
rsta.royalsocietypublishing.org

Research

Article submitted to journal

Subject Areas:

mathematical biology, applied

mathematics, computational

mathematics

Keywords:

neuron dynamics, self-pulsations,

delay differential equations,

bifurcation analysis

Author for correspondence:

Carlo R. Laing

e-mail: c.r.laing@massey.ac.nz

Theta neuron subject to
delayed feedback:
a prototypical model for
self-sustained pulsing
Carlo R. Laing1 and Bernd Krauskopf2

1School of Natural and Computational Sciences,

Massey University, Private Bag 102-904, North Shore

Mail Centre, Auckland 0745, New Zealand
2Department of Mathematics, The University of

Auckland, Private Bag 92019, Auckland 1142, New

Zealand

We consider a single theta neuron with delayed self-
feedback in the form of a Dirac delta function in time.
Because the dynamics of a theta neuron on its own can
be solved explicitly — it is either excitable or shows
self-pulsations — we are able to derive algebraic
expressions for existence and stability of the periodic
solutions that arise in the presence of feedback.
These periodic solutions are characterized by one
or more equally spaced pulses per delay interval,
and there is an increasing amount of multistability
with increasing delay time. We present a complete
description of where these self-sustained oscillations
can be found in parameter space; in particular,
we derive explicit expressions for the loci of their
saddle-node bifurcations. We conclude that the theta
neuron with delayed self-feedback emerges as a
prototypical model: it provides an analytical basis for
understanding pulsating dynamics observed in other
excitable systems subject to delayed self-coupling.

© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.&domain=pdf&date_stamp=
mailto:c.r.laing@massey.ac.nz


2

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

1. Introduction
The theta neuron model, or theta neuron for short, is a mathematical model designed to capture
essential features of spiking or bursting neurons [1]. It takes the form of a differential equation
for a single angular variable θ(t)∈ (−π, π], representing a phase point moving over an attracting
periodic orbit; by convention, the theta neuron produces an output spike or pulse when the angle
θ(t) moves through π.

We study here a single theta neuron that receives self-feedback of strength κ after a time delay
τ , where we take the feedback to act instantaneously as modeled by a Dirac delta function in time.
The overall model takes the form

dθ

dt
= 1− cos θ + (1 + cos θ)

I + κ
∑

i:−τ<ti<0

δ(t− ti − τ)

 , (1.1)

where · · · t−3 < t−2 < t−1 < t0 < 0 are the firing times in the past that enter with strength κ and
after the delay time τ .

System (1.1) for κ= 0 (without self-feedback) is simply the equation of a single theta neuron
with constant input current I . The main advantage of the theta neuron is that its dynamics
can be solved explicitly, because its right-hand side is of a particularly simple form. More
specifically, it is the (angular) normal form of a saddle-node bifurcation on an invariant-circle
(SNIC) bifurcation [1,2], which occurs at I = 0. One often visualizes the theta neuron as a point
moving over the unit circle in the plane, as given by the periodic angle θ(t). For I < 0 the system
has two equilibria θ± =±2 tan−1 (

√
−I), and it is excitable close to the SNIC bifurcation. The

point θ− is an attractor, while θ+ is unstable (a saddle when one imagines the circle being an
attracting periodic orbit) and acts like a threshold. If an initial condition θ(0) (caused by some
external perturbation) is smaller than θ+ then θ(t) relaxes back to θ−. However, if θ(0) is (slightly)
larger than θ+ then θ(t) increases through π and, hence, the theta neuron fires before approaching
θ− (in the absence of any further perturbations). For I > 0, on the other hand, there are no
equilibria and θ(t) increases monotonically, and the theta neuron fires periodically with period
π/

√
I .

This discussion shows that the theta neuron (without feedback) is an excitable system in the
parameter range before it bifurcates to producing sustained periodic oscillations. Excitability is
a phenomenon that is observed in numerous natural and man-made systems. It is characterized
by an all-or-none response (a pulse or spike) to an external input perturbation, depending on
whether or not the perturbation exceeds the so-called excitability threshold. An output pulse
corresponds to the sudden release of stored energy and it is followed by a refractory period
during which energy is replenished and the excitable system is not able to react to a further
perturbation [3]. Excitability has been found experimentally and in associated mathematical
models of neurons and other cells, as well as different types of laser systems; see, for example, [4,5]
as entry points to the literature.

An excitable unit or cell can react to several input perturbations, where the overall strength
of all inputs and their timing determine whether an output pulse ensues. In a (neural) network
there are necessarily communication delays between cells that need to be taken into account [6] in
order to understand the ensuing dynamics. In the simplest case, a single excitable system receives
its own feedback by its output being re-injected after a delay τ . This overall system is able to
regenerate its own response after an external input, resulting in feedback-induced self-pulsations
whose timing is controlled by the delay time τ . This general mechanism for sustaining pulses
in the delay line or delay interval has been demonstrated in a number of laser systems [7–12]
and, recently also in an experiment with an actual cell [13]. The connection of a neuron to itself
is known as an autapse [14] and these are known to occur naturally [15]. Stable self-generation of
spikes or pulses are important, for example, as a means of memory storage [16,17].

