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A “bump” refers to a group of active neurons surrounded by quiescent ones while a

“chimera” refers to a pattern in a network in which some oscillators are synchronized

while the remainder are asynchronous. Both types of pattern have been studied

intensively, but are sometimes conflated due to their similar appearance and existence

in similar types of networks. Here we numerically study a hybrid system which

linearly interpolates between a network of theta neurons which supports a bump at

one extreme, and a network of phase oscillators which supports a chimera at the

other extreme. Using the Ott/Antonsen ansatz we derive the equation describing

the hybrid network in the limit of an infinite number of oscillators, and perform

bifurcation analysis on this equation. We find that neither the bump nor chimera

persist over the whole range of parameters, and the hybrid system shows a variety of

other states such as spatiotemporal chaos, travelling waves, and modulated travelling

waves.

Keywords: Bumps, Chimera states, Coupled oscillators, Bifurcations, Collective be-

havior in networks
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“Bumps” are spatially-localised groups of firing neurons surrounded by quiescent

neurons. Chimeras are patterns in coupled oscillator networks for which some

oscillators are synchronised while others are asynchronous. These two types of

pattern are visually similar but are created through different mechanisms. Here

we study a hybrid model which in one extreme is a network of theta neurons

which supports a bump state and in the other extreme is a network of Kuramoto

phase oscillators which supports a chimera. We interpolate between these two

extremes and find that neither the bump nor the chimera persist. Instead we

find travelling waves, spatially uniform periodic states and spatiotemporal chaos,

among other states.

I. INTRODUCTION

In the field of neuronal network modelling a “bump” refers to a spatially-localised region

of active neurons, surrounded by quiescent neurons. They are often studied in models for

head direction1 and working memory2,3, among others. Bumps occur in continuum neural

field models4–11 and also in networks of spiking neurons12–15. Networks supporting bumps

are often bistable, with the “all-off” state, in which few or no neurons are firing, also being

an attractor. It is this bistability that makes these networks candidates for memory units

in which a scalar (the position of the bump) can be stored. Chimeras are a more recently

discovered state, in which — for a one dimensional network of coupled oscillators — some

of the oscillators form a contiguous group of synchronised oscillators, while the remainder

are asynchronous16–20. They have gained a great deal of attention recently and have been

observed in two21,22 and three23 spatial dimensions as well as in experiments24,25. Systems

supporting chimeras are often bistable, with the fully synchronised state also being stable.

Bumps and chimeras are visually and conceptually similar, both occurring in networks

of oscillators with nonlocal coupling19. This has lead to some authors conflating the two

states26, a situation probably exacerbated by the labelling of many states with coexisting

synchrony and asynchrony as chimeras27, as well as the study of chimeras in networks of

model neurons28–31. However, the states are different: in networks supporting bumps the

individual unit, typically a model neuron, undergoes a transition from quiescence to periodic

firing as its input from others, often in the form of a current, is increased. Thus a bump

in a network with “Mexican hat” coupling (positive for near neighbours and negative for

more distant ones) consists of a region of active neurons whose activity keeps them and their

close neighbours firing, while suppressing neurons further away. The quiescent neurons do

not have enough input to fire and thus provide no input to the active neurons. Quiescent

neurons have similar states (near the stable fixed point of an uncoupled neuron) but are not

“synchronised” as they are not oscillating. Indeed, classical neural field models supporting
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bumps involve only firing frequencies of neurons, with no information about their phases4,32.

Conversely, in the networks in which chimeras were first found16–18,20 the individual unit

is an oscillator, freely running at a fixed frequency when uncoupled. A chimera occurs

when the form of the coupling is such that a synchronised group of oscillators creates a

“field” to which they can lock and thus remain synchronised but which is too weak for the

asynchronous oscillators to lock to. The asynchronous oscillators contribute only weakly

to the field. The difficulty in choosing the form of such a field and an appropriate type of

oscillator means that many of the systems in which chimeras have been observed28,33–39 are

“close” to Kuramoto phase oscillator networks in which they were originally observed and

analysed16–19.

