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Abstract. Neural field models have been used for many years to model a variety
of macroscopic spatiotemporal patterns in the cortex. Most authors have considered
homogeneous domains, resulting in equations that are translationally invariant. How-
ever, there is an obvious need to better understand the dynamics of such neural field
models on heterogeneous domains. One way to include heterogeneity is through the
introduction of randomly-chosen “frozen” spatial noise to the system. In this chapter
we investigate the effects of including such noise on the speed of a moving “bump”
of activity in a particular neural field model. The spatial noise is parameterised by
a large but finite number of random variables, and the effects of including it can be
determined in a computationally-efficient way using ideas from the field of Uncertainty
Quantification. To determine the average speed of a bump in this type of heterogeneous
domain involves evaluating a high-dimensional integral, and a variety of methods are
compared for doing this. We find that including heterogeneity of this form in a variety
of ways always slows down the moving bump.

1. Introduction

Neural field models have been used for many years as models of large-scale pattern
formation in the cortex [9, 13, 1, 32, 33, 35, 16, 28]. These models are typically formu-
lated as nonlocal partial differential equations in space and time where the nonlocality
arises via spatial integrals, meant to represent the influence of neurons at many different
spatial locations on the dynamics at a specific location [13, 9]. They have been used
to model a variety of neurophysiological phenomena such as working memory [33], ori-
entation tuning in the visual cortex [4] and EEG rhythms [39]. Much of the analysis
of patterns in these models has assumed that the domain is homogeneous and thus the
governing equations are translationally invariant. This invariance allows one to, for ex-
ample, choose the origin of space to simplify analysis. When studying travelling waves,
this invariance means that it is relatively easy to construct “bumps” and fronts of activ-
ity which move with a constant speed. However, the brain is far from homogeneous and
it is of interest to understand how various forms of heterogeneity affect the properties
of moving waves in neural field models.

A number of authors have considered including heterogeneity in neural field models
by introducing spatially periodic modulation of various components of the model such
as connectivity [7, 25] and input currents [14]. This type of heterogeneity is structured
rather than random, but a number of other authors have considered the effects of truly
random hetereogeneity, in either space, time, or both. For example, the authors [5]
considered the effects on the speed of a front of a spatially uniform firing rate threshold
which randomly fluctuated in time. They found that such fluctuations always increased
the average front speed. Coombes et al. [15] briefly considered a variety of forms of
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heterogeneity such as adding “frozen” spatial noise, and driving the system with tem-
poral noise. Bressloff [8] adapted ideas from PDE theory to study the effects of slowly
modulated (in space) synaptic connectivity on the invasion and extinction of activity in
a neural field model. Several authors have very recently considered the effects of additive
spatio-temporal noise on the dynamics of a neural field [11, 26, 24, 6].

In this chapter we will use ideas from the relatively new field of Uncertainty Quantifi-
cation (UQ) to investigate the effects of spatial heterogeneity on the dynamics of moving
“bumps” in a particular neural field model. Traditionally, numerical models of physi-
cal phenomena have been solved under the assumption that both the initial conditions
and all values of relevant parameters are known exactly. However, recent increases in
computational power have meant that it is now possible to solve a model where one or
more parameters are not known exactly, but are known (or assumed) to come from some
distribution(s). For our purposes, UQ involves a systematic investigation of the effects
of this uncertainty in parameter values on quantities of interest. The field of UQ is large
and rapidly growing [34, 45, 42] and here we will only use those aspects of it which are
directly relevant.

2. Model and Analysis

The model we first consider is governed by the following equations:

∂u(x, t)

∂t
= −u(x, t) +

∫ 2π

0

G(x− y)F [u(y, t)− a(y, t) + h(y)]dy(1)

τ
∂a(x, t)

∂t
= Bu(x, t)− a(x, t)(2)

where u(x, t) represents the average voltage of neurons at position x ∈ [0, 2π] at time
t, and a(x, t) represents the value of a slow variable at x and t which provides negative
feedback to the dynamics of u. Similar models have been studied elsewhere [36, 15, 10,
31, 30]. Periodic boundary conditions are used, B and τ are positive constants, and the
firing rate function is given by