We study the theta neuron with self-feedback (1.1) as a prototypical example of such a system,
which allows us to determine the observed dynamics explicitly. The underlying idea is that exact
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Figure 1. Coexisting stable periodic solutions of Eq. (1.1) for κ= 1, τ = 20 and I =−0.01. Note that when θ reaches

π from below it is reset to −π.

details of the excitability are not important when it comes to identifying underlying principles
of self-sustained oscillations in the presence of delayed feedback. Figure 1 shows three periodic
solutions of Eq. (1.1) that coexist and are characterized by one, two and three equidistant pulses
being regenerated in the feedback loop over one delay interval. It is the existence and stability
of these types of solutions that are the focus of this paper. The key technical property that we
make use of here is that the dynamics of the theta neuron with delta-function self-feedback can
be described equivalently by a discrete map for the spike times. Hence, periodic solutions of (1.1)
correspond to periodic points under iteration, and their stability can be calculated explicitly by
linearizing the map.

A number of other authors have studied oscillators with pulsatile interactions [18–20],
exploiting the fact that it is often possible to explicitly calculate the effects of these interactions.
One example is the leaky integrate-and-fire neuron [19], featuring a reset when the firing
threshold is reached, which can be solved explicitly. However, that neuron model has the
disadvantage of being phenomenological, whereas the theta neuron has been derived from a
more complex Hodgkin-Huxley type model via the technique of phase reduction [1,2]. Note
further that (1.1) is exactly equivalent under the transformation V = tan (θ/2) to the quadratic
integrate-and-fire (QIF) neuron given by the equation

dV

dt
= I + V 2 + κ

∑
i:−τ<ti<0

δ(t− ti − τ) (1.2)

for the voltage V , along with the rule that if V (t−) =∞ then V (t+) =−∞ [21,22]. We will use
this equivalence several times below to derive solutions of the theta neuron model.

We consider here two important subcases of Eq. (1.1): the case of I < 0 when the theta neuron
is excitable and has positive (excitatory) self-coupling for κ> 0; and the case of I > 0 when the
theta neuron is intrinsically firing and receives either excitatory (for κ> 0) or inhibitory (for κ< 0)
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self-coupling. For ease of notation we define the input current I separately as

I =

{
−I2m I < 0

I2p I > 0
(1.3)

for these two cases. In Sec. 2 we consider the case of −I2m = I < 0 and κ> 0 of the excitable theta
neuron with excitatory self-feedback; we derive the existence of periodic orbits, determine their
stability analytically, and give an explicit expression for the saddle-node bifurcations of these
orbits. Section 3 concerns the case I2p = I > 0 of a theta neuron firing periodically even without
any feedback. We derive existence and stability of periodic orbits for κ> 0 and then show that
these are related to those for κ< 0 via a simple geometric transformation; again, curves of saddle-
node bifurcations are given explicitly. In Sec. 4 we consider the theta neuron with a feedback
term that is smooth, rather than a delta function. The resulting system needs to be studied
numerically, and we find that for both I < 0 and I > 0 the dynamics for excitatory coupling with
κ> 0 are qualitatively as those of (1.1). For I > 0 and κ< 0, on the other hand, we find additional
bifurcations that may lead to chaotic behaviour; however, the theta neuron with such a smooth
feedback may not be an appropriate model for an oscillating neuron with inhibitory self-feedback.
We conclude with a discussion in Sec. 5.

2. Excitable theta neuron for negative current
We first consider the case −I2m = I < 0. In order to have nontrivial solutions we consider
excitatory coupling only. Our starting point is the derivation of the solution of (1.1) for κ= 0,
using its equivalence to (1.2). The solution of (1.2) for −Im <V (0)< Im is

V (t) =−Im tanh
(
Imt− tanh−1 [V (0)/Im]

)
. (2.1)

Using the transformation V = tan (θ/2) it follows that if −Im < tan (θ(0)/2)< Im, i.e. the
neuron’s state is initially between the fixed points, then the solution of (1.1) is

θ(t) = 2 tan−1

[
−Im tanh

(
Imt− tanh−1

[
tan (

θ(0)
2 )

Im

])]
, (2.2)

and θ approaches the lower fixed point from above as t→∞. Conversely, if Im < tan (θ(0)/2),
i.e. the neuron’s state is initially above the upper fixed point, then the solution of (1.1) for κ= 0 is

θ(t) = 2 tan−1

[
−Im coth

(
Imt− coth−1

[
tan (

θ(0)
2 )

Im

])]
. (2.3)

This means that θ increases through π (the neuron fires) and θ then approaches the lower fixed
point from below as t→∞. While these expressions are general [4,23], we will often use them in
cases where they simplify.

Suppose now that the delta function acts at time t and κ ̸= 0. From (1.2) and the relationship
V = tan (θ/2) we see that this has the effect of instantaneously changing V by the rule V (t+) =

V (t−) + κ, i.e. θ is changed by

tan

(
θ(t+)

2

)
= tan

(
θ(t−)

2

)
+ κ,

where superscripts indicate the state immediately before (−) or after (+) the action of the delta
function.