In this paper we consider a one-parameter “hybrid” model network which at one extreme

is a network of theta neurons supporting a stable bump state, and at the other extreme is

a network of Kuramoto phase oscillators supporting a chimera. We use the Ott/Antonsen

ansatz to derive a nonlocal differential equation describing the network’s dynamics in the

limit of an infinite number of oscillators. We follow the chimera and bump states as the

parameter is varied, describing many of the attractors of the network and the bifurcations

they undergo. We find that there is not a simple deformation of a bump into a chimera;

indeed, neither of these states persists over the whole range of the parameter. We find

regions of multistability, and attractors including travelling waves, modulated travelling

waves, spatially uniform periodic states and spatiotemporal chaos.

In Sec. II we present the different model networks considered and their continuum de-

scriptions, and the hybrid model which interpolates between them. The results of numerical

investigations are given in Sec. III. We conclude in Sec. IV.

II. MODELS STUDIED

We consider two systems, the first a network of theta neurons capable of supporting a

stable bump solution, and the second a network of phase oscillators capable of supporting a

stable chimera.

A. Theta neurons

The theta neuron is the normal form for a saddle-node-on-an-invariant-circle (SNIC)

bifurcation40–42. Its state is given by a single angular variable, θ, and the neuron is said to

fire when θ increases through π.

The network of N neurons is described by the equations

dθj
dt

= 1− cos θj + (1 + cos θj)(ηj + Ij) (1)
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for j = 1, 2 . . . N where the input to neuron j from other neurons in the network is

Ij =
2π

N

N∑
k=1

G

(
2π|k − j|

N

)
P (θk). (2)

If uncoupled (Ij = 0) and ηj < 0, neuron j has two fixed points, one stable and one unstable.

If uncoupled and ηj > 0 the neuron fires periodically with frequency
√
ηj/π. Thus there is

a bifurcation from quiescence to periodic firing as the input to a neuron is increased.

We choose the coupling function G(x) = 1 + A cosx where A is a parameter, and

P (θ) =
8(1− cos θ)5

63
(3)

as the pulsatile function with maximum at θ = π, modelling the current pulse emitted as a

neuron fires. The ηj are randomly chosen from a Lorentzian distribution with centre η0 and

half-width-at-half-maximum ∆. Similar networks have been considered in42–44.

A typical bump state is shown in Fig. 1. There is a spatially-localised group of active

neurons, centred approximately in the centre of the domain. Outside this bump the neurons

are largely quiescent (i.e., their frequency is zero), as their input is not sufficient for them to

fire. Note that the bump can be centred anywhere on the domain — its position is largely

determined by the initial conditions. For this value of A (A = 4) the coupling function G(x)

is of Mexican-hat type: positive for small x and negative for larger x. For these parameters

there also exists a stable “all-on” state for which most neurons are firing (except those with

large and negative ηj); this state has no spatial structure (not shown).

B. Phase oscillators

The second system is a network of N phase oscillators described by

dθj
dt

= ηj −
2π

N

N∑
k=1

G

(
2π|k − j|

N

)
sin (θj − θk + α) (4)

for j = 1, 2 . . . N , where the ηj and coupling function G are as above. The parameter α is a

constant, and if uncoupled (G = 0) oscillator j would rotate at a constant speed ηj. Such

systems have been considered in16–20. One significant difference between (4) and (1) is that

the dynamics in (4) depend on phase differences only. Thus one can move to a rotating

coordinate frame by replacing each θj by θj−ωt and recover (4) but with η0 increased by ω.

Thus without loss of generality one can set η0 = 0. Another manifestation of this invariance

is that one can move to a rotating coordinate frame in which any synchronised oscillators

are stationary.

An example of a chimera state for (4) is shown in Fig. 2. In panel (a) we see that the

oscillators are in two groups: those near the boundary are synchronised (recall that the
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Figure 1. A bump state in (1)-(2). (a) sin θ shown in colour. (b) snapshot of phases. (c) average

frequency. Transients have been discarded and the average frequency for neuron j is calculated

over 100 time units as [θj(100)− θj(0)]/(200π). Parameters: η0 = −0.4,∆ = 0.1, N = 512, A = 4.

domain is periodic in space) while those in the centre of the domain are asynchronous. This

is easier to see in panel (b) where we have gone to a coordinate frame rotating at the same

speed as the synchronous oscillators, which now appear fixed. The difference is clear in

the lower panels, where the average frequencies of oscillators in both the original (d) and

corotating (e) frames are shown. Panel (c) shows a snapshot of phases but note that it is

only relative phases which matter. The fact that the largely synchronous oscillators have
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phase ∼ 4 − 5 is just a result of when the snapshot was taken. This is in contrast to

Fig. 1(b). It is the similarities between panels (a) and (c) in Fig. 1, and panels (b) and (e)

in Fig. 2, respectively, which result in the conflation of chimeras and bumps, along with the

similarities between (1) and (4).

