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We consider small networks of instantaneously coupled theta neurons. For inhibitory coupling and
fixed parameter values some initial condition give chaotic solutions while others give quasiperiodic
ones. This behaviour seems to result from the reversibility of the equations governing the networks’
dynamics. We investigate the robustness of the chaotic behaviour with respect to changes in initial
conditions and parameters, and find the behaviour to be quite robust, as long as the reversibility of
the system is preserved.
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The behaviour of large networks of model neurons is often of interest, but sometimes small networks
provide a better description of the biological system of interest. Surprisingly, very small networks of
theta neurons (describing the normal form of a saddle-node on invariant circle bifurcation) can show
chaotic behaviour. Chaotic solutions coexist with quasiperiodic ones, apparently as a result of the
reversibility of system’s dynamics. This behaviour is quite robust to changes in parameters, and to
making the neurons non-identical.

I. INTRODUCTION

Studies of networks of neurons often consider large networks of heterogeneous neurons, under the assumptions that
the behaviour of an individual neuron cannot be significant, and that real neurons are not identical [1–3]. However,
in some circumstances small networks are of interest [4, 5], and the special case of identical neurons allows one to use
techniques from the study of symmetric dynamical systems [6–8]. In a recent paper [9] we considered large (sometimes
infinite) networks of all-to-all coupled identical theta neurons. These networks are unusual in that there exists an
exact method for reducing the dimensionality of the system from N (the number of neurons in the network) to 3
using the Watanabe/Strogatz ansatz [10, 11]. One interesting aspect of the dynamics of these systems is that for
instantaneous inhibitory coupling the dynamics appears chaotic for some initial conditions, but quasiperiodic for other
initial conditions. In this paper we undertake a more thorough investigation into this behaviour, determining how
robust this chaotic behaviour is to changes in parameters and initial conditions.

We now briefly survey some relevant previous work. The notion of chaotic behavior has been around for a number
of decades, and chaotic attractors in symmetric systems of coupled oscillators were investigated by a number of
researchers. For example, [12] investigated networks of 3 or 4 symmetrically-coupled forced identical oscillators.
These oscillators were implemented using analogue electrical circuits and chaotic attractors with varing degrees of
symmetry were observed. A particularly simple class of oscillator is the phase oscillator, where the state of each
oscillator is described by a single angular variable. These are often appropriate models for networks of weakly
coupled oscillators [6, 13]. Kuramoto-type networks, in which phase oscillators are coupled through a sinusoidal
function of phase differences, have been well-studied [14, 15]. The question as to whether this type of network can
have chaotic solutions has been addressed by several groups. [16] considered small networks of identical, all-to-all
coupled phase oscillator networks and found that four or more oscillators were required, along with two or more
harmonics in the coupling function. [17] found chaotic behaviour in networks of four or more heterogeneous phase
oscillators coupled with just a single harmonic in their coupling function. Extensions to networks of phase oscillators
with nonpairwise interactions also found chaotic behavior [18]. Chaos has been found in networks comprised of two
symmetric subnetworks, with different coupling within and between subnetworks [19, 20], and in Kuramoto oscillators
on a ring [21, 22].

All of the studies mentioned above considered networks in which coupling was through phase differences, with the
consequence that only differences in frequencies between oscillators, not their absolute frequencies, can be considered
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meaningful. In contrast theta neurons, studied here, can fire at arbitrarily high frequencies, or not at all, depending on
their input [23, 24]. Also, they are coupled through functions of phase, not phase differences. The only studies of chaos
in networks of theta neurons we are aware of are [9, 25, 26] and [27], which actually considered quadratic integrate-
and-fire neurons, equivalent under a coordinate tranformation to theta neurons. In [25] the authors considered
large sparse networks of theta neurons, coupled through delta function current pulses. [26] generated chaos in large
or infinite networks by periodically varying the input current to each neuron, making the system nonautonomous.
In [27] the authors consider large networks with delayed inhibition, whereas here we concentrate on small networks
with instantanous inhibitory coupling. Also note that several groups [28–30] have observed irregular behaviour in large
networks of integrate-and-fire neurons with delayed inhibitory coupling. However, the only study of small networks
appears to be [9].