(a) Existence of periodic solutions for negative current
We now derive the existence of oscillations such as those in Fig. 1. Suppose the neuron fires at
time 0 (i.e. θ(0) = π) and there are an additional n past firing times in the interval (−τ, 0) (here n

may be zero); in other words, there are n+ 1 spikes in the delay interval (−τ, 0]. Assume that the
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past firing times are evenly spaced with time T between them, meaning that T is the period of
oscillation. It follows that

τ

n+ 1
<T <

τ

n
.

The time until the neuron feels the next delta function is τ − nT , which is less than T . Since
θ(0) = π we have from (2.3) that

θ(τ − nT ) = 2 tan−1 [−Im coth [Im(τ − nT )]].

The delta function moves θ to the new value:

θ(τ − nT+) = 2 tan−1
[
tan

(
θ(τ − nT−)

2

)
+ κ

]
. (2.4)

Assuming that tan [θ(τ − nT+)/2]> Im, i.e. we are above the upper fixed point, the phase θ

continues to increase and the neuron fires after a further time ∆. Again using (2.3), this happens
when

π= 2 tan−1

−Im coth

Im∆− coth−1

 tan ( θ(τ−nT+)
2 )

Im

,
or, equivalently, when

Im∆− coth−1

 tan ( θ(τ−nT+)
2 )

Im

= 0. (2.5)

Substituting (2.4) into (2.5) we get

∆=
1

Im
coth−1 [κ/Im − coth [Im(τ − nT )]] .

We know that the amount of time the neuron waits before the delta function acts, (τ − nT ) plus
∆, has to equal T , i.e. ∆+ τ − nT = T . Thus we have ∆= (n+ 1)T − τ and finally

(n+ 1)T = τ +
1

Im
coth−1

[
κ

Im
− coth [Im(τ − nT )]

]
. (2.6)

Recall that this expression is valid only for τ
n+1 <T < τ

n . For n= 0 (2.6) gives the period T

explicitly in terms of the other parameters. The periodic solutions shown in Fig. 1 with one up to
three equidistant spikes per delay interval of length τ = 20 in panels (a), (b) and (c) correspond to
n= 0, 1 and 2, respectively.

Note from (2.6) that we can rescale parameters to scale one of Im, κ and τ to 1. From now
on we set Im = 1 and we investigate the effect of varying τ and κ, the control parameters of the
feedback term. For convenience we rewrite (2.6) as

coth [(n+ 1)T − τ ] = κ+ coth [nT − τ ]. (2.7)

Since nT − τ < 0, we have coth [nT − τ ]<−1, and since (n+ 1)T − τ > 0, we have
coth [(n+ 1)T − τ ]> 1. Thus in order to satisfy (2.7) we must have κ> 2. Another way to see
this is that V has the values ±1 at the equilibria, and κ must be larger than the “gap” between
them, which is of size 2.

(b) Stability of periodic solutions for negative current
We now consider the stability of solutions satisfying (2.7). As above, assume that the neuron has
just fired at time t0 and there are n past firing times t−1 down to t−n in (t0 − τ, t0). We wait a
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time τ − (t0 − t−n) until the delta function acts, which maps θ from

θ(τ − t0 + t−−n) =−2 tan−1 [coth (τ − t0 + t−n)]

to

θ(τ − t0 + t+−n) = 2 tan−1

[
tan

(
θ(τ − t0 + t−−n)

2

)
+ κ

]
.

We then wait a time ∆ until the neuron fires at time t1, where

∆− coth−1

[
tan

(
θ(τ − t0 + t+−n)

2

)]
= 0.

Thus

t1 = t0 + (τ − t0 + t−n) +∆= τ + t−n + coth−1 [κ− coth (τ − t0 + t−n)] .

This gives t1 in terms of previous firing times, but the calculation is general. Hence, we have

ti = τ + ti−n−1 + coth−1 [κ− coth (τ − ti−1 + ti−n−1)] , (2.8)

that is, a map giving ti in terms of previous firing times, which we write as
F (ti, ti−1, . . . , ti−n−1) = 0. Note that assuming ti = iT we recover (2.7).

To calculate stability we perturb ti to ti + ηi about a periodic solution. To first order we have

∂F

∂ti
ηi +

∂F

∂ti−1
ηi−1 + · · ·+ ∂F

∂ti−n−1
ηi−n−1 = 0,

which we write as
a1,i
a2,i
a3,i

...
an+1,i

=


0 1 0 0 · · · 0

0 0 1 0 · · · 0
...

...
...

...
...

...
0 0 · · · · · · 0 1

Fn+1 Fn · · · · · · F2 F1




a1,i−1

a2,i−1

a3,i−1

...
an+1,i−1

 (2.9)

where

Fk =−
∂F/∂ti−k

∂F/∂ti
.