For these parameters the “fully synchronised” state, in which the vast majority of oscil-

lators have the same time-averaged frequency, is also stable (not shown).

C. Continuum description

Using standard theory42–44 one can take the limit of (1) as N → ∞ and describe the

system by a probability density function F (x, η, θ, t) such that F (x, η, θ, t)dη dθ is the prob-

ability that a neuron at position x has a value of η in (η, η + dη) and phase in (θ, θ+ dθ) at

time t. Using the Ott/Antonsen ansatz45,46 one can derive the evolution equation

∂z(x, t)

∂t
=

(iη0 −∆)[1 + z(x, t)]2 − i[1− z(x, t)]2

2
+
i[1 + z(x, t)]2I(x, t)

2
(5)

where

I(x, t) =

∫ 2π

0

G(x− y)H(z(y, t)) dy (6)

and

H(z) =
8

63

[
63

8
− 105

16
(z + z̄) +

15

4
(z2 + z̄2)− 45

32
(z3 + z̄3) +

5

16
(z4 + z̄4)− 1

32
(z5 + z̄5)

]
(7)

z(x, t) is the complex-valued order parameter at time t and position x:

z(x, t) =

∫ ∞
−∞

∫ 2π

0

F (x, η, θ, t)eiθdθ dη. (8)

and overbar indicates the complex conjugate.

Similarly, one can take the limit N →∞ of (4) and obtain19,47

∂z(x, t)

∂t
= −∆z(x, t) +

1

2

[
R(x, t)e−iα − R̄(x, t)eiαz2(x, t)

]
(9)

where

R(x, t) =

∫ 2π

0

G(x− y)z(y, t) dy (10)

and we have set η0 = 0. Numerically solving (5)-(6) and (9)-(10) we obtain stable solutions

consistent with those in Figs. 1 and 2, respectively (not shown).
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Figure 2. A chimera state in (4). (a) sin θ shown in colour. (b) sin θ shown in colour in a rotating

coordinate frame. The same colourbar applies to panels (a) and (b). (c) snapshot of phases. (d)

average frequency of oscillators. (e) average frequency of oscillators in a rotating coordinate frame.

Transients have been discarded and the average frequency for an oscillator is calculated as in Fig. 1.

Parameters: η0 = 0,∆ = 0.1, N = 512, A = 0.9, α = π/2− 0.2.
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D. Hybrid model

We now consider a system which linearly interpolates between (5) and (9). This is chosen

to be

∂z

∂t
=(1− p)

{
(iη0 −∆)[1 + z(x, t)]2 − i[1− z(x, t)]2

2
+
i[1 + z(x, t)]2I(x, t)

2

}
+ p

{
−∆z(x, t) +

1

2

[
R(x, t)e−iα − R̄(x, t)eiαz2(x, t)

]}
(11)

with G(x) = 1 + (4− 3.1p) cosx, and R and I as above. When p = 0 this reduces to (5)-(6)

and when p = 1, to (9)-(10). Of course, this is not the only way in which to interpolate

between (5) and (9) but we choose it to be perhaps the simplest. The corresponding hybrid

model of discrete oscillators is

dθj
dt

=(1− p) [1− cos θj + (1 + cos θj)(ηj + Ij)]

+ p

[
ηj −

2π

N

N∑
k=1

G

(
2π|k − j|

N

)
sin (θj − θk + α)

]
(12)

with G as above and Ij as in (2). Note that this model does not have any specific biological

interpretation; it is created to interpolate between two well-known systems.

