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Abstract

We consider a coupled, heterogeneous population of relaxation oscillators used to model rhythmic oscillations

in the pre-Bötzinger complex. By choosing specific values of the parameter used to describe the heterogeneity,

sampled from the probability distribution of the values of that parameter, we show how the effects of heterogeneity

can be studied in a computationally efficient manner. When more than one parameter is heterogeneous, full or

sparse tensor product grids are used to select appropriate parameter values. The method allows us to effectively

reduce the dimensionality of the model, and it provides a means for systematically investigating the effects of

heterogeneity in coupled systems, linking ideas from uncertainty quantification to those for the study of network

dynamics.

Keywords: heterogeneity; neural oscillators; pre-Bötzinger complex; model reduction; bifurcation; compu-
tation.

1 Introduction

Networks of coupled oscillators have been studied for
a number of years [1–7]. One motivation for these
studies is that many neurons, when isolated (and
possibly injected with a constant current), either pe-
riodically fire action potentials [8, 9] or periodically
move between quiescence and repetitive firing (the
alternation being referred to as bursting [10,11]). In
either case, the isolated neuron can be thought of

as an oscillator. Neurons are typically coupled with
many others via either gap junctions [12] or chemical
synapses [13–15]; hence, a group of neurons can be
thought of as a network of coupled oscillators.

As an idealisation, one might consider identi-
cal oscillators; in which case, the symmetry of the
network will often determine its possible dynam-
ics [16, 17]. However, natural systems are never
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ideal, and thus, it is more realistic to consider het-

erogeneous networks. Also, there is evidence in
a number of contexts that heterogeneity within a
population of neurons can be beneficial. Examples
include calcium wave propagation [18], the synchro-
nisation of coupled excitable units to an external
drive [19,20], and the example we study here: respi-
ratory rhythm generation [13, 21].

One simple way to incorporate heterogeneity in
a network of coupled oscillators is to select one pa-
rameter which affects the individual dynamics of
each oscillator and assign a different value to this
parameter for each oscillator [3, 15, 22, 23]. Doing
this raises natural questions such as from which dis-
tribution should these parameter values be chosen,
and what effect does this heterogeneity have on the
dynamics of the network?

Furthermore, if we want to answer these ques-
tions in the most computationally efficient way, we
need a procedure for selecting a (somehow) optimal
representative set of parameter values from this dis-
tribution. In this paper, we will address some of
these issues.

In particular, we will show how - given the distri-
bution(s) of the parameter(s) describing the hetero-
geneity - the representative set of parameter values
can be chosen so as to accurately incorporate the
effects of the heterogeneity without having to fully
simulate the entire large network of oscillators.

We investigate one particular network of coupled
relaxation oscillators, derived from a model of the
pre-Bötzinger complex [13,14,24], and show how the
heterogeneity in one parameter affects its dynamics.
We also show how heterogeneity in more than one
parameter can be incorporated using either full or
sparse tensor product grids in parameter space.

Our approach thus creates a bridge between
computational techniques developed in the field of
uncertainty quantification [25, 26] involving colloca-
tion and sparse grids on the one hand, and network
dynamics on the other. It also helps us build accu-
rate, reduced computational models of large coupled
neuron populations.

One restriction of our method is that it applies
only to states where all oscillators are synchronised

(in the sense of having the same period) or at a
fixed point. Synchronisation of this form typically
occurs when the strength of coupling between os-
cillators is strong enough to overcome the tendency
of non-identical oscillators to desynchronise due to
their disparate frequencies [2, 3, 27] and is often the
behaviour of interest [6, 13, 14, 23].

We present the model in Section 2 and show how
to efficiently include parameter heterogeneity in Sec-
tion 3. In Section 4, we explore how varying hetero-
geneity modifies bifurcations and varies the period
of the collective oscillation. Sections 5 and 6 show
how to deal with two and more, respectively, hetero-
geneous parameters. We conclude in Section 7.

2 The model

Our illustrative example is a network of model neu-
rons thought to describe at some level the dynamics
of the pre-Bötzinger complex, governed by the fol-
lowing equations:

C
dVi

dt
= −gNam(Vi)hi(Vi − VNa)

−gl(Vi − Vl) + Iisyn + Iiapp (1)

dhi

dt
=

h∞(Vi)− hi

τ(Vi)
(2)

for i = 1 . . .N , where

Iisyn =
gsyn(Vsyn − Vi)

N

N
∑

j=1

s(Vj), (3)

as considered in the work of Rubin and Terman [14].
Here, Vi is the membrane potential of cell i, and hi

is a channel state variable for neuron i governing
the inactivation of persistent sodium. Equations 1
and 2 were derived from the model in the works of
Butera et al. [13,24] by blocking currents responsible
for action potentials. A similar model with N = 2
was considered in the work of Rubin [28], and Dun-
myre and Rubin [29] considered synchronisation in
the case N = 3, where one of the neurons was quies-
cent, another was tonically firing, and the third one
could be either quiescent, tonically firing or bursting.
The neurons are all-to-all coupled via the term Iisyn;
when gsyn = 0 the neurons are uncoupled. The var-
ious functions involved in the model equations are