Equation (2.9) is of the form ai = Jai−1 where ai ∈Rn+1, so the growth or decay of its solutions
(and thus the (in)stability of the periodic solution) is determined by the magnitude of the
eigenvalues of the matrix J; note that here the ak,i = ηi+k−n−1.

Differentiating (2.8) we find that ∂F/∂ti =−1, Fk = 0 for 2≤ k≤ n, and Fn+1 = 1− F1. Now

F1 =
∂F

∂ti−1
=

1− coth2 (τ + ti−n−1 − ti−1)

1− [κ− coth (τ + ti−n−1 − ti−1)]2
.

For a periodic solution ti−1 − ti−n−1 = nT , so we can express F1 in term of T and the n. Since this
quantity determines the stability of periodic solutions, we denote it γ from now on for notational
convenience, given as

γ = F1 =
coth2 (τ − nT )− 1

[κ− coth (τ − nT )]2 − 1
. (2.10)

We see that γ is always positive: the numerator is clearly positive, and from (2.7) we have that
κ+ coth (nT − τ) = κ− coth (τ − nT )> 1, so the denominator is also positive. The parameter γ
is a function of the other parameters in the model: the feedback parameters κ and τ , the integer n
which specifies the form of the solution we consider (with n+ 1 equidistant spikes), and also the
period T which, in turn, is determined by the values of κ, τ and n.
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The matrix J of Eq. (2.9) is thus

J=


0 1 0 0 · · · 0

0 0 1 0 · · · 0
...

...
...

...
...

...
0 0 · · · · · · 0 1

1− γ 0 · · · · · · 0 γ

 . (2.11)

To find out more about the eigenvalues of J we consider the determinant of J− λI, which can be
expanded down the first column to obtain

|J− λI|= (−λ)n+1 + γ(−λ)n + (γ − 1)(−1)n+1.

For even n we have |J− λI|=−λn+1 + γλn + 1− γ, and for odd n we have |J− λI|= λn+1 −
γλn − 1 + γ. In both cases the condition |J− λI|= 0 can be written as g(λ) = 0 where

g(λ) = λn+1 − γλn − 1 + γ. (2.12)

It is the roots of this polynomial that determine the stability of a periodic solution.
We see from (2.12) that λ= 1 is always a root of g, reflecting the invariance with respect to

uniform time translation of the original system. In particular, g(λ) = (λ− 1)h(λ) where

h(λ) = λn + (1− γ)λn−1 + (1− γ)λn−2 + · · ·+ (1− γ)λ+ 1− γ

= λn + (1− γ)

n−1∑
i=0

λi

= λn + (1− γ)
1− λn

1− λ
(2.13)

Note that h(λ)≡ 1 for n= 0. The properties of the roots of h(λ) were studied in [24]; see also [18,
25]. These authors studied a phase oscillator with delayed pulsatile self-feedback but in a model
for which, in the absence of feedback, dθ/dt= 1. Their results are not equivalent to ours since in
the absence of feedback our model approaches a fixed point. We now collect some useful results.

Proposition 1 (Properties of the eigenvalues at a periodic solution).
(i) If γ = 0 the roots of g(λ) are the (n+ 1)st roots of unity, which all have magnitude 1.

(ii) When γ = 1 we have g(λ) = λn(λ− 1), i.e. the eigenvalues of J are 1 and 0 (with multiplicity
n); such an orbit is called superstable because, to linear order, any perturbations to the firing times
decay to zero in one iteration.

(iii) Since 0< γ the periodic orbits never undergo Neimark-Sacker bifurcations; this is unlike the orbits
in [18,24,25]. Neither do they undergo period-doubling bifurcations.

(iv) A root of g(λ) leaves the unit circle transversely as γ increases through (n+ 1)/n.
(v) For 0< γ < (n+ 1)/n all eigenvalues have magnitude less than one and the only instability of a

periodic orbit occurs when h(1) = 0, i.e. when γ = (n+ 1)/n (with n> 0).
(vi) dT/dτ = 0 at the point of superstability (where γ = 1).

Proofs of statements:
(i) If γ = 0 then g(λ) = λn+1 − 1 and the result follows.

(ii) Substituting γ = 1 into (2.12) shows that 0 is an eigenvalue with multiplicity n, which
means that the orbit is indeed superstable.

(iii) Substituting λ= eiϕ into (2.12) and setting g(λ) equal to zero gives

ei(n+1)ϕ + γ − 1 = γeinϕ. (2.14)

Taking absolute values gives |ei(n+1)ϕ + γ − 1|= |γ|. For γ ̸= 1 this gives ei(n+1)ϕ = 1,
i.e. ϕ= 2πk/(n+ 1) for some k ∈Z. Substituting this into (2.14) we get γ = γe2πikn/(n+1),
and if γ ̸= 0 then we must have k= (n+ 1)q for some q ∈Z, i.e. ϕ is a multiple of 2π and
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λ= 1. So if γ ̸∈ {0, 1} then λ= 1 is the only root of g with magnitude 1. The case γ = 0 is
ruled out and the case γ = 1 is covered by (ii).