To understand the transition from the bump supported by (5)-(6) and the chimera sup-

ported by (9)-(10) we first solve (11) while quasistatically increasing p from 0 to 1 over 5000

time units, starting at the stable bump. The result is shown in Fig. 3(a). We see that the

bump persists to p ≈ 0.25, at which point the system jumps to a spatially-uniform state. A

pattern emerges at p ≈ 0.45 and several types of solution are seen before a chimera appears

just before p = 1.

Quasistatically decreasing p from 1 to 0 over 5000 time units (starting at a chimera) we

obtain Fig. 3(b). The chimera persists to p ≈ 0.85 at which point other spatiotemporal

patterns arise. A spatially-uniform state appears for 0.25 < p < 0.35 and a stable bump

state finally appears at p ≈ 0.12. There seem to be regions of multistability, and it is clear

that the bump does not smoothly deform into a chimera or vice versa. This paper is devoted

to understanding the sequence of bifurcations that occur as p is varied in order to explain

the results in Fig. 3.

III. RESULTS

We will analyse various types of solution and piece together the results at the end of this

section. Numerical solutions of (11) were obtained by discretising space in either 256 or 512

equally spaced points and using the FFT to implement the convolutions in (6) and (10).

Pseudoarclength continuation48,49 was used to follow solutions as p was varied, and stability

was determined from the eigenvalues of the linearisation about a state.
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Figure 3. Solutions of (11) as p is increased from 0 to 1 in time (a) and decreased from 1 to 0

in time (b). When p = 0 the systerm supports a bump, whereas for p = 1 it supports a chimera.

Other parameters: η0 = −0.4,∆ = 0.1, α = π/2− 0.2. 512 spatial points were used.
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Figure 4. Stationary and periodic bump solutions of (11). 〈z〉 is the mean over x of z(x, t). For

stationary bump solutions (circles and dots) we plot |〈z〉| while for periodic bump solutions (dashed

and solid curves) we plot the maximum and minimum over one period of |〈z〉|. Blue: stable, red:

unstable. Parameters as in Fig. 3.

A. Bump

Continuing the stable bump state that exists at p = 0 we obtain Fig. 4. It undergoes

two Hopf bifurcations, the second one supercritical, as p is increased before being destroyed

in a saddle-node bifurcation at p ≈ 0.253. The rightmost Hopf bifurcation creates a stable

periodic orbit at p ≈ 0.187, and an unstable periodic orbit is created in a Hopf bifurcation

from the unstable branch of bumps at p ≈ 0.163. These two are destroyed in a saddle-node

bifurcation of periodic orbits at p ≈ 0.143.

There is a gap in Fig. 4 for 0.125 < p < 0.143 where the attractor is not shown. Simula-

tions suggest that the leftmost Hopf bifurcation is subcritical, and there are spatiotemporally

chaotic solutions over this range of values of p, with an example shown in Fig. 5. Windows

of periodic or chaotic solutions are visible for 0.1 < p < 0.2 in both panels of Fig. 3, and

the saddle-node bifurcation destroying the stationary bump at p ≈ 0.253 is seen in the left

panel.

Note that another “bump” state disconnected from the branches shown here is found for

p ∼ 0.4; see Sec. III D.
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Figure 5. A chaotic solution of (11) at p = 0.14. |z(x, t)| is shown in colour. Parameters as in

Fig. 3.

B. Chimera/standing wave

For p = 1 the chimera is a fixed point in a uniformly rotating coordinate frame, but for

smaller p it is a periodic orbit in the original coordinate frame and must be studied as such.

Following the chimera from p = 1 we obtain the results in Fig. 6, shown as blue circles. This

state undergoes a Neimark-Sacker bifurcation as p is decreased, leading to quasiperiodic

solutions, discussed below. The branch of chimera solutions undergoes four saddle-node

bifurcations, becoming stable on the fourth one. On the stable branch the magnitude of

spatial variation in structure decreases until the state is destroyed in a collision with the

spatially-uniform periodic state. Solutions on the stable branch around p = 0.7 appear as

standing waves; see Fig. 7 for an example. The spatially-uniform periodic state is stable

at p = 1 and goes unstable in a subcritical bifurcation as p is decreased. It then stabilises

in a supercritical bifurcation in which the stable standing wave solution is created. There

is another subcritical bifurcation as p is decreased before the unstable spatially-uniform

periodic state is destroyed when it collides with a spatially-uniform steady state in a Hopf

bifurcation from this state (see Fig. 9).