(3) F [u] =
1

1 + e−20(u−0.4)

Note that F is bounded between 0 and 1 and is an increasing function. The function
h(y), to be specified below, provides the spatial heterogeneity to the system. We choose
the coupling function to be G(x) = 0.09+0.45 cosx; note that this is even. The physical
interpretation of the model is that neurons with average voltage u fire at a frequency
F [u], and the strength of connections between neurons at position x and those at position
y is G(x− y). Summing (integrating) over all y gives the nonlinear term in (1), and this
is the influence of all other neurons on those at position x. The variable a is driven up
when u is high and down when u is low, with a time-scale of τ . The way that a appears
in (1) means that it acts a negative feedback mechanism.

For suitable choices of parameters the system (1)-(2) is capable of supporting travelling
“bumps” of activity. See Fig. 1(a). A bump is defined to be a state in which one region
of the domain is active, i.e. has F [u] ≈ 1, while the rest of the domain is inactive, i.e. has
F [u] ≈ 0. When h(y) is constant the bumps travel with constant speed and profile, while
if h(y) is not constant — but is sufficiently small — bumps continue to travel, but with
non-constant speed and profile. See Fig. 1(b)-(d). Because the domain has periodic
boundary conditions, these modulated bumps are periodic in time. Our goal is the
determine, in a computationally-efficient manner, the expected effects of making h(y) a
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random function of y, in a way to be explained below. In particular we wish to answer
the question: given that h(y) is randomly chosen from some distribution of functions,
what is the expected value of the average speed of the resulting travelling bump (after
transients have decayed)? As mentioned, we will answer this using techniques from the
field of uncertainty quantification [34, 41]. Here, the uncertainty arises because we do
not exactly know h(y). This uncertainty then affects the dynamics of the neural field
model, making measurable quantities such as the bump speed uncertain, i.e. have some
distribution of values. Typically, we would like to describe this distribution so that we
can calculate, for example, its mean.

The form of the coupling function G(x) allows us to write (1) as

∂u(x, t)

∂t
= −u(x, t) + 0.09

∫ 2π

0

F [u(y, t)− a(y, t) + h(y)] dy(4)

+ 0.45 cosx

∫ 2π

0

F [u(y, t)− a(y, t) + h(y)] cos y dy

+ 0.45 sin x

∫ 2π

0

F [u(y, t)− a(y, t) + h(y)] sin y dy

As noted [31], if we expand u(x, t) and a(x, t) in Fourier series in x we see that terms
of the form sin (nx) and cos (nx) for n > 1 will decay to zero, and since we are not
interested in transients we write

(5) u(x, t) = u0(t) + uc(t) cosx+ us(t) sin x

and

(6) a(x, t) = a0(t) + ac(t) cosx+ as(t) sin x

Substituting these expansions into (2) and (4) we find that the modulated bumps of
interest are described by the six ordinary differential equations (ODEs)

du0

dt
= −u0 + 0.09

∫ 2π

0

F [u0 − a0 + (uc − ac) cosx+ (us − as) sin x+ h(x)] dx

(7)

duc

dt
= −uc + 0.45

∫ 2π

0

F [u0 − a0 + (uc − ac) cosx+ (us − as) sin x+ h(x)] cosx dx(8)

dus

dt
= −us + 0.45

∫ 2π

0

F [u0 − a0 + (uc − ac) cosx+ (us − as) sin x+ h(x)] sin x dx(9)

τ
da0

dt
= Bu0 − a0

(10)

τ
dac

dt
= Buc − ac

(11)

τ
das

dt
= Bus − as

(12)

We note that the number of ODEs above (six) is an immediate consequence of using
only a constant and cosx term in the coupling function G(x). Our coupling function can
be thought of as the truncation of the Fourier series of a general 2π-periodic function.