(iv) Differentiating g(λ) = 0 with respect to γ we have

(n+ 1)λn dλ
dγ −

(
λn + γnλn−1 dλ

dγ

)
+ 1= 0

⇒ dλ
dγ = λn−1

λn−1[λ(n+1)−γn]
. (2.15)

Now if γ ̸= (n+ 1)/n (i.e. away from this instability), we have dλ
dγ |λ=1 = 0, reflecting that

the root λ= 1 of g is always present. However, if γ = (n+ 1)/n we have

dλ

dγ
=

λn − 1

(n+ 1)(λn − λn−1)
,

which is undefined at λ= 1. With L’Hopital’s rule we have

lim
λ→1

dλ

dγ
= lim

λ→1

nλn−1

(n+ 1)[nλn−1 − (n− 1)λn−2]
=

n

n+ 1
> 0.

This is the speed at which the root leaves the unit circle.
(v) The only instability occurs when h(1) = 0, i.e. when γ = (n+ 1)/n. When γ = 1 the orbit

is stable, so it must be stable for 0< γ < (n+ 1)/n.
(vi) For superstability we have γ = 1, which (from the definition of γ in (2.10)) implies that

κ= 2 coth (τ − nT ). (2.16)

The equation for the existence of a periodic orbit is (2.7), and differentiating it with respect
to τ we get

csch2[(n+ 1)T − τ ]

(
(n+ 1)

dT

dτ
− 1

)
= csch2(nT − τ)

(
n
dT

dτ
− 1

)
. (2.17)

By using the identity csch2x= coth2 x− 1 and substituting (2.7) into (2.17), then
using (2.16), we obtain the result.
These superstable points on branches of solutions corresponding to different values of n
all occur at the same value of T . To see this note from (2.16) that τ − nT = coth−1 (κ/2).
Using the oddness of coth and substituting this into (2.7) we get

coth [T − coth−1 (κ/2)] = κ/2 (2.18)

and, hence, T = 2 coth−1 (κ/2), which is independent of n.

In summary, if γ varies monotonically along a branch of solutions (which we find to always
occur), the solution is stable when 0< γ < 1 and superstable when γ = 1. Moreover, it becomes
unstable as γ increases through (n+ 1)/n, where an eigenvalue increases through 1; generically,
this is a saddle-node bifurcation. Note that γ is a compound quantity that allows us to formulate
the stability results in Proposition 1 in a convenient way. The translation back to relevant
parameters is given by (2.10), which shows how γ depends on the strength κ and the delay τ of
the feedback for a periodic orbit with n+ 1 equally spaced pulses in the delay interval. We remark
that this dependence is not intuitive, especially since the period T in (2.10) is itself determined by
κ, τ and n.

Figure 2 illustrates Proposition 1 by showing the typical behaviour of the roots of the function
g(λ) in the complex plane as the parameter γ is varied; specifically, for the case n= 4 of a periodic
solution with five spikes in the delay interval (−τ, 0]. The value of γ is represented by color in
Fig. 2 and panel (a) shows the roots for 0< γ < 1. For γ = 0 the roots of g(λ) are the fifth roots of
unity. As γ increases, the four roots of the factor h(λ) decrease in magnitude and their arguments
tend to those of the fourth roots of −1, that is, to π/4, 3π/4, 5π/4 and 7π/4; at γ = 1 there is
a quadruple root 0 of h and of g and the periodic orbit is superstable. This behavior can be
understood by considering the function h(λ). Since |λ| → 0 as γ → 1, we can approximate h(λ)
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Figure 2. Roots in the complex plane (with the unit circle shown) of the function g(λ) from (2.12) for n= 4 as its

parameter γ (represented by the colour bar) is varied for 0≤ γ < 1 (a) and for 1< γ ≤ 2 (b).

by λn + 1− γ, showing that its roots λ tend to the nth roots of γ − 1, which is negative here.
Figure 2(b) shows the behaviour of the roots of g(λ) as γ is increased from 1 in the interval
1< γ ≤ 2. The four roots of h(λ) leave the origin with arguments close to those of the fourth
roots of +1, i.e. 0, π/2, π and 3π/2. This can also be understood with the argument above, since
now γ − 1 is positive. Moreover, we see that one real multiplier leaves the unit circle through 1

as γ increases through (n+ 1)/n= 5/4. Note that the trivial root 1 of g(λ) remains unchanged
throughout in Fig. 2.

(c) Branches of periodic solutions for negative current
Figure 3 shows solution branches of Eq. (1.1) with κ= 5 (and Im = 1) for different values of n
as indicated. Each branch represents a periodic solution with n+ 1 spikes in the delay interval,
represented by its period T as a function of τ , with stability indicated as determined in the
previous section. The single-spike solution for n= 0 is stable throughout. Branches for n≥ 1

emerge in pairs, one stable and one unstable, at saddle-node bifurcations as τ is increased; the
different stable solutions coexist, leading to an increasing level of multistability. Similar figures
for other excitable systems with delayed feedback appear in [13,26,27].