The stable spatially-uniform periodic state at p = 1 is a spatially uniform steady state

in a uniformly rotating coordinate frame. It corresponds to the “fully synchronised” state,

which is one of the two attractors of (9). At p ≈ 0.78 the stable standing wave is de-

stroyed in a saddle-node bifurcation and this leads to the creation of a chaotic attractor

via intermittency50, as shown in Fig. 8. The chaotic behaviour persists up to p ≈ 0.92; see

Sec. III E.

C. Spatially-uniform steady states

Following the spatially-uniform steady state that is stable for p = 0 we obtain Fig. 9.

Recall that at p = 0 it is the stable “all-on” solution of (5). This branch persists until p = 1
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Figure 6. Period of the standing wave/chimera (circles and dots) and of the spatially-uniform

periodic state (dashed and solid curve) solutions of (11). The left endpoint corresponds to the

creation of the branch of spatially-uniform periodic states in a Hopf bifurcation from a spatially-

uniform steady state (see Fig. 9). Blue: stable, red: unstable. Parameters as in Fig. 3.
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Figure 7. An example of a standing wave solution of (11) at p = 0.7. |z(x, t)| is shown in colour.

Parameters as in Fig. 3.

and when p = 1 it is the zero state, an unstable fixed point of (9). The solution which is stable

for p = 0.3 goes unstable as p is increased just before the saddle-node bifurcation that can be

seen in Fig. 9. This is a Turing bifurcation, i.e. the Jacobian of the system evaluated at the

fixed point has a zero eigenvalue and a corresponding eigenvector with spatial structure. This
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Figure 8. The onset of chaotic behaviour via intermittency. (a) Standing wave solution of (11)

at p = 0.775; chaotic solutions at (b) p = 0.78 and (c) p = 0.784. |z(x, t)| is shown in colour.

Parameters as in Fig. 3.

bifurcation creates an unstable bump seen in Fig. 12. There is another Turing bifurcation at

p ≈ 0.251 which seems subcritical. There is a small window (0.251 ≤ p ≤ 0.253) in which the

system has the two attractors: a spatially-uniform steady state and the stable bump shown

in Fig. 4. For the solution in Fig. 9 there is a dynamic Turing instability at p ≈ 0.035, i.e., the

Jacobian has a complex conjugate pair of purely imaginary eigenvalues and corresponding

eigenvectors with spatial structure. This bifurcation is supercritical, resulting in a travelling

wave, which goes unstable to a modulated travelling wave at p ≈ 0.046. This modulated

travelling wave becomes chaotic at p ≈ 0.061 and this chaos persists until p ≈ 0.101.

D. Travelling waves

For some values of p, e.g. p = 0.48, we obtain travelling waves, as shown in the top two

panels of Fig. 10. They have a constant profile which travels at a constant speed and are

thus fixed points of

∂z

∂t
=(1− p)

{
(iη0 −∆)[1 + z(x, t)]2 − i[1− z(x, t)]2

2
+
i[1 + z(x, t)]2I(x, t)

2

}
+ p

{
−∆z(x, t) +

1

2

[
R(x, t)e−iα − R̄(x, t)eiαz2(x, t)

]}
+ c

∂z

∂x
(13)
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Figure 9. Spatially uniform steady states of (11) (Re(z) is plotted). Solid: stable; dashed: unstable.

The circle marks the Hopf bifurcation creating the spatially-uniform periodic state shown in Fig. 6.

The square marks the Turing bifurcation creating the bump state seen in Fig. 12. Parameters as

in Fig. 3.

where c is their speed44,51. (Any spatial shift of such a fixed point is also a fixed point

of (13), so we have to append a scalar equation to (13) which has the effect of selecting one

from this continuum.) Having found a fixed point of (13) one can determine its stability by

linearising (13) about it.