4 CARLO R. LAING

t

x

 

 

0 200 400 600 800 1000

0

2

4

6 −0.5

0

0.5

1

t

x

 

 

0 200 400 600 800 1000

0

2

4

6 −0.5

0

0.5

1

0 200 400 600 800 1000
−1

0

1

2

t

u(
0,

t)

0 1 2 3 4 5 6
−5

0

5
x 10

−3

x

(a)

(b)

(c)

(d)

h(
x)

Figure 1. Travelling bumps of activity in the model (1)-(2) when (a):
h(x) = 0 and (b): when h(x) is as shown in (d) for t > 300, h(x) = 0
for t < 300. Panel (c) shows u(0, t) for the solution in panel (a) (blue
solid line) and the solution in panel (b) (green dashed line). We see that
non-zero h(x) slightly slows the bump. Parameters: B = 0.1, τ = 14.

Including more terms in this truncation would lead to the system being described by
more ODEs, in the obvious way: each new harmonic would result in 4 more ODEs.

For a given h(x) we can find the average speed of the resulting bump by finding the
relevant periodic solution of (7)-(12). The average speed is then 2π (the size of the
domain) divided by the period of this orbit. However, numerically integrating (7)-(12)
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is computationally costly, and since we are only interested in periodic solutions of these
ODEs we represent their solutions as truncated Fourier series in time, i.e. we write

u0(t) = u0
0 +

M∑

i=1

[
u0
i cos (iωt) + u0

M+i sin (iωt)
]

(13)

uc(t) = uc
0 +

M∑

i=1

[
uc
i cos (iωt) + uc

M+i sin (iωt)
]

(14)

us(t) = us
0 +

M∑

i=1

[
us
i cos (iωt) + us

M+i sin (iωt)
]

(15)

a0(t) = a00 +
M∑

i=1

[
a0i cos (iωt) + a0M+i sin (iωt)

]
(16)

ac(t) = ac0 +

M∑

i=1

[
aci cos (iωt) + acM+i sin (iωt)

]
(17)

as(t) = as0 +
M∑

i=1

[
asi cos (iωt) + asM+i sin (iωt)

]
(18)

where ω = 2π/T and T is the unknown period of the periodic orbit we wish to find. We
have

du0

dt
=

M∑

i=1

[
−iωu0

i sin (iωt) + iωu0
M+i cos (iωt)

]

and similarly for the other five functions. We are going to solve (7)-(12) by colloca-
tion. To do that we impose that the functions given in (13)-(18) satisfy the differential
equations (7)-(12) at 2M + 1 different times in the interval [0, T ]. Let these times be
tj = jT/(2M + 1), j = 1, . . . 2M + 1. Then we have

0 = −u0(tj) +

M∑

i=1

[
iωu0

i sin (iωtj)− iωu0
M+i cos (iωtj)

]

+ 0.09

∫ 2π

0

F [u0(tj)− a0(tj) + (uc(tj)− ac(tj)) cosx+ (us(tj)− as(tj)) sin x+ h(x)] dx

(19)

0 = −uc(tj) +
M∑

i=1

[
iωuc

i sin (iωtj)− iωuc
M+i cos (iωtj)

]

+ 0.45

∫ 2π

0

F [u0(tj)− a0(tj) + (uc(tj)− ac(tj)) cosx+ (us(tj)− as(tj)) sin x+ h(x)] cos x dx

(20)

0 = −us(tj) +
M∑

i=1

[
iωus

i sin (iωtj)− iωus
M+i cos (iωtj)

]

+ 0.45

∫ 2π

0

F [u0(tj)− a0(tj) + (uc(tj)− ac(tj)) cosx+ (us(tj)− as(tj)) sin x+ h(x)] sin x dx

(21)
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0 = Bu0(tj)− a0(tj) + τ

M∑

i=1

[
iωa0i sin (iωtj)− iωa0M+i cos (iωtj)

]
(22)

0 = Buc(tj)− ac(tj) + τ
M∑

i=1

[
iωaci sin (iωtj)− iωacM+i cos (iωtj)

]
(23)

0 = Bus(tj)− as(tj) + τ

M∑

i=1

[
iωasi sin (iωtj)− iωasM+i cos (iωtj)

]
(24)

for j = 1, . . . 2M +1. This gives us 12M +6 equations: (19)-(24), but there are 12M +7
unknowns (T being the last unknown). We also have freedom to choose the origin of
time, so to remove this degeneracy and obtain the correct number of equations we add
one more (largely arbitrary) condition to fix the phase of the periodic orbit: uc(0) = 0,
i.e.