2



the following:

s(V ) =
1

1 + exp [−(V + 40)/5]
(4)

τ(V ) =
1

ǫ cosh [(V + 44)/12]
(5)

h∞(V ) =
1

1 + exp [(V + 44)/6]
(6)

m(V ) =
1

1 + exp [−(V + 37)/6]
. (7)

The functions τ(V ), h∞(V ) and m(V ) are a stan-
dard part of the Hodgkin-Huxley formalism [8], and
synaptic communication is assumed to act instanta-
neously through the function s(V ). The parameter
values we use initially are VNa = 50, gl = 2.4,
Vl = −65, Vsyn = 0, C = 0.21, ǫ = 0.1, gsyn = 0.3
and gNa = 2.8.

Note that the synaptic coupling is excitatory.
These parameters are the same as those used in the
work of Rubin and Terman [14] except that they
used ǫ = 0.01 and gl = 2.8, and their function s(V )
had a more rapid transition from approximately 0
to 1 as V was increased. These changes in param-
eter values were made to speed up the numerical
integration of Equations 1 and 2, and the methods
presented here do not depend on the particular val-
ues of these parameters.

If the values of the applied current Iiapp are taken
from a uniform distribution on the interval [10, 25],
the behaviour is as shown in Figure 1. After a tran-
sient, we see synchronous behaviour, i.e. all neurons
oscillate periodically with the same period, although
the heterogeneity in the Iiapp means that each neu-
ron follows a slightly different periodic orbit in its
own (V, h) phase space. (Because spiking currents
have been removed in the derivation of Equations 1
and 2, these oscillations are interpreted as burst en-
velopes, i.e. neuron i is assumed to be spiking when
Vi is high and quiescent when Vi is low.) It is this
stable synchronous periodic behaviour that is of in-
terest: In what parameter regions does it exist, and
how does the period vary as parameters are varied?
Butera et al. [13] observed that including param-
eter heterogeneity in a spiking model for the pre-
Bötzinger complex increased both the range of pa-
rameters over which bursting occurred and the range
of burst frequencies (this being functionally advan-
tageous for respiration), and this was the motivation

for the study of Rubin and Terman [14].

3 Managing heterogeneity

3.1 The continuum limit

The key observation behind our approach can be
seen in Figure 2, where we plot the Vi and s(Vi)
as functions of Iiapp at one instant in time. Once
the neurons have synchronised, Vi values (and hi

and any smooth functions of these variables) appear
to vary smoothly when plotted as a function of the
heterogeneous parameter Iiapp. This is also the case

when the Iiapp values are chosen randomly from the
interval [10, 25] rather than uniformly (not shown).
This suggests that in the limit of N → ∞, at any
instant in time, V and h will be smooth functions
of the continuous variable Iapp. We now consider
this case where Iapp is a continuous random vari-
able with a uniform density on the interval [10, 25].
We parametrise Iapp as Iapp = Im + Isµ, where the
probability density function for µ is as follows:

p(µ) =

{

1/2, −1 ≤ µ ≤ 1
0, otherwise

(8)

Vi(t) and hi(t) become V (µ, t) and h(µ, t), re-
spectively, and the points in Figure 2 ‘fill in’ to form
continuous functions. In the given example, we had
Im = 17.5 and Is = 7.5. Thus, the ordinary differen-
tial equations (ODEs) 1 and 2 become the following:

C
∂V (µ, t)

∂t
= −gNam(V (µ, t))h(µ, t)(V (µ, t)− VNa)

−gl(V (µ, t)− Vl)

+Isyn(µ, t) + Im + Isµ (9)

∂h(µ, t)

∂t
=

h∞(V (µ, t))− h(µ, t)

τ(V (µ, t))
(10)

where

Isyn(µ, t) = gsyn(Vsyn−V (µ, t))

∫ 1

−1

s(V (µ, t))p(µ) dµ.

(11)
The results forN → ∞ should provide a good ap-

proximation to the behaviour seen when N is large
but finite, which is the realistic (although difficult
to simulate) case. The continuum limit presented
in this section was first introduced by Rubin and
Terman [14], but their contribution was largely an-
alytical, whereas ours will be largely numerical.
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3.2 Stochastic Galerkin

One approach to studying Equations 9 and 11, mo-
tivated by techniques developed in the context of
uncertainty quantification [25, 26], is to expand the
functions V (µ, t) and h(µ, t) in orthogonal polyno-
mials in µ, with the choice of particular polynomials
determined by the probability density of µ, i.e. the
distribution of the heterogeneous parameter. For the
uniform density p(µ), one would choose Legendre
polynomials, writing V (µ, t) and h(µ, t) as follows:

V (µ, t) =

∞
∑

i=0

ai(t)Pi(µ), h(µ, t) =

∞
∑

i=0

bi(t)Pi(µ),

(12)
where Pi is the ith Legendre polynomial; this is
known as a ‘polynomial chaos’ expansion [3]. Sub-
stituting Equation 12 into Equation 9, multiplying
both sides by Pj(µ)p(µ) and integrating over µ be-
tween −1 and 1, the orthogonality properties of Leg-
endre polynomials with uniform weight allows one
to obtain the ODE satisfied by aj(t). Similarly, one
can use Equation 10 to obtain the ODEs governing
the dynamics of bj(t). Having solved (a truncated
set of) these ODEs, one could reconstruct V (µ, t)
and h(µ, t) using Equation 12. This is referred to as
the stochastic Galerkin method [25]. However, the
integrals just mentioned cannot be performed ana-
lytically. They must be calculated numerically at
each time step in the integration of the ODEs for
ai and bi; this is computationally intensive. Note
that the optimal choice of orthogonal polynomials
is determined by the distribution of the heteroge-
neous parameter: for a uniform distribution, we use
Legendre polynomials; for other distributions, other
families of orthogonal polynomials are used [25, 26].

3.3 Stochastic collocation

An alternative, motivated by the stochastic collo-
cation method [25], is to simply discretise in the µ
direction, obtaining N different µi values, and then
solve Equations 9 and 10 at each of the µi, using
the values of s(V (µi, t)) to approximate the integral
in Equation 11.

It is important to realize that the number (N)
of neurons simulated in this approach may well be
much smaller than the number of neurons in the
‘true’ system, considered to be in the thousands.
Notice also that these neurons are ‘mathematically’
coupled to one another via the discretisation of the

integral (Equation 11), which is an approximation
of the continuum limit.

Using the values of s(V (µi, t)) to approximate
the integral in Equation 11, we are in fact including
the influence of all other neurons (an infinite number
of them in the continuum limit), not just those that
we have retained in our reduced approximation. We
now examine how different discretisation schemes af-
fect several different calculations.

3.3.1 Period calculation

Firstly, we consider the period of the collective os-
cillations seen in Figure 1. The analogue of finite
differences, or the method of lines, is to uniformly
discretise the interval [−1, 1] into N values, µi, and
to solve Equations 9 and 10 at each of the µi. Defin-
ing µi = −1 + 2(i − 1/2)/N for i = 1, 2 . . .N , we
approximate the integral in Equation 11 using the
composite midpoint rule:

∫ 1

−1

s(V (µ, t))p(µ) dµ ≈ 1

N

N
∑

i=1

s(V (µi, t)) (13)

which, after defining Vi(t) = V (µi, t), is noth-
ing more than the sum in Equation 3, where
Iiapp = Im + Isµi. To show convergence of the
calculation of the period with N , we plot the error
in Figure 3 with red stars; the error is defined to
be the absolute value of the difference between the
calculated period and the true period (defined at the
end of this section). We see that the error scales as
N−2 as expected from numerical analysis [30]. (All
numerical integration was performed using Matlab’s
ode113 with an absolute tolerance of 10−10 and a
relative tolerance of 10−12.)

However, by choosing non-uniformly spaced val-
ues of µi, we can evaluate the integral in Equa-
tion 13 much more accurately. (By ‘more accu-
rately’, we mean either that for a fixed N , using
the non-uniformly spaced µi will result in a smaller
error than that obtained using uniform spacing, or
that to obtain a fixed accuracy, using non-uniform
spacing will require a smaller N than that needed
for uniform spacing.) Specifically, for a fixed N , if
we choose µi to be the ith root of PN (µ), where PN

is the Nth Legendre polynomial, normalised so that
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PN (1) = 1, and the weights

wi =
1

(1− µ2
i ) [P

′
N (µi)]

2
, (14)

then the Gauss-Legendre quadrature rule [31] is

∫ 1

−1

s(V (µ, t))p(µ) dµ ≈
N
∑

i=1

wis(V (µi, t)). (15)

Convergence of the error in the period with N
is shown in Figure 3 (blue circles), where we see
the very rapid convergence expected from a spectral
method. For 50 . N , the error in the period calcu-
lation using this method is dominated by errors in
the numerical integration of the Equations 9 and 10
in time, rather than in the approximate evaluation
of the integral in Equation 11. (The true period was
calculated using Gauss-Legendre quadrature with N
significantly larger than 104 and is approximately
8.040104851819.) The rapid convergence of Gauss-
Legendre quadrature is a consequence of the fact
that the function s(V (µ)) is a sufficiently smooth
function of µ (see Figure 2). This smoothness will
arise only when the oscillators become fully synchro-
nised.

3.3.2 Hopf bifurcations

By decreasing or increasing Im (the mean of the
Iiapp), we find that the oscillations in Figure 1 ter-
minate in Hopf bifurcations. We now examine the
effects of the different discretisations mentioned on
the detection of these Hopf bifurcations. In Fig-
ure 4, we see the error in calculating the value of
Im at which the upper Hopf bifurcation occurs as
a function of N , the number of points used, for the
two different schemes (the true value, again calcu-
lated using Gauss-Legendre quadrature with a large
N , is approximately Im = 33.1262).