Following these travelling waves we obtain Fig. 11. The branch of solutions is created

by branching off a stationary bump with speed 0 at p ≈ 0.437. The branch of stationary

bumps is shown in Fig. 12. (We refer to these stationary solution as “bumps” as they

are stationary and |z| is a unimodal function of x for them, but there is little variation in

|z| over x.) Referring to Fig. 11 there are bifurcations of travelling waves at p values of

0.905, 0.83, 0.502, 0.455, 0.44 and 0.373. The first five are Hopf bifurcations and the last one

is a saddle-node bifurcation. The leftmost four Hopf bifurcations create modulated travelling

waves, an example of which is shown in the lower two panels of Fig. 10.

To investigate the modulated travelling waves we define

W (t) = Re{z(0, t)} − 1

2π

∫ 2π

0

Re{z(x, t)}dx. (14)

For a fixed value of p we integrate (11) for 1300 time units, then for another 1000 time
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Figure 10. A travelling wave solution of (11) is shown in (a) and (b): real and imaginary parts of

z, respectively, for p = 0.48. A modulated travelling wave solution is shown in (c) and (d): the

real and imaginary parts of z, respectively, for p = 0.6. Parameters as in Fig. 3.

units, recording Re{z(0, t)} every time W increases through zero. These values are plotted

in Fig. 13, where in panel (a) we have quasistatically increased p while in panel (b) we have

decreased it. For a smoothly travelling wave all of these values at a fixed p will be the same,

while for a modulated wave they will have a range of values. The results are consistent with

those in Fig. 11, but there are some regions of bistability with both a travelling wave and a

modulated travelling wave being stable, for example, 0.83 < p < 0.84 and 0.455 < p < 0.493.

The rightmost Hopf bifurcation at p ≈ 0.905 appears to be subcritical and as p is increased

through this value while following the travelling wave, the system jumps to the coexisting

chaotic attractor (see below).
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Figure 11. The speed of a travelling wave solution of (11). These solutions are fixed points of (13),

where c is the speed. Solid: stable; dashed: unstable. Panel (b) is a zoom of panel (a). The

solution branches off a stationary bump (see Fig. 12) at zero speed. Parameters as in Fig. 3.

E. Chaos

As mentioned above, the stable standing wave is destroyed in a saddle-node bifurcation

at p ≈ 0.78, leading to chaotic behaviour via intermittency. Following that attractor as p

is increased further and visualising the solutions using a Poincaré map as in the previous

section, we obtain Fig. 14 (a). Coming from the right we see that the stable chimera
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Figure 12. Stationary bump states of (11). The real part of 〈z〉 (the mean over x of z(x, t)) is

plotted. Solid: stable, dashed: unstable. The rightmost bifurcation (indicated by the change in

stability) creates the travelling wave in Fig. 11. The leftmost bifurcation seems to be a subcritical

Hopf bifurcation. Both endpoints of this branch correspond to creation of this branch in a Turing

bifurcation from the spatially uniform state shown in Fig. 9. Parameters as in Fig. 3.

undergoes a Hopf bifurcation at p ≈ 0.93 leading to quasiperiodic behaviour, which then

becomes chaotic at p ≈ 0.92. This persists down to p ≈ 0.78, although with a number of

windows in which the behaviour is quasiperiodic. Panel (b) of Fig. 14 shows the largest

Lyapunov exponent of the solution shown in panel (a), confirming its chaotic nature.

F. Summary

We summarise the dynamics in Table I and Fig. 15. Note that this is not an exact

description as, for example, the bands of quasiperiodic behaviour seen in Fig. 14 are not

described, but lumped together as “chaos”.
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Figure 13. Poincaré maps representing solutions of (11) for (a) increasing p and (b) decreasing

p. Travelling waves (one point for a particular value of p) and modulated travelling waves (many

points for a particular value of p) are shown. Parameters as in Fig. 3.
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Figure 14. (a) Poincaré map representing chaotic solutions of (11). (b) Maximum Lyapunov

exponent for the solution in (a). Parameters as in Fig. 3.
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Table I. Summary of dynamics.