(25) uc
0 +

M∑

i=1

uc
i = 0.

Equations (19)-(24) and (25) can be solved straightforwardly using Newton’s method,
where the integral over x is evaluated using the trapezoidal rule.

We now turn to the representation of the frozen noise, h(x). We assume that it is a
uniform random field with mean zero and covariance

(26) C(x, y) =
σ

2b
exp

[
−π

4

(
x− y

b

)2
]

so that σ determines its “strength” and b is the characteristic correlation length. We
will represent h(x) by its Karhunen-Loève decomposition [23, 20, 34]. To do this we
need to find the eigenpairs of C, {λm, em(x)}∞m=1, defined by

(27)

∫
∞

−∞

C(x, y)em(y) dy = λmem(x)

and then order the eigenvalues (which are known to be positive and real): λ1 ≥ λ2 ≥
. . . 0 and normalise the eigenfunctions (which are known to be orthogonal) [34]. The
Karhunen-Loève decomposition of h is then

(28) h(x) =

∞∑

m=1

√
λmem(x)βm

where the βm are pairwise independent random variables with mean zero taken from the
uniform distribution on [−1, 1]. We use a uniform random field rather than the more
common Gaussian random field, where the βm are normally-distributed, because we
want the random field h(x) to be bounded. The reason for this is that as the amplitude
of h(x) is increased, the moving bump seen in Fig. 1(a) can become “pinned” by the
heterogeneity [18, 37]. This type of pinned solution is far in phase space from the
original moving bump, and cannot be regarded as a small perturbation from it, due to
the nonlinear nature of the problem, so it is not appropriate to consider such a solution.
This is also the reason that we will only consider sufficiently small values of σ below.
Similar reasoning is used when a random field is constrained by physical reasons to be
strictly positive, for example [43].
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To find the eigenpairs of C consider the function cos (my), where m ∈ N
+. This is

periodic on the domain [0, 2π] and we have

2b

∫ 2π

0

C(x, y) cos (my) dy = σ

∫ 2π

0

exp

[
−π

4

(
x− y

b

)2
]
cos (my) dy(29)

= σ

∫ x

x−2π

exp

[
−π

4

(z
b

)2
]
cos (m(x− z)) dz(30)

Now if b is small relative to the domain size (2π), we can approximate this integral by
the infinite one:

2b

∫ 2π

0

C(x, y) cos (my) dy ≈ σ

∫
∞

−∞

exp

[
−π

4

(z
b

)2
]
cos (m(x− z)) dz(31)

= σ cos (mx)

∫
∞

−∞

exp

[
−π

4

(z
b

)2
]
cos (mz) dz

+ σ sin (mx)

∫
∞

−∞

exp

[
−π

4

(z
b

)2
]
sin (mz) dz(32)

= 2bσ cos (mx) exp

[−(mb)2

π

]
(33)

where we have used the fact that [38]

(34)

∫
∞

−∞

exp

[
−π

4

(z
b

)2
]
cos (mz) dz = 2b exp

[−(mb)2

π

]

and that exp [−(π/4)(z/b)2] sin (mz) is an odd function. Thus (keeping in mind the
approximations made above) a partial set of eigenvalues and eigenfunctions for C is

(35) λ(1)
m = σ exp

[−(mb)2

π

]
; e(1)m (x) =

cos (mx)√
π

for m = 1, 2 . . . . A similar argument shows that the remaining set of eigenvalues and
eigenfunctions is

(36) λ(2)
m = σ exp

[−(mb)2

π

]
; e(2)m (x) =

sin (mx)√
π

for m = 1, 2 . . . . Eigenpairs for other covariance functions can be found either ana-
lytically or numerically [34, 23, 20, 43]. We truncate the series (28) to give a finite-
dimensional representation of the random field. We write

(37) h(x) =

N∑

m=1

βm

√
λ
(1)
m e(1)m (x) +

N∑

m=1

βN+m

√
λ
(2)
m e(2)m (x)

where the β1, . . . β2N are randomly chosen from the uniform distribution on [−1, 1].
The idea is now that for each realisation of the {βm} we can numerically solve (19)-