We consider small networks of all-to-all coupled theta neurons. The theta neuron is the canonical model for a
Type I neuron for which the onset of firing is through a saddle-node on an invariant circle bifurcation [23, 24]. It can
be derived by a nonlinear coordinate transformation from the quadratic integrate-and-fire neuron model [31]. The
equations of the network are

dθi
dt

= 1− cos θi + (1 + cos θi)(η + κI) (1)

for i = 1, 2, . . . N , where η and κ are constants and

I =
an
N

N∑
i=1

(1− cos θi)
n (2)

where an is chosen so that ∫ 2π

0

an(1− cos θ)n dθ = 2π (3)

i.e. an = 2n(n!)2/(2n)!. The function an(1 − cos θi)
n is meant to mimic the action potential produced when neuron

i fires, i.e. θi increases through π. Such models have been studied in the limit of N →∞ and with randomly chosen
η’s for each neuron by [26, 32]. An important observation is that this system is reversible under the transformation
(t, {θi}) 7→ (−t, {−θi}) for all i.

II. RESULTS FOR NETWORKS OF 3 NEURONS

For some parameters the system (1)-(2) with N = 3 can show chaotic behaviour, as seen in Fig. 1(a). However, for
the same parameter values different initial conditions can result in quasiperiodic behaviour instead, as in Fig. 1(b).
Such a mixture of chaotic and more regular behaviour has been previously observed in several other reversible sys-
tems [33, 34].

In order to better understand this behaviour we first consider a sweep through all initial conditions. Setting
θ1(0) = 0 and varying θ2(0) and θ3(0) we obtain Fig. 2. We see two different regions, one in which solutions are
apparently quasiperiodic with maximal Lyapunov exponent equal to zero, and another in which solutions are chaotic
(i.e. have positive maximal Lyapunov exponent). Note that the figure is symmetric about the diagonal, and on the
diagonal the resulting solutions cannot be chaotic, as the system is then two-dimensional 1.

To visualise the solutions we put a Poincaré section at θ1 = π, dθ1/dt > 0, with results shown in Fig. 3. Since
the neurons are identical, their firing order must be preserved. In this case, the initial conditions were ordered
0 = θ1(0) < θ2(0) < θ3(0) < 2π, and this is why points only appear in three sectors in Fig. 3. We see evidence of some
chaotic solutions and two regions corresponding to quasiperiodic solutions in the upper right and lower left sectors.
Quasiperiodic solutions alternate between these two regions, so that when θ1 = π, then, say, π < θ2 < θ3 < 2π (upper
right sector), while the next time θ1 = π, we will have 0 < θ2 < θ3 < π (lower left sector). At the centre of the
quasiperiodic orbits is a periodic one which repeats after each phase has increased through 4π, shown in Fig. 4. On
this orbit each neuron takes a turn being inhibited (θ decreases) while the other two fire: firstly neuron 2, then neuron
3 and finally neuron 1. (There is of course a solution with the opposite ordering.) While different initial conditions

1 All computations have been performed in Matlab with integrator ode113 using absolute tolerance of 10−10 and relative tolerance of
10−8. Jacobians needed for Lyapunov exponent calculations are found analytically.
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Figure 1: (a) sin (θ1) for initial conditions (θ1, θ2, θ3) = (0, 1, 6) (red dashed) and (10−4, 1, 6) (blue solid). This shows the
exponential divergence characteristic of a chaotic solution. (b) sin (θi) for i = 1, 2, 3 with initial conditions (θ1, θ2, θ3) =
(0, 2π/3, 4π/3). This is a quasiperiodic solution. Parameters: N = 3, n = 2, κ = −0.75, η = 0.1.

are needed to observe different quasiperiodic orbits, an initial condition in the chaotic region seems to fully explore
this region.