Range of p Stable Solutions

0 – 0.035 bump and spatially-uniform steady state (“all-on”)

0.035 – 0.046 bump and travelling wave

0.046 – 0.061 bump and modulated travelling wave

0.061 – 0.101 bump and chaos

0.101 – 0.125 bump

0.125 – 0.143 chaos

0.143 – 0.187 breathing bump

0.187 – 0.251 bump

0.251 – 0.253 spatially-uniform steady state and bump

0.253 – 0.373 spatially-uniform steady state

0.373 – 0.391 spatially-uniform steady state and travelling wave

0.391 – 0.437 spatially-uniform steady state and travelling wave and stationary bump

0.437 – 0.44 spatially-uniform steady state and travelling wave

0.44 – 0.445 spatially-uniform steady state and modulated travelling wave

0.445 – 0.455 modulated travelling wave

0.455 – 0.493 travelling wave and modulated travelling wave

0.493 – 0.502 travelling wave

0.502 – 0.528 modulated travelling wave

0.528 – 0.645 spatially-uniform periodic and modulated travelling wave

0.645 – 0.78 standing wave and modulated travelling wave

0.78 – 0.83 modulated travelling wave and chaos

0.83 – 0.84 travelling wave and modulated travelling wave and chaos

0.84 – 0.905 travelling wave and chaos

0.905 – 0.92 chaos

0.92 – 0.93 quasiperiodic chimera

0.93 –0.965 chimera

0.965 – 1 spatially-uniform periodic and chimera

Simulations of the hybrid discrete system (12) at fixed values of p show behaviour consis-

tent with all of the results presented in Secs. III A-III D (not shown). We show simulations

of the hybrid discrete system (12) as p is swept from 0 to 1 over 5000 time units, starting

with a bump, in panel (a) of Fig. 16. Panel (b) shows the result of decreasing p from 1 to 0

over the same amount of time, starting with a chimera. In order to compare with Fig. 3 we
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Figure 15. A graphical representation of the results in Table I. The filled bars show the ranges

of p for which the corresponding type of solution is stable. Note the stable bump and spatially

uniform steady state at p = 0, and the stable chimera and spatially uniform periodic state (which

is stationary in a rotating coordinate frame) at p = 1.

define an order parameter

Yj(t) =
1

201

j+100∑
k=j−100

eiθk (15)

and plot its absolute value in Fig. 16.

Comparing the left panels Figs. 3 and 16, starting from p = 0 we see very good agreement

until p ≈ 0.14. In Fig. 16 the bump “jumps” to a different part of the domain at this value

of p, and the central red strip in Fig. 16 for 0.14 < p < 0.25 corresponds to that on the

boundaries of the domain in Fig. 3. Increasing p, the agreement is very good except that

the system in Fig. 3 does not move to a chimera until p is close to 1, unlike in Fig. 16.

Comparing the right panels as p is decreased, the agreement is good until p ≈ 0.9, where

the chimera in the discrete network is lost, but persists in the continuum system. For smaller

values of p most features of the figures match qualitatively, with transitions occurring at

similar values of p.
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Figure 16. Solutions of (12) as p is increased from 0 to 1 in time (a) and decreased from 1 to 0 in

time (b). Yj is defined in the text. N = 4096 and other parameters as in Fig. 3.
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IV. DISCUSSION

We have thoroughly investigated the dynamics of (11), an equation which linearly in-

terpolates between the continuum description of a network of theta neurons supporting a

bump and a network of phase oscillators supporting a chimera. The bump which exists and

is stable for p = 0 only persists up to p ≈ 0.253 and is not stable over all of this range.

The stable chimera which exists at p = 1 persists down to p ≈ 0.645 but is not stable over

this whole range either, and is significantly deformed into a standing wave as p is decreased.

Thus there is not a smooth deformation from a chimera to a bump state. In fact, the only

solution which persists over the whole range p ∈ [0, 1] is the stationary spatially uniform

state, which is the (unstable) zero state at p = 1 and the “all on” state at p = 0.

We have found a rich variety of other solutions including spatiotemporal chaos, travelling

waves, and modulated travelling waves. Of course there are many ways to interpolate

between (5) and (9) and it may be possible to find another interpolation such that a bump

does deform smoothly into a chimera, or one in which the equivalent of Table I is simpler,

but we leave that for future work.

Data availability: Data sharing is not applicable to this article as no new data were

created or analyzed in this study.
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29A. Vüllings, J. Hizanidis, I. Omelchenko, and P. Hövel, “Clustered chimera states in
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