The expected behaviour (very rapid convergence
for Gaussian quadrature and the error scaling as
N−2 for the composite midpoint rule) is seen (com-
pare with Figure 3). Figure 5 shows a similar cal-
culation but for the lower Hopf bifurcation which
occurs at Im ≈ 6.064. Several interesting points in
contrast with the results in Figure 4 are evident: The
error in the composite midpoint rule appears to de-
cay as N−1, while the error using Gaussian quadra-
ture appears to decay as N−2. The reason for these
differences is not clear.

3.4 Summary

In this section, we have shown that a judicious
choice of the values of the heterogeneous parameter,
combined with a scheme for Gaussian quadrature,
allows us to calculate quantities of interest (such as
the period of oscillation and the parameter value at
which a Hopf bifurcation occurs) much more parsi-
moniously than a naive implementation of uniformly
spaced Ii values for a uniform distribution. Effec-
tively, we have simulated the behaviour of a large
network of oscillators by actually simulating a much
smaller one, carefully choosing which oscillators to
simulate (and how to couple them so as to also cap-
ture the effect of the omitted ones).

Having demonstrated this, we now fix N = 10
and use the quadrature rule given in Equation 15.
Note that our discretisation in µ can be thought of
in two different ways. Firstly, we can consider the
continuum limit (N → ∞) as the true system, whose
dynamics will be close to the real system which con-
sists of a large number of neurons. Our scheme is
then an efficient way of simulating this true system.
The other interpretation is that the true system
consists of a large, finite number of neurons with
randomly distributed parameter(s), and our scheme
is a method for simulating such a system but using
far fewer oscillators.

In the next section, we investigate the effects of
varying Im, Is and gsyn. In a later section, we con-
sider more than one heterogeneous parameter and
show how tensor product grids and sparse tensor
product grids can be used to accurately calculate the
effects of further, independently distributed, hetero-
geneities.

4 The effects of heterogeneity

4.1 A single neuron

In order to investigate the effects of heterogeneity, we
first examine a single uncoupled neuron (i.e. N = 1
and gsyn = 0). The behaviour as Im is varied as
shown in Figure 6 (left panel). For this range of
Im, there is always one fixed point, but it undergoes
two Hopf bifurcations as Im is varied, leading to
a family of stable periodic orbits. The period de-
creases monotonically with increasing Im. The lower
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Hopf bifurcation results in a canard periodic solu-
tion [32] which very rapidly increases in amplitude
as Im is increased. This is related to the separation
of time scales between the V dynamics (fast) and the
h dynamics (slow). In the left panel of Figure 6, we
see that some of the neurons in the network whose
behaviour is shown in Figure 1 would be quiescent
when uncoupled, while most would be periodically
oscillating.

The behaviour in the left panel of Figure 6 can
also be understood by looking at the (V, h) phase
plane for different values of Im - see Figure 7. The
behaviour of one self-coupled neuron (N = 1, gsyn =
0.3) is shown in Figure 6 (right panel). We see that
the main effect of self-coupling is to move both Hopf
bifurcations to lower values of Im.

4.2 A coupled population of neurons

Now, consider a coupled heterogeneous popula-
tion with N = 10 neurons. Parameter values are
gsyn = 0.3 and Is = 7.5. (Note that if Is = 0,
we recover the results for one self-coupled neuron.)
The results from varying Im are shown in Figure 8.
Comparing with the right panel of Figure 6, we see
that including heterogeneity widens the range of Im
values for which oscillations occur. The periodic
orbit cannot be followed below Im ≈ 8, as more
complex oscillations than purely periodic occur (not
shown), as discussed below. Note that the mean
voltage at the fixed point is easily calculated as
V ≡

∑10

i=1 wiVi, where Vi is the steady state value
of neuron i, and the variance of the Vi’s is simply
∑10

i=1 wi(Vi − V )2. (Recall that the weights wi are
given in Equation 14.)

To better understand these results, we can follow
the Hopf bifurcations as two parameters are varied.
Figure 9 (top) shows the two curves of Hopf bifur-
cations in the Im, Is plane for gsyn = 0.3. Increasing
the ‘spread’ of the heterogeneity, i.e. increasing Is,
increases the range of values of Im for which periodic
oscillations are possible (between the Hopf bifurca-
tions), but there may not necessarily exist stable
periodic orbits over the entire range. For Is larger
than about 6, i.e. for very heterogeneous neurons,
the synchronous behaviour created in the rightmost
Hopf bifurcation shown in Figure 9 (top) breaks up
as Im is decreased at constant Is, leading to com-
plex oscillations (not shown). The break-up of the

synchronous behaviour always involves the neurons
with the lowest values of µ, i.e. the lowest values of
Iapp. The curve in Figure 9 (top) where synchronous
behaviour breaks up was found by slowly decreasing
Im at constant Is until the break-up was observed.
In principle, it could be found by numerical con-
tinuation of the stable periodic orbit created in the
rightmost Hopf bifurcation, monitoring the orbit’s
stability.