The solution branch for n= 0 is special: it is always stable (when it exists) and the period
approaches infinity as τ is decreased sufficiently. This corresponds to a homoclinic bifurcation
to the unstable fixed point θ= 2 tan−1 (1) at a finite value τ∗. To understand this, imagine that
θ(0) = π on this homoclinic orbit. Under backwards time, θ(t) will approach 2 tan−1 (1) as t→
−∞. In forwards time, at time t= τ∗ the impulse from the delayed feedback will precisely make
the neuron jump to θ= 2 tan−1 (1), where it will then stay forever. This condition is described by

1 = tan

(
θ(τ−)

2

)
+ κ (2.19)

where θ(τ−) =−2 tan−1 [coth (τ)], that is, by

1 = κ− coth (τ) (2.20)
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Figure 3. Branches of periodic solutions for n= 0, 1, 2, 3, 4 (see legend) of (1.1) with negative current I , shown by their

period T as a function of the delay τ . Periodic solutions are stable along solid curves, unstable along dashed curves, and

superstable at the minima of T ; stars indicate saddle-node bifurcations. Here, I =−I2m =−1 and κ= 5.

For κ= 5 we obtain the solution τ∗ = coth−1 (κ− 1)≈ 0.25541, which is the position of the
vertical asymptote in Fig. 3. The minimum in T of this curve for n= 0 occurs at (τ, T ) =

(T/2, T )≈ (0.42365, 0.8473), where T = 2 coth−1 (κ/2) is the minimum period.
To determine the branches for n≥ 1 it is not necessary to solve (2.7) for additional values of

n. Instead, they can be found and plotted by using the reappearance of periodic solutions of
DDEs with fixed delay [27], which implies that the branches in Fig. 3 are images of one another
under a similarity transformation. Suppose that a DDE (with fixed delay) has a periodic solution
with period T0 for a time delay τ = τ0. This same periodic solution is then also a solution for
delay τ = τ0 +mT0 where m is an integer. Thus, a particular branch of periodic solutions of (1.1)
reappears at higher (and lower) values of the delay.

We can express all of these branches parametrically. The branch for n= 0, for which τ < T (τ),
is referred to as the primary branch. It is given explicitly as a function of τ by

T (τ) = τ + coth−1 (κ− coth τ). (2.21)

The branches for n≥ 1 are referred to as secondary branches. Letting s be a parameter, where
coth−1 (κ− 1)< s<∞, the nth branch is of the form

(τ, T ) = (s+ nT (s), T (s)). (2.22)

The reappearance of periodic solutions can also be seen explicitly from (2.7). Suppose for some n

and τ = τ0 there is a periodic solution with period T0, i.e.

coth [(n+ 1)T0 − τ0] = κ+ coth (nT0 − τ0).

Then it follows that

coth [(n+m+ 1)T0 − (τ0 +mT0)] = κ+ coth [(n+m)T0 − (τ0 +mT0)],

where m is any integer; hence, there is also a solution of period T0 at delay τ = τ0 +mT0 with
n+m past firing times in the interval (−τ, 0). This reappearance also explains why all superstable
points occur at the same value T of T , as described in Sec. (b): they are the images of the
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Figure 4. The Floquet multipliers of the different stable periodic solutions with n= 0, 1, 2, 3, 4 (see legend) for τ = 4 in

Fig. 3, as computed from (2.12). Here, I =−I2m =−1 and κ= 5. Compare with Fig. 2.

minimum at (τ, T ) = (T/2, T ) on the primary branch. It follows that the minimum on the n= 1

branch is at (τ, T ) = (3T/2, T ), on the n= 2 branch at (τ, T ) = (5T/2, T ), and on the nth branch
at (τ, T ) = ((2n+ 1)T/2, T ). Thus, we conclude that the minimum on the nth branch occurs at its
(nontransverse) intersection point with the line T = 2τ/(2n+ 1).

We conclude this section by considering the properties of the different stable periodic solutions
in the region of multistability. Figure 4 shows the sets of Floquet multipliers for the stable
solutions given by (2.7) with n= 0, 1, 2, 3, 4 at τ = 4 in Fig. 3. As discussed in Sec. (b), these
multipliers are roots of the polynomial g(λ) from (2.12) and can, thus, easily be found numerically
for any value of γ (see (2.10)) which in turn depends on κ and τ . For solutions such as those
in Fig. 3, the parameter γ tends to zero from above as one moves along a stable branch away
from the saddle-node bifurcation where it is created. According to Proposition 1(i), the respective
Floquet multipliers approach the unit circle from within as γ → 0, namely at roots of unity; see
also Fig. 2. This explains why the multipliers for smaller n are closer to the unit circle, which
is certainly the case for n= 0, 1, 2, 3 in Fig. 4, meaning that the stability of the corresponding
periodic solutions is already quite weak. This analytical result for the theta neuron (1.1) with
Dirac delta function is in agreement with, and may serve as an explanation for, the observation in
other contexts [10,28] of only weakly stable solutions with n spikes or pulses in the delay interval,
whose Floquet multipliers are near roots of unity.