(24) and (25). One way to regard the solutions of these equations is that they are given
by 12M +7 variables, u0

0, u
0
1, . . . , a

s
2M , T , each of which is a function of the 2N variables

β1, . . . , β2N . There are traditionally two different ways to find these functions. The first
is stochastic Galerkin [41, 34], where each of the 12M + 7 variables (for example, T )
is expanded in orthogonal polynomials of the {βm}. This expansion is truncated and
then all of the coefficients in this truncated expansion are found by solving a very large
set of coupled equations, often exploiting the orthogonality of the polynomials. (The
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form of the polynomials is determined by the probability density function of the random
variables, the {βm}. [44, 42]) Once the coefficients have been found, any quantity such
as the expected value of, say u0

0, can be found by integrating over the space of random
variables. Unfortunately, modifying code capable of solving (19)-(24) and (25) to find
all coefficients in the expansion just mentioned is non-trivial.

The other common alternative is referred to as stochastic collocation [41, 34], which in-
volves solving (19)-(24) and (25) at a number of different points in the random parameter
space, i.e. using different {βm}. We then have the value of all variables u0

0, u
0
1, . . . , a

s
2M , T

at these different points and can use interpolation to estimate the values of these variables
at other points in the random parameter space. If the values of {βm} at which (19)-(24)
and (25) are solved are chosen appropriately, the solutions of these equations at these
points can be used to estimate, for example, the expected value of u0

0 very accurately.
This method is referred to as “non-intrusive”, as it does not require modification of the
code to solve (19)-(24) and (25), just some decisions about the values of {βm} to use,
and some postprocessing of the results. This method is also trivially parallelisable and
is the one we use here.

The main variable we are interested in is T (β1, . . . , β2N), the period of the periodic
solution, an example of which is shown in Fig. 1. A typical distribution of T , for 10, 000
randomly-chosen {βm}, is shown in Fig. 2. For these parameter values, the period when
σ = 0 is approximately 124.4007, and the presence of the spatial noise always increases
the period. To obtain the expected value of T (which we refer to as T ) we need to
average T (β1, . . . , β2N) over β1, . . . β2N . This average period will itself be a function of
parameters of interest such as the strength of the random field, σ, and the correlation
length b. Thus, knowing the distribution of the variables {βm}, we want to calculate the
2N -dimensional integral

(38)
1

22N

∫ 1

−1

· · ·
∫ 1

−1

T (β1, . . . , β2N)dβ1 · · · dβ2N

Note that having found T it is equally easy to find, for example, the variance of
T (β1, . . . , β2N):

(39) VT =
1

22N

∫ 1

−1

· · ·
∫ 1

−1

[
T (β1, . . . , β2N )− T

]2
dβ1 · · · dβ2N

We will evaluate these integrals in several different ways.
The integrals in (19)-(21) are over periodic domains, so the trapeziodal rule which we

use converges very quickly as the number of points used increases [40]. We use 275 points
in x and assume that this is accurate enough. We also set M , the number of Fourier
modes in time, to be M = 6, and do not consider varying this number further. We
will investigate varying N , which determines the number of modes used to represent the
random field h(x), and the number of points used to approximate the integrals in (38).
Note that the computational effort to evaluate (38) is proportional to M (and to the
number of points used to evaluate the integrals in (19)-(21)) but grows extremely quickly
with N , as this is proportional to the dimension of the space to be integrated over.

3. Results

3.1. Convergence. We first show some results regarding convergence of three different
schemes for evaluating the integral (38). To be concrete we take b (the correlation length
of the random field) to be 1. We truncate the series (37) at N = 3. Typical realisations
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Figure 2. A typical distribution of T values, where 10, 000 realisations
of the β1, . . . β2N have been used. Parameters: σ = 0.00003, b = 1, N =
3,M = 6, B = 0.1, τ = 14.

of the h(x) are shown in Fig. 3 (top) and the average covariance of 1000 realisations
is shown in Fig. 3 (bottom). There is significant deviation between the theoretical
and actual covariances, and this is mostly due to approximations made in analytically
determining the eigenpairs of the covariance operator.