Now, consider varying gsyn and Im for a fixed
Is = 7.5. As seen in Figure 10, the range of values
of Im for which oscillations may arise decreases as
gsyn increases (both Hopf bifurcations move to lower
values of Im), and for small gsyn (i.e. weak coupling)
the neurons are no longer synchronous, due to break-
up as discussed. The conclusion is that, in order
to obtain robust synchronous oscillations, we need
moderate to large coupling (gsyn) and a not-too-
heterogeneous population (Is not too large). This
is perhaps not surprising, but our main point here is
to demonstrate how the computation of the effects
of heterogeneity can easily be accelerated. We now
consider more than one heterogeneous parameter.

5 Two heterogeneous parameters

Now, consider the case where both Iapp and gNa

for each neuron are randomly (independently) dis-
tributed. We keep the uniform distribution for the
Iapp, choosing Im = 25, Is = 7.5 so that the Iapp
come from a uniform distribution on [17.5, 32.5].
We choose the gNa from a normal distribution with
a mean of 2.8, and standard deviation σ and set
gsyn = 0.3. We keep 10 points in the µ direction and
use the values of µi and wi given in Equation 14 and
the text immediately preceeding it to perform inte-
gration in the µ direction. The quantity M refers to
the number of different gNa values chosen, and we
thus simulate 10M appropriately coupled neurons.

The values of Iapp and gNa for the different neu-
rons are selected based on the tensor product of the
vectors formed from Iapp and gNa. Similarly, the
weights in a sum of the form given by Equation 15
will be formed from a tensor product of the wi asso-
ciated with the Iapp direction and those associated
with the gNa.

We initially choose σ = 0.25 and write gNa =
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2.8 + σλ, where λ has the probability density func-
tion

q(λ) =
1√
2π

e−λ2/2, (16)

i.e. λ is normally distributed. Then, as men-
tioned, the continuum variables V and h are writ-
ten in the form V (µ, λ, t) and h(µ, λ, t), respectively,
and the sum in Equation 3 becomes

∫ ∞

−∞

∫ 1

−1

s(V (µ, λ, t))p(µ)q(λ) dµ dλ . (17)

Keeping the Gauss-Legendre rule in the µ direc-
tion, this gives

∫ ∞

−∞

10
∑

i=1

wis(V (µi, λ, t))q(λ) dλ . (18)

The simplest approach to this integral is the
Monte Carlo method [30], where we simply randomly
choose M values of λ from the unit normal distribu-
tion and calculate an approximation to the integral
as the following:

1

M

M
∑

j=1

10
∑

i=1

wis(V (µi, λj , t)) . (19)

Here, the weights in the λ direction are all equal
to 1/M . An example of the µi and λj for M = 15
is shown in Figure 11 (top). Another approach is
to transform the integral to one over [0, 1] and use
the composite midpoint rule on that new variable.
Specifically, if we define

z = Q(λ) ≡
∫ λ

−∞

q(s) ds, (20)

i.e. Q is the cumulative density function for λ, and
then for a general function f , the integral

∫ ∞

−∞

f(λ)q(λ) dλ (21)

can be written as

∫ 1

0

f
(

Q−1(z)
)

dz . (22)

Thus, we define

λj = Q−1

(

j

M
− 1

2M

)

, (23)

for j = 1, . . .M and use the approximation in Equa-
tion 19. An example of the µi and λj for M =
15 is shown in Figure 11 (middle). It is better
still to use Gaussian quadrature (specifically, Gauss-
Hermite quadrature) in the λ direction. We approx-
imate the integral

∫ ∞

−∞

f(λ)q(λ) dλ ≈
N
∑

j=1

vjf(λj), (24)

where λj is the jth root of HN , the Nth ‘proba-
bilists’ Hermite polynomial’, and the weights vj are
given by

vj =
N !

[NHN−1(λj)]
2
. (25)

(The first few probabilists’ - as opposed to physi-
cists’ - Hermite polynomials areH0(x) = 1, H1(x) =
x, H2(x) = x2 − 1, . . . .) Thus, we approximate the
integral in Equation 17 by the double sum:

∫ ∞

−∞

∫ 1

−1

s(V (µ, λ, t))p(µ)q(λ) dµ dλ

≈
M
∑

j=1

10
∑

i=1

vjwis(V (µi, λj , t)). (26)

An example of the µi and λj forM = 15 is shown
in Figure 11 (bottom).

The result of using these three different methods
to allocate the gNa (and thus, to select the reduced
number of appropriately coupled neurons we simu-
late) is shown in Figure 12. This figure shows the er-
ror in the calculated period asM is varied. (The true
period was calculated using Gauss-Hermite quadra-
ture with a large M in the gNa direction.)

