 =
1

Ne

Ne∑
e=1

skαe and
〈
rkβ
〉

=
1

Ne

Ne∑
e=1

rkβe ,(34)

Ne being the number of connections and the leading superscript s or r refers to the

sending or receiving neuron of the respective edge. For example the sending node’s

in-degree of the second edge would be skin2 . Note that there are four mean values to

compute.

We introduce assortativity by randomly choosing two edges and swapping postsynap-

tic neurons when doing so would increase the target assortativity coefficient [31]. An

edge (i, j) is directed from neuron j to neuron i. In order to know whether the pair
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(i, j) and (h, l) should be rewired or left untouched, we compare their contribution to

the covariance in the numerator of (33):

c‖ = c((i, j), (h, l))

=
(
kαj − 〈skα〉

) (
kβi −

〈
rkβ
〉)

+ (kαl − 〈skα〉)
(
kβh −

〈
rkβ
〉)

;(35)

c\/ = c((i, l), (h, j))

= (kαl − 〈skα〉)
(
kβi −

〈
rkβ
〉)

+
(
kαj − 〈skα〉

) (
kβh −

〈
rkβ
〉)
.(36)

If c\/ > c‖ we replace the edges (i, j) and (h, l) by (i, l) and (h, j), respectively, otherwise

we do not, and continue by randomly choosing another pair of edges. Algorithm 1

(see Appendix A) demonstrates a scheme for reaching a certain target assortativity

coefficient.

We investigate the effects of different types of assortativity (see Fig 1) in isolation.

We thus need a family of networks parametrised by the relevant assortativity coefficient.

Algorithm 1 is used to create a network with a specific value of one of the assortativity

coefficients, but especially for high values of assortativity it may be that in doing so

a small amount of assortativity of a type other than the intended one is introduced.

Accordingly, it may be necessary to examine all types of assortativity and apply the

mixing scheme to reduce other types back to zero, and then (if necessary) push the

relevant value of assorativity back to its target value. We do multiple iterations of these

mixing rounds until all assortativities are at their target values (which may be 0) within

a range of ±0.005. We use Algorithm 1 with a range of target assortativities r, and for

each value, store the connectivity matrix A and thus form the parametrised family E(r).

We do this for the four types of assortativity.

We have chosen to use the configuration model to create networks with given degree

sequences and then introduced assortativity by swapping edges. Although we developed

our novel “permutation” method as well (see Appendix A), that method was designed

for assembling adjacency matrices with desired multi-edge densities and was applied only

for that aspect. By contrast, another common adjacency network assembly technique,

that of Chung and Lu [5] together with an analytical expression for assortativity (as

in [3]), proved inadequate. We found that the latter approach significantly alters the

degree distribution for large assortativity, whereas the configuration model combined

with our mixing algorithm does not change degrees at all. For our default network this

approach allows us to introduce assortativity of any one kind up to r = ±0.5.

4. Implementation

For networks of the size we investigate it is impractical to consider each distinct in-

and out-degree (because E will be very large and sparse). Due to the smoothness of

the degree dependency of b(k) we coarse-grain in degree space by introducing “degree

clusters” — lumping all nodes with a range of degrees into a group with dynamics

described by a single variable. Let there be Ncin clusters in in-degree and Ncout clusters

in out-degree, with a total of Nc = Ncin · Ncout degree clusters. The matrix C then is

an Nc × N matrix and constructed as previously, except that d(j) is not the degree

index of neuron j, but the cluster index and s is the cluster index running from 1 to
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0.22

0.23
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0.27

Re
(z

)

Figure 4. Real part of z at steady state for 20 different default adjacency

matrices (indicated by different colors), as the number of clusters in degree

space is varied. Parameters: η0 = −2,∆ = 0.1, K = 3.