3.1.1. Monte Carlo. We wish to approximate the integral in (38). Firstly, consider
Monte-Carlo integration. In this method we generate ν vectors Ki, i = 1, . . . ν, each
of length 2N , where each component of each vector is randomly and independently
chosen from a uniform distribution on [−1, 1]. We then approximate the 2N -dimensional
integral in (38) by the average

(40)
1

ν

ν∑

i=1

T (Ki
1, . . . , K

i
2N)

This method has the advantage that it is very simple, and will converge to the correct
result as ν → ∞. Unfortunately, it is well-known that the error converges as 1/

√
ν [17].

The convergence of this method is demonstrated in Fig. 4

3.1.2. Gaussian quadrature: full grids. Next we consider using Gaussian quadrature,
forming a tensor product of one-dimensional rules [29, 34, 2] in order to approximate the
integral in (38). One-dimensional Gauss-Legendre quadrature involves approximating
the integral

(41)
1

2

∫ 1

−1

f(x)dx
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Bottom: theoretical covariance of h(x), given by (26) (dashed), and the
average covariance of 1000 independent realisations (solid). Parameters:
σ = 0.00003, b = 1, N = 3.

for sufficiently smooth functions f by the sum

(42)

N̂∑

j=1

wjf(xj)
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i.e. the total number of distinct values of T (β1, . . . , β2N ) that are used to
approximate (38). Parameters: σ = 0.00003, b = 1, N = 3,M = 6, B =
0.1, τ = 14.

where xj is the jth root of P
N̂
, the N̂th Legendre polynomial (normalised so that P

N̂
(1) =

1), and the weights wj are given by

(43) wj =
1

(1− x2
j)
[
P ′

N̂
(xj)

]2

These rules can be used to approximate multi-dimensional integrals where the variable
in each direction is uniformly distributed, in the obvious way. Figure 5 shows the tensor

product in two spatial dimensions, and weights, for N̂ = 10.

For fixed N̂ we approximate the integral (38) by the multiple sum

(44)
N̂∑

j1=1

N̂∑

j2=1

· · ·
N̂∑

j2N=1

wj1wj2 . . . wj2NT (xj1 , . . . , xj2N )

There are a total of (N̂)2N terms in this multiple sum, which grows rapidly as a function

of N̂ for moderate to large N — this is the curse of dimensionality. Results using this
method are shown in Fig. 4, where ν = (N̂)2N . We see rapid convergence, as expected
from a spectral method such as this [40]. However, the curse of dimensionality makes
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this method infeasible for many problems. For example, if N = 5 and N̂ = 5, i.e. we
use just five points in each of 10 random dimensions, we have ν ≈ 107.

3.1.3. Gaussian quadrature: sparse grids. The third method we consider involves the
use of sparse tensor grids [29, 22, 19, 3]. Tensor products are still formed, as in Fig. 5,
but many of the points are then discarded, as they do not contribute significantly to the
evaluation of the integral. For a specific spatial dimension, different “levels” of grids,
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Figure 6. Sparse tensor products in two spatial dimensions for (a)–(d):
levels 2–5. The number of points is, respectively, 5, 9, 17 and 33.

and thus accuracies, are constructed. An example is shown in Fig. 6 for two spatial
dimensions. (We use the code associated with [22], available at http://www.sparse-
grids.de/) We do not present the general theory here but instead refer the reader to
references above. For a given level of accuracy, sparse grids use fewer points than full
tensor grids, and the advantage of using sparse grids as opposed to full increases as the
dimension of the space to be integrated over increases. Figure 4 shows results from using
sparse grids. We see that this method is the most accurate of the three considered,
converging more rapidly than the full tensor product. We expect this advantage to
increase as N , the number of dimensions integrated over, increases.

3.2. Varying parameters. Having compared three common schemes for approximat-
ing the integral (38), we now use the most accurate one (sparse tensor products) to
investigate the effects of varying parameters in the model. We first consider varying
the “strength” of the random field, σ. To obtain specific results we keep the correlation
length b at b = 1 and set N = 6. We set the sparse grid level to be 5, which means using
a total of 11, 073 points in the approximation of (38). The results are shown in Fig. 7,
and we see that both the mean and standard deviation of the distribution of periods
increases almost linearly with σ.