We see that as expected, the Gauss-Hermite
quadrature performs the best, with the error satu-
rating betweenM = 10 andM = 20. (Recalling that
we are using 10 points in the µ direction, this is con-
sistent with the idea that roughly the same number
of points should be used in each random direction.)
Using the Monte Carlo method, i.e. randomly choos-
ing, the gNa gives convergence that scales as M−1/2.
Uniformly sampling the inverse cumulative distribu-
tion function gives an error that appears to scale as
M−1. This is at variance with the expected scaling
of M−2 for the composite midpoint rule applied to a
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function with a bounded second derivative, but the
inverse CDF of a normal distribution (i.e. Q−1(z))
does not have a bounded second derivative, and an
error analysis of Equation 22 (not shown) predicts a
scaling of M−1, as observed.

6 Sparse grids

The process described in the previous section can
obviously be generalised to more than two ran-
domly, but independently, distributed parameters.
The distribution of each parameter determines the
type of quadrature which should be used in that
direction, and the parameter values and weights
are formed from tensor products of the underlying
one-dimensional rules. However, the curse of dimen-
sionality will restrict how many random parameters
can be accurately sampled. If we use N points in
each of D random dimensions, the number of neu-
rons we need to simulate is ND.

One way around this problem is to use sparse
grids [33, 34], as introduced by Smolyak [35]. The
basic idea is to use sparse tensor products, chosen
in such a way as to have similar accuracy to the
corresponding full tensor product, but with fewer
grid points, and thus (in our case) fewer neurons to
simulate. A general theory exists [33, 34], but to il-
lustrate the idea, suppose we have two uncorrelated
random parameters, each is distributed uniformly
between −1 and 1. A full tensor product for the
Gauss-Legendre quadrature using 11 points in each
direction is shown in Figure 13.

To form a two-dimensional sparse grid using the
Gauss-Legendre quadrature, we first write the one-
dimensional integration rule for integrating a func-
tion f as

∫ 1

−1

f(x) dx ≈ U i(f) ≡
Ni
∑

j=1

wjf(xj), (27)

where i ∈ N; wj are the weights, and xj are the
nodes. We form a nested family of such rules with
index i where the correspondence between i and Ni

is given in the following:

i.e. Ni = 2i+1 − 1. Then, the level L rule in two

spatial dimensions is

A(L, 2) =
∑

|i|=L

(

U i1 ⊗ U i2
)

−
∑

|i|=L−1

(

U i1 ⊗ U i2
)

,

(28)
where i ∈ N

2 and |i| = i1 + i2. The approxima-
tion of the integral of f over the domain [−1, 1]2 is
A(L, 2)(f). So for example, the level 2 rule (in 2 spa-
tial dimensions and using Gauss-Legendre quadra-
ture) is

A(2, 2) = U0 ⊗ U2 + U1 ⊗ U1 + U2 ⊗ U0

−
(

U0 ⊗ U1 + U1 ⊗ U0
)

(29)

The grid for this rule is shown in Figure 14
(top), along with grids corresponding to several of
its components.a Figure 14 (bottom) shows the grid
for rule A(3, 2).

Rules such as these can be constructed for an ar-
bitrary number of spatial dimensions, using a variety
of quadrature rules (and possibly different rules in
different dimensions). Their advantage becomes ap-
parent as the dimension of the space to be integrated
over (or in our case, the number of heterogeneous
parameters) is increased. To illustrate this, we con-
sider as an example the model given by Equations 1
and 2 with Iapp uniformly spread between 17.5 and
32.5, the gNa uniformly spread between 2.55 and
3.05, Vsyn uniformly spread between −1 and 1, and
VNa uniformly spread between 49 and 51, i.e. 4 inde-
pendent random dimensions. A comparison of the
error in calculating the period of collective oscilla-
tion using full and sparse grids is shown in Figure 15.

We see that for fixed N , the sparse grid calcula-
tion is approximately two orders of magnitude more
accurate than the full grid - implying, in turn, that
the way we select the reduced number of neurons we
retain to simulate the full system is critical. This rel-
ative advantage is expected to increase as the num-
ber of distributed parameters increases. As an ex-
ample of the growth in the number of grid points, a
level 6 calculation in 10 dimensions uses fewer than
one million points, and the resulting system can be
easily simulated on a desktop PC. (Note that the
grid points and weights are calculated before the
numerical integration starts, so the computational
cost in producing data like that shown in Figure 15
is almost entirely due to numerical integration of the
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ODEs, which is proportional to the number of grid
points, i.e. neurons, used.)

7 Discussion

In this paper, we have presented and demonstrated
the use of a computationally efficient method for
systematically investigating the effects of hetero-
geneity in the parameters of a coupled network of
neural oscillators. The method constitutes a model
reduction approach: By only considering oscillators
with parameter values given by roots of families of
orthogonal polynomials (Legendre, Hermite, . . . ),
we can use Gaussian quadrature to accurately eval-
uate the term coupling the oscillators, which can be
thought of as the discretisation of an integral over
the heterogeneous dimension(s).