Full synchrony corresponds to the central point in Fig. 3, while on the diagonal and the lines θ2 = π and θ3 = π two
of the three oscillators are synchronised. To linear order, the fully synchronous state is found to be neutrally stable.

Defining x ≡ θ2 − π and y ≡ θ3 − π and only plotting points with
√
x2 + y2 < 0.1 from a simulation of length 105

time units we obtain Fig. 5(a). Assuming that these points are generated by the second order map(
xn+1

yn+1

)
=

(
a1 a2
b1 b2

)(
xn
yn

)
+

(
a11x

2
n + a12xnyn + a22y

2
n

b11x
2
n + b12xnyn + b22y

2
n

)
(4)

and using nonlinear least squares to find the coefficients which best fit all of the points in Fig. 5(a) we obtain the map(
xn+1

yn+1

)
=

(
0.999 0

0 0.999

)(
xn
yn

)
+

(
0.376x2n − 0.773xnyn + 0.011y2n
−0.009x2n − 0.743xnyn + 0.377y2n

)
(5)

(coefficients rounded to 3 decimal places). The direction field induced by this map is shown in Fig. 5(b). Note that
the x and y axes, as well as the diagonal, are all approximately invariant.

An interesting aspect of this system involves the amount of time spent within a given distance of the synchronous
state (the origin). Assuming that the dynamics of the map (5) are close to those of(

xn+1

yn+1

)
=

(
xn
yn

)
+

(
ax2n − bxnyn
−bxnyn + ay2n

)
(6)

for some positive constants a, b, consider the initial condition (x0, y0) = (ε,−ε); 0 < ε� 1. The yn decay to zero from
below, so the x dynamics are approximately xn+1 = xn+ax2n. Since the xn change slowly over time we can approximate
this map by the differential equation dx/dt = ax2 with x(0) = ε. The time for x to reach a significant positive value
then scales as ε−1. This is in contrast with a hyperbolic saddle governed by, say, dx/dt = λx; dy/dt = −µy for some
positive λ, µ. Solving the x dynamics with x(0) = ε gives an escape time scaling of − ln ε.
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Figure 2: Maximal Lyapunov exponent for solutions starting with θ1(0) = 0 and θ2(0) and θ3(0) given by the values shown.
Most initial conditions result in chaotic solutions (positive Lyapunov exponent) while some give quasiperiodic solutions (zero
Lyapunov exponent). Parameters: N = 3, n = 2, κ = −0.75, η = 0.1.

We now consider varying other parameters. Sweeping through κ and θ3(0) for fixed η, θ1(0) and θ2(0) we obtain
Fig. 6. We see that a wide range of initial conditions and values of κ result in chaotic behaviour, and also that if κ
is too large and negative, or too close to zero, the motion is not chaotic (at least for these initial conditions). The
abrupt transition from chaotic behaviour for large negative κ results from the existence of a stable fixed point for
these values of κ. If κ is small the neurons are weakly coupled. Thus the theory of weakly coupled oscillators is
applicable [6, 13, 35] and the system can be reduced to a pair of equations involving only phase differences. The
dynamics will lie on a two-torus and chaotic dynamics will be impossible. Simulations with positive κ and randomly
chosen initial conditions (not shown) never found chaotic behaviour, consistent with the results in [9].

Sweeping through η and θ3(0) for fixed κ, θ1(0) and θ2(0) we obtain Fig. 7. We also see that a wide range of initial
conditions and values of η result in chaotic behaviour, and also that if η is too large, the motion is not chaotic (at
least for these initial conditions). Varying n and θ3(0) we obtain Fig. 8. Solutions are not chaotic for n = 1 and the
maximal exponent seems to rise with n until about n = 10 after which is decreases, as does the proportion of values
of θ3(0) leading to chaotic behaviour.