Nc. Similarly for the matrix B. There are multiple options for how to combine degrees

into a cluster. The cluster index of a neuron can be computed linearly, corresponding

to clusters of equal size in degree space. However, with this approach, depending on the

degree distribution, some of the clusters may be empty or hardly filled, resulting in poor

statistics. To overcome this issue, the cumulative sum of in- and out-degree distribution

can be used to map degrees to cluster indices. Thus, clusters are more evenly filled and

at the same time regions of degree space with high degree probability are more finely

sampled. The dynamical equations (30)-(31) are equally valid for describing degree

cluster dynamics with s, t ∈ [1, Nc] and E = CAB, where C and B are cluster versions

of their previous definitions.

To check the effect of varying the number of clusters we generate 20 default matrices

and then generate the corresponding matrix E with varying numbers of clusters (Ncin

and Ncout are equal), then run (30)-(31) to a steady state and plot the real part of z in

Fig. 4. We see that the order parameter is well approximated using as little as about

Ncin = Ncout = 10 degree clusters. Beyond that, fluctuations between different network

realisations exceed the error introduced by clustering. In our simulations we stick to the

choice of 10 degree clusters per in- and out-degree space.

Having performed this clustering, we find that it is possible to represent E using a

low-rank approximation, calculated using singular value decomposition. Thus for a fixed

r we have

(37) E = USV T
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Figure 5. Six largest singular values of the SVD decomposition of E as

a function of assortativity coefficent, for 4 types of assortativity.

where S is a diagonal matrix with decreasing entries, called singular values, and U and V

are unitary matrices. In Fig. 5 we plot the largest 6 singular values of E as function the

assortativity coefficient, for the 4 types of assortativity. Even for large |r| the singular

values decay very quickly, thus a low-rank approximation is possible. We choose a rank-3

approximation, so approximate E by

(38) E(r) ≈
[
u1(r) u2(r) u3(r)

] s1(r) 0 0

0 s2(r) 0

0 0 s3(r)




vT1 (r)

vT2 (r)

vT3 (r)


where ui is the ith column of U , similarly for vi and V , and si is the ith singular value.

We have such a decomposition at discrete values of r and use cubic interpolation to

evaluate E(r) for any r. This decomposition means that the multiplication in (31) can

be evaluated quickly using 3 columns of U and V rather than the full Nc×Nc matrix E.

We note that the components for the approximation of E(r) are calculated once and

then stored, making it very easy to systematically investigate the effects of varying any

of the parameters η0,∆, K and q (governing the sharpness of the pulse function (3)).

5. Results

5.1. Excitatory coupling. We take K = 3 to model a network with only excitatory

connections. To study the dynamical effect of assortativity we generate positive and

negative (r = ±0.2) assortative networks of the four possible kinds and follow fixed
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points of (30)-(31) as a function of η0, and compare results with a neutral (r = 0)

network. We use pseudo-arc-length continuation [18, 13].

To calculate the mean frequency over the network we evaluate z = Bb and then use

the result that if the order parameter at a node is z, then the frequency of neurons at

that node is [19, 25]

(39)
1

π
Re

(
1− z̄
1 + z̄

)
Averaging these gives the mean frequency.

Results are shown in Figure 6, where we see quite similar behaviour in each case:

apart from a bistable region containing two stable and one unstable fixed point, there is

only a single stable fixed point present. Further, the two assortativity types (out,in) and

(out,out) apparently do not affect the dynamics, whereas the saddle-node bifurcations

marking the edges of the bistable region move slightly for (in,out) and significantly for

(in,in) assortativity. Following the saddle-node bifurcations for the latter two cases we

find the results shown in Figure 7. We have performed similar calculations for different

networks with the same values of assortativity and found similar results.

5.2. Inhibitory coupling. We choose K = −3 to model a network with only inhibitory

coupling. Again, we numerically continue fixed points for zero, positive and negative

assortativity (r = 0,±0.2) as η0 is varied and obtain the curves shown in Figure 8.