Effectively, we are simulating the behaviour of
an infinite number of oscillators by only simulating a
small number of judiciously selected ones, modifying
appropriately the way they are coupled. When the
oscillators are synchronised, or at a fixed point, the
function to be integrated is a smooth function of the
heterogeneous parameter(s), and thus, convergence
is very rapid. The technique is general (although
subject to the restriction immediately above) and
can be used when there is more than one heteroge-
neous parameter, via full or sparse tensor products
in parameter space. For a given level of accuracy,
we are simulating far fewer neurons than might
naively be expected. The emphasis here has been
on computational efficiency rather than a detailed
investigation of parameter dependence.

The model we considered involved coupling only
through the mean of a function, s, of the variable Vi

which, in the limit N → ∞, can be thought of as an
integral or, more generally, as a functional of V (µ).
Thus, the techniques demonstrated here could also
be applied to networks coupled through terms which,
in the continuum limit, are integrals or functions of
integrals. A simple example is diffusive coupling [3];
another possibility is coupling which is dependent
upon the correlation between some or all of the vari-
ables. As mentioned, the technique will break down
once the oscillators become desynchronised, as the
dependence of state on parameter(s) will no longer
be smooth. However, if the oscillators form several
clusters [14,36], it may be possible to apply the ideas

presented here to each cluster, as the dependence of
state on parameter(s) within each cluster should still
be smooth. Ideally, this reparametrisation would be
done adaptively as clusters form, in the same way
that algorithms for numerical integration adapt as
the solution varies [30]. Alternatively, if a single
oscillator ‘breaks away’ [27], the methods presented
here could be used on the remaining synchronous
oscillators, with the variables describing the state of
the rogue oscillator also fully resolved. More gener-
ally, there are systems in which it is not necessarily
the state of an oscillator that is a smooth function
of the heterogeneous parameter, but the parameters

describing the distribution of states [37, 38], and the
ideas presented here could also be useful in this case.

The primary study with which we should com-
pare our results is that of Rubin and Terman [14].
They considered essentially the same model as Equa-
tions 1 and 2 but with heterogeneity only in the Iapp
and, taking the continuum limit, referred to the
curve in (V, h) space describing the state of the neu-
rons at any instant in time as a ‘snake’. By making
various assumptions, such as an infinite separation
of time scales between the dynamics of the Vi and
the hi, and that the dynamics of the hi in both the
active and quiescent phases is linear, they derived an
expression for the snake at one point in its periodic
orbit and showed that such a snake is unique and
stable. They also estimated the parameter values at
which the snake ‘breaks’ and some oscillators lose
synchrony. In contrast with their mainly analytical
study, ours is mostly numerical and thus does not
rely on any of the assumptions just mentioned. Us-
ing the techniques presented here, we were able to
go beyond the work of Rubin and Terman, exploring
parameter space. Our approach can be thought of
as a particular parametrisation of this snake, which
takes into account the probability density of the
heterogeneity parameter(s); we also showed a sys-
tematic way of extending this one-dimensional snake
to two and higher dimensions.

Another paper which uses some of the same ideas
as presented here is that of Laing and Kevrekidis [3].
There, the authors considered a finite network of
coupled oscillators and used a polynomial chaos ex-
pansion of the same form as Equation 12. However,
instead of integrating the equations for the polyno-
mial chaos coefficients directly, they used projective
integration [39] to do so, in an ‘equation-free’ ap-
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proach [40] in which the equations satisfied by the
polynomial chaos coefficients are never actually de-
rived. They also chose the heterogeneous parameter
values randomly from a prescribed distribution and
averaged over realisations of this process in order
to obtain ‘typical’ results. Similar ideas had been
explored earlier by Moon et al. [27], who considered
a heterogeneous network of phase oscillators.

Assisi et al. [22] considered a heterogeneous net-
work of coupled neural oscillators, deriving equa-
tions of similar functional form to Equations 9 and
11. Their approach was to expand the variables in a
way similar to Equation 12 but using a small number
of arbitrarily chosen ‘modes’ rather than orthogo-
nal polynomials. Their choice of modes, along with
the fact that their neural model consisted of ODEs
with polynomial right hand sides, allowed them to
analytically derive the ODEs satisfied by the coeffi-
cients of the modes. This approach allowed them to
qualitatively reproduce some of the behaviour of the
network such as the formation of two clusters of os-
cillators. However, in the general case modes should
be chosen as orthogonal polynomials, the specific
forms of which are determined by the distribution
of the heterogeneous parameter(s) [25, 26].