(d) Bifurcation curves in the (τ, κ)-plane for negative current
The bifurcation of the branches in Fig. 3 can be continued in the additional parameter κ.
Figure 5 shows in the (τ, κ)-plane the curves of homoclinic bifurcation on the primary branch,
given by (2.20), and of saddle-node bifurcations on the secondary branches for n= 1, 2, 3, 4, 5, 6.
Generally, such loci of bifurcations need to be continued numerically with standard numerical
algorithms [29–31]; see also Sec. 4. However, for the theta neuron with delta feedback (1.1) they
can actually be found analytically. Writing the value of τ on the nth branch as τn = τ0 + nT (τ0)

where τ0 is the value of τ on the primary branch, a saddle-node bifurcation occurs when
dτn/dτ0 = 0 [26], i.e. when 0 = 1 + nT ′(τ0), or T ′(τ0) =−1/n. Differentiating (2.21) we have

T ′(τ0) = 1 +
coth2 τ0 − 1

1− (κ− coth τ0)2
.

Setting this T ′(τ0) =−1/n and then solving the resulting quadratic equation for coth τ0 we obtain

coth
(
τ
(n)
0

)
= κ(1 + n)−

√
1 + κ2(n2 + n), (2.23)
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Figure 5. Bifurcation curves in the (τ, κ)-plane for n= 0, 1, 2, 3, 4, 5, 6 (see legend) of (1.1) with negative current I ;

compare with Fig. 3. The curve for n= 0 (black) is the locus of homoclinic bifurcation of the primary branch; no periodic

solutions exist below and to the left of this curve. The curves for n= 1, 2, 3, 4, 5, 6 are the saddle-node bifurcations of

the secondary branches. Here, I =−I2m =−1.

0.35 0.4 0.45
0.84

0.85

0.86

0.87

0.88

0.89

0.9

p
e
ri
o
d
, 
T

(τ
(1)
0 , T (1))

(τ
(2)
0 , T (2))

(T/2, T )
◦

Figure 6. The points (τ
(n)
0 , T (n)) (red crosses) on the primary branch of periodic solutions (blue curve) converge to its

minimum at (τ, T ) = (T/2, T ); these points map to the points of saddle-node bifurcation on the nth branch at (τ (n)
0 +

nT (n), T (n)); compare with Fig. 3. Here, I =−I2m =−1 and κ= 5.

where we have taken the physically meaningful of the two possible solutions. Substituting (2.23)
into (2.21) we obtain the value of T at which the saddle-node bifurcation on the nth branch occurs
as

T (n) = coth−1
[
κ(1 + n)−

√
1 + κ2(n2 + n)

]
+ coth−1

[√
1 + κ2(n2 + n)− κn

]
. (2.24)



13

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

In Fig. 6 the first 100 of the points T (n) for κ= 5 in (2.24) are plotted on the primary branch.
This illustrates that T (n) converges to the value T at the minimum of the primary branch. Indeed,

lim
n→∞

κ(1 + n)−
√

1 + κ2(n2 + n) = κ/2

and
lim

n→∞
T (n) = 2 coth−1 (κ/2) = T .

The value of τ at which the saddle-node bifurcation of the nth branch occurs is τ (n) = τ
(n)
0 +

nT (n); this expression depends on κ and the curves in Fig. 5 were obtained by plotting τ (n) as a
function of κ for various n s indicated.

3. Oscillating theta neuron for positive current
We now consider (1.1) with a positive current I = I2p > 0, which means that the uncoupled theta
neuron is producing regular spikes. We first consider the existence and stability of periodic orbits
in the presence of delayed self-coupling. Subsequently, we consider the associated branches of
periodic solutions and their bifurcations for the two sub-cases of excitatory self-coupling for
κ> 0, and of inhibitory self-coupling for κ< 0 — showing that they are related by an explicit
transformation.

(a) Existence of periodic solutions for positive current
Our starting point here is again the solution of (1.2) with κ= 0, which for with I = I2p > 0 is

V (t) = Ip tan [Ipt+ tan−1 (V (0)/Ip)].

With the transformation V = tan (θ/2) we have

θ(t) = 2 tan−1

[
Ip tan

(
Ipt+ tan−1

(
tan (

θ(0)
2 )

Ip

))]
. (3.1)

To find periodic solutions for κ ̸= 0 we assume, as before, that the neuron fires at t= 0 and there
are n past firing times in (−τ, 0). The delta function acts at time τ − nT , at which point

θ(τ − nT−) = 2 tan−1
[
Ip tan

(
Ip(τ − nT ) +

π

2

)]
.

The delta function acts to move the phase to θ(τ − nT+) where

tan

(
θ(τ − nT+)

2

)
= tan

(
θ(τ − nT−)

2

)
+ κ= Ip tan

[
Ip(τ − nT ) +

π

2

]
+ κ.