In the limit n→∞, (2) becomes

I =
2π

N

N∑
i=1

δ(θi − π) (7)
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Figure 3: Poincaré section at θ1 = π with dθ1/dt > 0. 20 different initial conditions were used and each solution starting with
a specific initial condition is plotted a different colour. We see coexisting chaotic and quasiperiodic solutions. Parameters:
N = 3, n = 2, κ = −0.75, η = 0.1.

where δ is the Dirac delta function. If tkj is the kth firing time of neuron j then we have [25]

I =
π

N

N∑
j=1

∑
k

δ(t− tkj ) (8)

where the sum over k is only over past firing times. We can calculate the maximal Lyapunov exponent for this
network as shown in the appendix, and we find that the exponent is zero for all initial conditions. This dichotomy
of chaotic solutions for networks of neurons which interact in a smooth way versus nonchaotic dynamics in networks
with instantaneous interactions has been previously remarked upon [25].

Now consider the case where the neurons are nonidentical but the system is still reversible. To do this we replace (1)
by

dθi
dt

= 1− cos θi + (1 + cos θi)(ηi + κI) (9)

fix η1 = 0.1 and vary η2 and η3. Doing so we obtain Fig. 9. We see that the chaotic behaviour persists as these
parameters are varied, but not in a simple way.

One concern is that self-coupling may be unrealistic and the cause of the chaotic behaviour. Removing the self-
coupling we obtain

dθi
dt

= 1− cos θi + (1 + cos θi)(η + κIi) (10)
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Figure 4: One period of the periodic orbit at the centre of the quasiperiodic regions in Fig. 3. Initially θ1 = π and at the final
time θ1 = 5π. Parameters: N = 3, n = 2, κ = −0.75, η = 0.1.
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Figure 5: (a) points from the Poincaré section θ1 = π with dθ1/dt > 0 with
√
x2 + y2 < 0.1, i.e. in a neighbourhood of the fully

synchronous state. (b) Direction field induced by the map (5), obtained by fitting a general second-order map to the points in
panel (a). Parameters: N = 3, n = 2, κ = −0.75, η = 0.1.
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Figure 6: Maximal Lyapunov exponent for solutions starting with θ1(0) = 0, θ2(0) = 4 and θ3(0) given by the value shown.
Chaotic solutions have positive Lyapunov exponent. Parameters: N = 3, n = 2, η = 0.1.

for i = 1, 2, 3, where

Ii =
an
2

3∑
j=1
j 6=i

(1− cos θj)
n (11)

and an is as in (3). Studying the network (10)-(11), we see from Fig. 10 that even without self-coupling the network
can be chaotic for a range of initial conditions.

We also considered a mix of inhibitory and excitatory neurons, modifying (1) to

dθi
dt

= 1− cos θi + (1 + cos θi)(η + I); i = 1, 2, 3 (12)

where

I = an [−0.75(1− cos θ1)n − 0.75(1− cos θ2)n + k(1− cos θ3)n] /N (13)

so that neurons 1 and 2 are inhibitory and neuron 3 is inhibitory if k < 0 and excitatory if k > 0. Setting η = 0.2 and
n = 2 and randomly choosing initial conditions, we found chaotic solutions for k < 0 but none for k > 0 (not shown).
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Figure 7: Maximal Lyapunov exponent for solutions starting with θ1(0) = 0, θ2(0) = 4 and θ3(0) given by the value shown.
Chaotic solutions have positive Lyapunov exponent. Parameters: N = 3, n = 2, κ = −0.75.

III. RESULTS FOR NETWORKS OF 4 NEURONS

We now move on to study networks of 4 neurons, described by (1)-(2) with N = 4. Rather than systematically
searching through phase space we randomly and independently chose the initial values of the θi from [0, 2π] and
determine the maximal Lyapunov exponent for that solution. Doing this 2000 times at each of a number of discrete
values of κ we obtain the results in Fig. 11, which shows the probability that a random initial condition will have a
specific maximal Lyapunov exponent.