In Fig. 8 we vary the correlation length b. Because the coefficients of the random field
h(x) decay more slowly as b is decreased, we need to keep a large number of terms in
the truncation (37) to accurately represent the field h(x), i.e. we need to integrate over
a high dimensional space. We set N = 50, which, for the level we choose, gives 20, 001
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Figure 7. Mean period, T (top) and standard deviation, (s ≡
√
VT )

(bottom) as a function of random field strength σ. Parameters: b = 1, N =
6.

points in the approximation of (38). We see that for these parameter values and the
truncations used, the standard deviation of the distribution of periods decreases as b is
increased, while the mean period shows a non-monotonic dependence on b.

Note that for this type of high-dimensional integration, full tensor grids are impossible
to use. Even using sparse tensor grids, as above, is problematic, as the number of
points used still grows very rapidly with the level used, and a large amount of time is
spent actually calculating the grid points before they are used. However Monte Carlo
methods are still feasible, as are other extensions of Monte Carlo methods such as Quasi-
Monte Carlo (QMC) [21, 12, 27, 17]. QMC methods are similar to Monte Carlo in that
the integrand is evaluated at many points and then averaged, but in QMC methods
the points are not randomly chosen, but rather chosen in some “optimal” way. Many
variations exist, and rather than go into details here we show in Fig. 9 a comparison
between Monte Carlo and one particular QMC algorithm. We see that QMC does better
than Monte Carlo, at least for these parameter values. The convergence rate for the error
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as a function of random field correlation length b. Parameters: σ = 3 ×
10−6, N = 50.

in the Monte Carlo method is known to scale as 1/
√
ν, and “randomised” QMC methods

can be used to obtain error estimates for these types of method [21].
Figure 10 shows the same calculation as in the top panel of Fig. 8, but with QMC.

The results are essentially identical, and if errorbars were plotted in Fig. 10 they would
be smaller than the markers shown.

4. Other forms of heterogeneity

In the model (1)-(2) we included the random field inside the nonlinear function F ,
thinking of it as a spatial perturbation of the firing threshold. We now show how several
other forms of heterogeneity could be dealt with using the ideas presented here.

4.1. Modulated connectivity. Suppose that (1) was replaced by

(45)
∂u(x, t)

∂t
= −u(x, t) +

∫ 2π

0

G(x− y)[1 + h(y)]F [u(y, t)− a(y, t)]dy
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length b, calculated using the same QMC algorithm as in Fig. 9. Errorbars
are smaller than the markers shown. Parameters: σ = 3× 10−6, N = 50.
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as in [14, 7], where we can think of the new connectivity, G(x−y)[1+h(y)], as no longer
being a function of x − y only. The above analysis would go through, with (10)-(12)
being the same, but (7)-(9) being replaced by

du0

dt
= −u0 + 0.09

∫ 2π

0

[1 + h(x)]F [u0 − a0 + (uc − ac) cosx+ (us − as) sin x] dx

(46)

duc

dt
= −uc + 0.45

∫ 2π

0

[1 + h(x)]F [u0 − a0 + (uc − ac) cosx+ (us − as) sin x] cosx dx

(47)

dus

dt
= −us + 0.45

∫ 2π

0

[1 + h(x)]F [u0 − a0 + (uc − ac) cosx+ (us − as) sin x] sin x dx

(48)

respectively, with a corresponding modification of (19)-(21). Parametrising h(x) as
in (37) we can find T (β1, . . . , β2N) by solving this new set of equations as before, and
this form of heterogeneity introduces no new complexity. Results are shown in Fig. 11.
We see that as above, both the mean period and its standard deviation increase as σ is
increased.