Consider the lower left plot. For large η0 the system has a single stable fixed point which

undergoes a supercritical Hopf bifurcation as η0 is decreased, creating a stable periodic

orbit. This periodic orbit is destroyed in a saddle-node bifurcation on an invariant circle

(SNIC) bifurcation at lower η0, forcing the oscillations to stop. Decreasing η0 further,

two unstable fixed points are destroyed in a saddle-node bifurcation. In contrast with

the case of excitatory coupling, oscillations in the average firing rate are seen. These

can be thought of as partial synchrony, since some fraction of neurons in the network

have the same period and fire at similar times to cause this behaviour. The period of

this macroscopic oscillation tends to infinity as the SNIC bifurcation is approached, as

shown in the inset of the lower left panel in Fig. 8.

As in the excitatory case, we see that assortativities of type (out,in) and (out,out)

have no influence on the dynamics in this scenario. However, type (in,out) does have a

small effect, slightly moving bifurcation points (top right panel in Fig. 8). Type (in,in)

has the strongest effect, resulting in a qualitative change in the bifurcation scenario

for large enough assortativity: there is a region of bistability between either two fixed

points or a fixed point and a periodic orbit. This is best understood by following the

bifurcations in the top panels of Fig. 8 as r is varied, as shown in Figure 9. There is

one fixed point in regions A, B and D, and three in region C. For (in,out) assortativity

there is a stable periodic orbit in region B and never any bistability.

We now describe the case for (in,in) assortativity. For negative and zero r the scenario

is the same as for the other three types, but as r is increased there is a Takens-Bogdanov

bifurcation where regions C,D,E and F meet, leading to the creation of a curve of homo-

clinic bifurcations, which is destroyed at another codimension-two point where there is a

homoclinic connection to a non-hyperbolic fixed point [4]. There are stable oscillations



DEGREE ASSORTATIVITY IN NETWORKS OF SPIKING NEURONS 15

2.0 1.8 1.6 1.4 1.2 1.0
0

0.0

0.1

0.2

0.3

0.4

0.5

0.6
f

r(in,in)

2.0 1.8 1.6 1.4 1.2 1.0
0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f

r(in,out)

2.0 1.8 1.6 1.4 1.2 1.0
0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f

r(out,in)

2.0 1.8 1.6 1.4 1.2 1.0
0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f

r(out,out)

r =-0.2
r =0
r =0.2

Excitatory coupling ( > 0)

Figure 6. Average firing rate at fixed points of (30)-(31) as a function

of η0, for the 4 types of assortativity. For each type of assortativity curves

are plotted for r = 0 (black), r = −0.2 (blue) and r = 0.2 (green). Solid

lines indicate stable and dashed lines unstable fixed points. Parameters:

K = 3,∆ = 0.1.

in region E, created or destroyed in supercritical Hopf or homoclinic bifurcations. In

region F there is bistability between two fixed points.

6. Discussion

We investigated the effects of degree assortativity on the dynamics of a network of

theta neurons. We used the Ott/Antonsen ansatz to derive evolution equations for an or-

der parameter associated with each neuron, and then coarse-grained by degree and then

degree cluster, obtaining a relatively small number of coupled ODEs, whose dynamics

as parameters varied could be investigated using numerical continuation. We found

that degree assortativity involving the out-degree of the sending neuron, i.e. (out,in)

and (out,out), has no effect on the networks’ dynamics. Further, (in,out) assortativity

moves bifurcations slightly, but does not lead to substantial differences in dynamical
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Figure 7. Continuation of the saddle-node bifurcations seen in the upper

two panels of Fig. 6 as r is varied. Curves in Figure 6 correspond to vertical

slices at r = 0,±0.2. The network is bistable in region B and has a single

stable fixed point in regions A and C.

behaviour. The most significant effects were caused by creating correlation between in-

degrees of the sending and receiving neurons. For our excitatorially coupled example,

positive (in,in) assortativity narrows the bistable region, whereas negative assortativity

widens it (see Fig. 7). In the inhibitory case introducing negative assortativity increased

the amplitude of network oscillations and extended their range to slightly larger η0. On

the contrary, positive (in,in) assortativity in this network has an opposite effect and

eventually stops oscillations (see Fig. 9).