If we remove the self-coupling the resulting network is described by

dθi
dt

= 1− cos θi + (1 + cos θi)(η + κIi) (14)

for i = 1, 2, 3, 4, where

Ii =
an
3

4∑
j=1
j 6=i

(1− cos θj)
n (15)

and an is as in (3). Sweeping over the same parameter range as in Fig. 11 we obtain very similar results (not shown).
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Figure 8: Maximal Lyapunov exponent for solutions starting with θ1(0) = 0, θ2(0) = 4 and θ3(0) given by the value shown.
Chaotic solutions have positive Lyapunov exponent. Parameters: N = 3, η = 0.1, κ = −0.75.

Now consider 4 neurons in a ring with self-coupling, with ordering by index. We have (14) but with

I1 = an[(1− cos θ1)n + (1− cos θ2)n + (1− cos θ4)n]/3 (16)

I2 = an[(1− cos θ2)n + (1− cos θ3)n + (1− cos θ1)n]/3 (17)

I3 = an[(1− cos θ3)n + (1− cos θ4)n + (1− cos θ2)n]/3 (18)

I4 = an[(1− cos θ4)n + (1− cos θ1)n + (1− cos θ3)n]/3 (19)

The results in Fig. 12. Keeping the ring structure but removing self-coupling gives similar results to Fig. 12 (not
shown).

IV. DISCUSSION

We have investigated the robustness of chaotic behaviour in small networks of theta neurons with instantaneous
coupling via current pulses. For a range of parameter values chaotic solutions coexist with quasiperiodic ones. This
is consistent with the behaviour seen in other reversible systems [33, 34]. Note that the neurons do not have to be
identical to observe chaotic behaviour.

If we break the system’s reversibility by adding, for example, the unphysical term 0.02 sin θi to the RHS of (1), and
repeat the calculations shown in Fig. 2, we find no initial conditions result in chaotic behaviour (not shown). This is
consistent with previous results [9] which found that modifications such as dynamic synapses, gap junctional coupling
or using conductance dynamics, all of which destroyed reversibility, also destroyed chaotic dynamics. Even though
the theta neuron is the normal form of a saddle-node on an invariant circle bifurcation, its reversibility may not be
shared by other neuron models also undergoing this bifurcation, but instead be an artifact of the reduction to normal
form.

We have made no attempt to determine the origin of the chaotic behaviour seen, nor the transitions from quasiperi-
odic to chaotic dynamics as parameters are varied. In dissipative dynamical systems chaos may arise from a Shilnikov
bifurcation [36], for example, but the systems studied here are reversible rather than dissipative. The role of chaos
in neuroscience continues to be debated [37] but the main message here is that even very small networks of simple
neurons can show surprisingly complex behaviour, although this is due to their nongeneric structure (reversibility, in
this case). Thus, simpler models may not always have simpler behaviour.
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Figure 9: Maximal Lyapunov exponent for solutions starting with θ1(0) = 0, θ2(0) = 4 and θ3(0) = 5. Chaotic solutions have
positive Lyapunov exponent. We have (η1, η2, η3) = (0.1, 0.1 + ε2, 0.1 + ε3) Parameters: N = 3, n = 2, κ = −0.75.
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the network (1)-(2), i.e. this is a vertical “slice” though Fig. 2 at θ2(0) = 2. Red dots and line: the network (10)-(11) (no
self-coupling). We see that removing the self-coupling does not destroy the chaotic behaviour. Parameters: N = 3, n = 2, κ =
−0.75, η = 0.1.
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given value, as a function of κ. Log to the base 10 of the probability is shown, with white corresponding to low probability and
black to high probability. (Bins with no entries are ignored.) This is an all-to-all coupled network. For a range of values of κ,
many initial conditions result in chaotic solutions. Parameters: N = 4, n = 2, η = 0.1.
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given value, as a function of κ. Log to the base 10 of the probability is shown, with white corresponding to low probability
and black to high probability. (Bins with no entries are ignored.) This is a ring network with self-coupling described by (14)
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V. APPENDIX