4.2. Modulated Drive. Suppose instead that (1) was replaced by

(49)
∂u(x, t)

∂t
= −u(x, t) +

∫ 2π

0

G(x− y)F [u(y, t)− a(y, t)]dy + h(x)

as originally proposed by Amari [1]. Using h(x) as in (37) and writing

(50) u(x, t) = U0(t) +
∞∑

i=1

[U c
i (t) cos (ix) + Us

i (t) sin (ix)]

and

(51) a(x, t) = A0(t) +
∞∑

i=1

[Ac
i(t) cos (ix) + As

i (t) sin (ix)]

we see that all U c
i (t), U

s
i (t), A

c
i(t) and As

i (t) will decay to zero if i > N , so we can
truncate (50) and (51) at i = N . For 2 ≤ i ≤ N we have (after transients)

(52) 0 = −U c
i + βi

√
λ
(1)
i

π
and 0 = −Us

i + βN+i

√
λ
(2)
i

π

and

(53) 0 = BU c
i −Ac

i and 0 = BUs
i − As

i
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Figure 11. Modulated connectivity. Mean period, T (top) and standard
deviation, s =

√
VT (bottom) as a function of random field strength σ.

Parameters: b = 1, N = 6.

which can all be trivially solved. Now U0, U c
1 , U

s
1 , A

0, Ac
1 and As

1 satisfy

dU0

dt
= −U0 + 0.09

∫ 2π

0

F [u(x, t)− a(x, t)] dx(54)

dU c
1

dt
= −U c

1 + 0.45

∫ 2π

0

F [u(x, t)− a(x, t)] cosx dx+ β1

√
λ
(1)
1

π
(55)

dUs
1

dt
= −Us

1 + 0.45

∫ 2π

0

F [u(x, t)− a(x, t)] sin x dx+ βN+1

√
λ
(2)
1

π
(56)

τ
dA0

dt
= BU0 − A0(57)

τ
dAc

1

dt
= BU c

1 −Ac
1(58)

τ
dAs

1

dt
= BUs

1 −As
1(59)
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Figure 12. Modulated Drive. Mean period, T (top) and standard de-
viation, s =

√
VT (bottom) as a function of random field strength σ.

Parameters: b = 1, N = 6.

This set of equations is no more complex than (7)-(12) and can be solved the same way.
The results of varying the random field strength σ are shown in Fig. 12. Comparing
with Fig. 7 and 11 we see qualitatively the same behaviour: increasing the heterogeneity
both slows the bump and increases the width of the distribution of periods.

5. Conclusion

In this chapter we have used ideas from the field of Uncertainty Quantification to in-
vestigate the effects of spatial heterogeneity on the speed of a moving “bump” of activity
in a neural field model. Neural field models are intrinsically infinite-dimensional, as is
the spatially-extended “frozen noise” that we included in the model. In order to make
computational progress we need to represent these processes in a finite-dimensional way.
The form of the coupling function G (constant plus cosine) allowed us to exactly write
the neural field dynamics (after transients) in the form of six coupled ODEs (7)-(12), thus
making the spatial part of the dynamics finite-dimensional. Any other spatially-periodic
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coupling function could be represented arbitrarily well by a finite number of similar spa-
tial modes via a Fourier series, resulting in a similar set of ODEs. These ODEs can be
approximately solved in any number of ways, but collocation, as used here, is very effi-
cient. It should be emphasised that the type of solution we were interested in, namely a
moving bump, meant that we were interested in periodic solutions of these ODEs. If we
were interested in, for example, a moving front [11, 5], we would look for different sorts
of solutions. A specific example of such a front moving over a heterogeneous domain
is given in Sec. 4.1 of [15]. And as is standard, the noise process is approximated in a
finite-dimensional way by truncating the Karhunen-Loève decomposition (28).

Finding the expected value of a quantity (in this case, the period of a periodic orbit)
in a system with stochastic or uncertain parameters is equivalent to averaging over a
multi-dimensional space. For a small to moderate dimensions such an integral can be
performed using full or sparse tensor product grids [29], but for high-dimensional inte-
grals techniques such as Quasi-Monte Carlo [17] must be used. We have demonstrated
each of these methods and found several interesting results. For the parameters studied,
adding spatial noise to the system always slows the moving bump. Also, varying the
spatial scale of the noise shows a nonmonotonic response of the bump’s speed (Figs. 8
and 10).

The results presented here are computationally intensive, and the field of uncertainty
quantification can only benefit from both continuing increases in computational power
and continued theoretical advances.

Conflict of interest: The author declares that they have no conflict of interest.
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