The most similar work to ours is that of [3]. These authors also considered a network

of the form (1)-(2) and by assuming that the dynamics depend on only a neuron’s degree

and that the ηj are chosen from a Lorentzian, and using the Ott/Antonsen ansatz, they

derived equations similar to (30)-(31). The difference in formulations is that rather than

a sum over entries of E (in (31)), [3] wrote the sum as

(40)
∑
k′

P (k′)a(k′ → k)

where P (k) is the degree distribution and a(k′ → k) is the assortativity function, which

specifies the probability of a link from a node with degree k′ to one with degree k

(given that such neurons exist). They then chose a particular functional form for a

and briefly presented the results of varying one type of assortativity (between k′in and

kout). In contrast, our approach is far more general (since any connectivity matrix A

can be reduced to the corresponding E, the only assumption being that the dynamics

are determined by a neuron’s degree). We also show the results of a wider investigation

into the effects of assortativity.

This alternative presentation also explains why E can be well approximated with a

low-rank approximation. If the in- and out-degrees of a single neuron are independent,
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Figure 8. Average firing rate at fixed points of (30)-(31) as a function

of η0, for the 4 types of assortativity. For each type of assortativity curves

are plotted for r = 0 (black), r = −0.2 (blue) and r = 0.2 (green). In

addition there are oscillations in certain regions and dash-dotted lines

outline the minimal and maximal firing rate over one period of oscillation.

The (in,in)-plot in the top left corner contains a zoom of rest of the panel,

and the (out,in)-plot contains a subplot with the oscillation’s period for

r = 0 and which is aligned with the outer η0 axis.

P (k′) = Pi(k
′
in)Po(k

′
out), and with neutral assortativity, a(k′ → k) = k′outkin/(N〈k〉).

Thus

(41)∑
k′

P (k′)a(k′ → k)H(b(k′); q) =
kin
N〈k〉

∑
k′out

∑
k′in

k′outPi(k
′
in)Po(k

′
out)H(b(k′out, k

′
in); q)
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Figure 9. Continuation of bifurcations seen in upper panels of Fig. 8.

Solid black lines indicate saddle-node bifurcations, dashed blue is a Hopf

bifurcation and dashed red a homoclinic bifurcation. Curves in Figure 8

can be understood as vertical slices through the respective plot at r =

0,±0.2. See text for explanation of labels.

This term contributes to the input current to a neuron with degree k = (kin, kout), but

is independent of kout. Thus the state of a neuron depend only on its in-degree, so

(42)
∑
k′

P (k′)a(k′ → k)H(b(k′); q) =
kin
N

∑
k′in

Pi(k
′
in)H(b(k′in); q)

Comparing with (31) we see that E = cTd where c = (k1
in, k

2
in . . . k

Nkin

in )/N and d =

(Pi(k
1
in), Pi(k

2
in) . . . , Pi(k

Nkin

in )), i.e. E is a rank-one matrix. Varying assortativity within

the network is then a perturbation away from this, with the effects appearing in the

second (and third) singular values in the SVD decomposition of E.

A limitation of our study is that we considered only networks of fixed size with the

same distributions of in- and out-degrees, and a specific distribution of these degrees.

However, our approach does not rely on this and could easily be adapted to consider

other types of networks, although we expect it to become less valid as both the average

degree and number of neurons in the network decrease. We have also only considered

theta neurons, but since a theta neuron is the normal form of a Type I neuron, we expect

similar networks of other Type I neurons to behave similarly to the networks considered

here. The approach presented here could also be used to efficiently investigate the effects

of correlated heterogeneity, where either the mean or width of the distribution of the

ηj is correlated with a neuron’s in- or out-degree [33, 34, 6]. We could also consider

assortativity based on a neuron’s intrinsic drive (ηj) [32] rather than its degrees, or

correlations between an individual neuron’s in- and out-degree [36, 20, 23, 37, 28]. We

are currently investigating such ideas.
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Appendix A. Algorithms

We present here the algorithms developed and utlised for adjacency matrix assembly

and modification. These include modifications to resulting adjacency matrices produced

by the familiar configuration method, and our novel matrix assembly technique we chris-

ten the “permutation” method.