The network we considered was all-to-all cou-
pled, and the techniques presented should be appli-
cable to other similar systems. The only requirement
is that the relationship between the heterogeneity
parameter(s) and the state of the system (possibly
after transients) be smooth (or possibly piecewise
smooth). An interesting extension is the case when
the network under consideration is not all-to-all cou-
pled. Then, the effects of degree distribution may af-
fect the dynamics of individual oscillators [38,41,42],
and if we have a way of parametrising this type of
heterogeneity, it might be possible to apply the ideas
presented here to such networks. Degree distribution
is a discrete variable, and corresponding families of
orthogonal polynomials exist for a variety of discrete
random variables [25, 26].
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Figure 1: Solutions of Equations 1 and 2. These are the solutions when the Iiapp values are uniformly
sampled from a uniform distribution on [10, 25]. Top: Vi as functions of time. Bottom: hi as functions of
time. N = 101. Different line colours correspond to different neurons (only every 10th neuron is shown).
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Figure 2: Solutions of Equations 1 and 2 at one instant in time. Vi (top) and s(Vi) (bottom) as
functions of Iiapp, N = 101. This shows a state where all neurons are active (see Figure 1). If the network
was switching from active to quiescent or vice versa, there would be a steep ‘front’ where the Vi changed
rapidly with i although they would still form a continuous curve.
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Figure 3: Error in the calculated period of the synchronised oscillators. Error in the calculated
period of the synchronised oscillators as a function of the number of neurons simulated (N) for the midpoint
rule (red stars) and Gaussian quadrature (blue circles). Also shown (dashed) is a line corresponding to error
scaling as N−2, to guide the eye.
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Figure 4: Error in calculation of the value of Im where upper Hopf bifurcation occurs. Error in
the calculation of the value of Im at which the upper Hopf bifurcation occurs using the midpoint rule (red
stars) and Gaussian quadrature (blue circles). Other parameters: gsyn = 0.3, Is = 7.5. The midpoint rule
error decays as 1/N2. For 10 < N , the error using Gaussian quadrature is dominated by the precision with
which the Hopf bifurcation can be located, hence the plateau.
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calculation of the value of Im at which the lower Hopf bifurcation occurs using the midpoint rule (red stars)
and Gaussian quadrature (blue circles). The error for the midpoint rule appears to decay as 1/N . Other
parameters: gsyn = 0.3, Is = 7.5.
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Figure 6: The bifurcation behaviour, V as functions of Im and period of the stable periodic
orbit. Left: the bifurcation behaviour of a single uncoupled neuron (N = 1, gsyn = 0). Top left: voltage
V at a fixed point (solid, stable; dashed, unstable) and the maximum and minimum of V over one period
of oscillation (circles), as a function of Im. Bottom left: period of the stable periodic orbit for a single
uncoupled neuron. The apparent discontinuity in the periodic orbit towards low Im is because of the canard
nature of the oscillations (mentioned in the text). Right: the bifurcation behaviour of a single self-coupled
neuron (N = 1, gsyn = 0.3). Top right: voltage V at a fixed point (solid stable, dashed unstable) and the
maximum and minimum of V over one period of oscillation (circles), as a function of Im. Bottom right:
period of the stable periodic orbit for a single self-coupled neuron.
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(solid) is the stable periodic orbit that exists when Im = 15.
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point (solid stable, dashed unstable), mean ± one standard deviation (dotted), and the maximum and
minimum of the mean of V over one period of oscillation (circles), as a function of Im. Bottom: period of
the stable periodic orbit. N = 10, gsyn = 0.3, Is = 7.5.
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Figure 9: Hopf bifurcation curves and period of the stable periodic orbit for three different
values of Is. Top: Hopf bifurcation curves (solid) and the curve on which the periodic orbit created in
the rightmost Hopf bifurcation loses stability (circles, found from direct simulation). Bottom: period of the
stable periodic orbit for three different values of Is, the spread of the heterogeneity. For Is = 8 and 14,
the curves are terminated at low Im when the periodic orbit loses stability to a more complex oscillation.
gsyn = 0.3, N = 10.
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Figure 10: Hopf bifurcation curves and period of the stable periodic orbit for three different
values of gsyn. Top: Hopf bifurcation curves (solid) and the curve on which the periodic orbit created in the
rightmost Hopf bifurcation loses stability (circles, obtained by direct simulation). Synchronous oscillations
occur only above the curve shown with red circles. Bottom: period of the stable periodic orbit for three
different values of gsyn. The curve for gsyn = 0.1 is terminated at low Im when the periodic orbit loses
stability to a more complex oscillation. Is = 7.5, N = 10.
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Figure 11: Examples of the heterogeneity grid values of µi and λj for M = 15. Top: the λj

values are randomly chosen from a unit normal distribution. Middle: the λj values are chosen by uniformly
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are the roots of H15, the 15th Hermite polynomial. In all cases, the µi are roots of P10, the 10th Legendre
polynomial.
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Figure 13: Full tensor product using 11 points in each direction (121 points in total). The points
are the roots of P11, the 11th Legendre polynomial.
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Figure 14: Grids for rules A(2,2) and A(3,2). Top: blue circles: the grid for rule A(2, 2) (i.e. level 2 in
2 spatial dimensions) using Gauss-Legendre quadrature. Red crosses: grid corresponding to U0 ⊗ U2 (one
point horizontally, 7 vertically). Black dots: grid corresponding to U1 ⊗ U1 (3 points both horizontally and
vertically). The three black dots on the y-axis correspond to U0 ⊗ U1, while the three black dots on the
x-axis correspond to U1 ⊗ U0. Bottom: the grid for rule A(3, 2) (i.e. level 3 in 2 spatial dimensions). Rule
A(2, 2) has 21 grid points, and rule A(3, 2) has 73.
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