We have a network described by

dθi
dt

= 1− cos θi + (1 + cos θi)(η + κI) (20)

where I is given by (8). Note that when a neuron fires it has no influence on itself as 1 + cos θ = 0 at firing. Using
the transformation [25]

tan (φ/2) =
tan (θ/2)
√
η

(21)

we have

dφi
dt

= 2
√
η +

κI
√
η

(1 + cosφi) (22)

The advantage of this formulation is that between firing times I = 0 and the φi increase at a constant speed. Suppose
that ts−1 and ts are two successive firing times of any of the neurons. Then

φi(ts) = φi(ts−1) + 2
√
η(ts − ts−1) (23)

When any neuron fires we can use results from the theory of differential equations with state-dependent impulsive
forcing [38] to derive the update rule

φi(t
+
s ) = 2 tan−1

[
tan

(
φi(t

−
s )

2

)
+

πκ

N
√
η

]
≡ U [φi(t

−
s )] (24)

Given the last firing time ts−1 and the states of the neurons at that time, the next firing time is

ts = ts−1 + min
i

[
π − φi(ts−1)

2
√
η

]
(25)

Since the neurons have identical drive in the absence of coupling, the next neuron to fire will be the one with the
largest phase after the last firing event. The mapping from one firing event at ts−1 to the one at ts is

φi(ts) = f(φi(ts−1)) = U [φi(ts−1) + 2
√
η(ts − ts−1)] (26)

for i = 1, 2 . . . N . If neuron j caused the firing event, we set φj(ts) = −π.
The Jacobian of the map (26), D(ts), can be calculated analytically [25]. The ith diagonal entry of D(ts), i =

1, 2 . . . N , is di(ts), where

di(ts) =

[
tan

(
φi(t

−
s )

2

)]2
+ 1[

tan
(
φi(t

−
s )

2

)
+ πκ

N
√
η

]2
+ 1

(27)

Suppose that neuron j is the one involved in firing at time ts. Then the jth diagonal entry, from (27), is equal to 1.
The ith entry in the jth column of D(ts) is 1− di(ts) and all other entries not mentioned above are zero. The largest
Lyapunov exponent of a solution found by mapping (26) can be determined from the growth in the norm of solutions
of the linear map

x(ts) = D(ts)x(ts−1) (28)

where x ∈ RN and the initial value of x is chosen randomly.
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[27] D. Pazó and E. Montbrió, Physical review letters 116, 238101 (2016).
[28] S. Luccioli and A. Politi, Phys. Rev. Lett. 105, 158104 (2010), URL https://link.aps.org/doi/10.1103/PhysRevLett.

105.158104.
[29] S. Jahnke, R.-M. Memmesheimer, and M. Timme, Physical Review Letters 100, 048102 (2008).
[30] R. Zillmer, N. Brunel, and D. Hansel, Physical Review E 79, 031909 (2009).
[31] B. Ermentrout, Scholarpedia 3, 1398 (2008), revision #122128.
[32] T. B. Luke, E. Barreto, and P. So, Neural computation 25, 3207 (2013).
[33] J. A. Roberts and G. R. W. Quispel, Physics Reports 216, 63 (1992).
[34] A. Politi, G. Oppo, and R. Badii, Physical Review A 33, 4055 (1986).
[35] H. Nakao, Contemporary Physics 57, 188 (2016).
[36] L. P. Shilnikov and A. Shilnikov, Scholarpedia 2, 1891 (2007), revision #153014.
[37] S. Coombes, SIAM Journal on Applied Dynamical Systems 7, 1101 (2008).
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