A.1. Assortativity. Algorithm 1 is used to create a network with a specified degree

distribution and values of the four different assortativity coefficients.

A.2. Permutation Method. The well-known configuration model for generating ad-

jacency matrices [27] typically includes auto-connections and multiple edge connections

with no control over their appearance or proportion, often forcing post-processing re-

moval if none are desired. We developed a novel adjacency matrix assembly technique

that, given predefined sequences of in- and out-degrees, permits designating not only

whether multiple edges appear but also their proportion — with no post-processing re-

quired. Additionally, auto-connections can be included or omitted without manipulating

the resulting A. These A’s exhibit generally neutral assortativities over all types with

exceptions emerging for the highest multi-edge densities we assembled: e.g., 98-99%

multi-edges exceed our target neutral assortativity range of ±0.005, so for purposes of

this study these were discarded.

This permutation method is a two-phase approach requiring only two sequences of

in- and out-degrees, or kin and kout, respectively, and a target multiple edge connection

density, ρ+
m. We describe this technique briefly here, and with more detail in a subsequent

companion publication. These phases are as follows:

(1) Generate an initial matrix, designated A(0), with each node’s inbound edge counts

(row sums) satisfying kin, yet ignoring kout. Each row of A(0) is filled with nonzero

entries comprised of solo- and multiple-edge connections whose sum is kin for each

node. Remaining entries along each row are simply filled with zeros out to the

N th column. This resulting A(0) thus adheres to the designated kin and ρ+
m, but

violates kout: all the column sums are incorrect (see Fig. (10)).

(2) Randomly permute each row of A(0), distributing the non-zero entries of solo-

and multiple-edge connections into a first sequence of permuted matrices, A(1).

Calculate an error distance for A(1) from the designated kout via e
(1)
out = kout −

k
(1)
out. Each entry in e

(1)
out is used to classify nodes: too many out-bound edges

(“donor” nodes), those with too few (“recipient” nodes) and those at their target

out-degree (“inert” nodes). We then loop over all the donor nodes, randomly

pick a recipient node and exchange edges from the donor to the recipient — if

suitable. After each exchange, we update the current permuted matrix, A(i),

its corresponding error distance, e
(i)
out, and repeat the process until this error is

zero. The final matrix, A(n), after n updates, then satisfies all the designated

characteristics if we performed suitable edge exchanges along the way.
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Algorithm 1: Assortative mixing.

Randomly pair up all Ne edges of the network with adjacency matrix A and re-

connect them at once where preferable with respect to target assortativity rtarget.

Repeat the process until the assortativity coefficient lies within the tolerance. Once

overshooting the target coefficient, interpolate the length of a shortened list of edge

pairs and reconnect those.

1 /* compute difference in assortativity */

2 ∆r = rtarget − r(A);

3 while |∆r| > tolerance do

4 pair up all edges [(i, j), (k, l)];

5 /* compute whether each pair should be reconnected */

6 s∆r = [true: if reconnection will minimise ∆r; false: otherwise];

7 /* trial reconnection */

8 A∗ = copy(A);

9 reconnect edges in A∗ according to s∆r;

10 ∆r∗ = rtarget − r(A∗);
11 if sign(∆r∗) 6= sign(∆r) then

12 /* r(A∗) is already beyond the target: */

13 /* limit number of edges for reconnection process */

14 interpolation data Γ: (0, r(A)), (Ne/2, r(A
∗));

15 while |∆r∗| > tolerance do

16 interpolate (L, rtarget) using Γ;

17 slimit = [true: list index < L; false: list index > L];

18 /* trial selection and reconnection */

19 s∗ = s∆r ∧ slimit;

20 A∗ = copy(A);

21 reconnect edges in A∗ according to s∗;

22 add (L, r(A∗)) to Γ;

23 ∆r∗ = rtarget − r(A∗);
24 end

25 end

26 A = A∗;

27 ∆r = ∆r∗;

28 end
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Algorithm 3: Permutation Method, Phase (2).
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