The neuron fires (i.e. θ reaches π) after another time ∆ where (using (3.1))

π= 2 tan−1

Ip tan
Ip∆+ tan−1

 tan (
θ(τ−nT+)

2 )

Ip

 ,

i.e. when

Ip∆+ tan−1

 tan ( θ(τ−nT+)
2 )

Ip

=
π

2
,

which gives

∆=
1

Ip

[π
2
− tan−1

[
κ/Ip + tan

(
Ip(τ − nT ) +

π

2

)]]
.

Since τ − nT +∆= T we have

(n+ 1)T = τ +
1

Ip

[π
2
− tan−1

[
κ/Ip + tan

(
Ip(τ − nT ) +

π

2

)]]
. (3.2)
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As before, we can rescale either Ip, κ or τ to be 1, so set Ip = 1 and rewrite (3.2) as

(n+ 1)T = τ +
π

2
− tan−1

[
κ+ tan

(
τ − nT +

π

2

)]
. (3.3)

This is the equation relating the period T to the other parameters τ and κ, for a given integer n.
As above, for n= 0 expression (3.3) gives T explicitly as

T (τ) = τ +
π

2
− tan−1

[
κ+ tan

(
τ +

π

2

)]
= τ +

π

2
− tan−1 [κ− cot τ ], (3.4)

which is valid for 0≤ τ ≤ π. Note that, when I = Ip = 1, dθ/dt= 2 except at the times at which
the feedback acts, which simplifies the derivations below.

(b) Stability of periodic solutions for positive current
Determining the stability for I = I2p > 0 is also similar to the excitable case. Assume again that the
neuron has just fired at time t0 and there are n past firing times in (−τ, 0). We wait τ − (t0 − t−n)

until the delta function acts, which maps θ from

θ(τ − t0 + t−−n) = π + 2(τ − t0 + t−n)

to

θ(τ − t0 + t+−n) = 2 tan−1

[
tan

(
θ(τ − t0 + t−−n)

2

)
+ κ

]
.

We then wait a time ∆ until the neuron fires at time t1, where

π= 2∆+ θ(τ − t0 + t+−n).

Thus

t1 = t0 + (τ − t0 + t−n) +∆= τ + t−n +
π

2
− tan−1

[
tan

(
τ − t0 + t−n +

π

2

)
+ κ
]

and, in general,

ti = τ + ti−n−1 +
π

2
− tan−1

[
tan

(
τ − ti−1 + ti−n−1 +

π

2

)
+ κ
]
.

This is a map giving the next firing time, ti, in terms of the previous ones, back to ti−n−1.
Perturbing the firing times defined by this equation as in Sec. 2(b), we obtain the same matrix
J as in (2.11). However, now for a periodic orbit with period T we have

γ =
sec2 (τ − nT + π

2 )

1 +
[
tan (τ − nT + π

2 ) + κ
]2 =

csc2 (τ − nT )

1 + [κ− cot (τ − nT )]2
, (3.5)

which is clearly positive for any value of κ.

(c) Branches of periodic orbits for positive current
As in Sec. 2(c), the primary branch of periodic solutions is given by (3.4) and the secondary
branches are given parametrically by (2.22). To plot and discuss these branches we need to
distinguish the sub-cases κ> 0 of excitatory and κ< 0 of inhibitory self-coupling.

(i) The case of excitatory delayed self-coupling

Figure 7 shows the branches of periodic solutions for n= 0, 1, 2, 3, 4, 5 with I = I2p = 1 and κ= 2

so that the self-coupling is excitatory. Notice that all branches now connect to form a single curve
of periodic solutions; similar plots appear in [27,32]. However, different parts of this curve still
correspond to different values of n, as is indicated by colour. The primary branch for n= 0 is
again given by a function T (τ) and it has a finite period throughout for positive current I ; that
is, there is no longer a homoclinic bifurcation. More specifically, the maximum period now occurs
at τ = 0 and is equal to that of an uncoupled oscillator; this is the case since at firing, θ= π and
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Figure 7. Branches of periodic solutions for n= 0, 1, 2, 3, 4, 5 of (1.1) with positive current I and positive κ, showing

their period T as a function of the delay τ . Periodic solutions are stable along solid curves, unstable along dashed curves,

and superstable at the minima of T and at the maxima of T with τ > 0; stars indicate saddle-node bifurcations. Here,

I = I2p = 1 and κ= 2.

in (1.1) the term 1 + cos θ is equal to zero, so the feedback can have no effect. The period of this
free oscillation is π/Ip = π. For the chosen value of κ the primary branch is entirely stable. On the
other hand, all secondary branches have two saddle-node bifurcations on them, with an unstable
middle sub-branch. Notice also that the secondary branches are increasingly tilted to the right as
n increases, leading again to an increasing level of multistability with increasing τ .

A periodic orbit is superstable when dT/dτ = 0, and this again occurs at the minima of the
period but now also at the maximum period (with τ > 0) where neighbouring branches meet.
Differentiating (3.4) with respect to τ , setting this to zero, and substituting the expression for
τ back into (3.4), we find that the minimum period on the primary branch occurs at (τ, T ) =

(T/2, T ) where now T = 2 cot−1(κ/2); the minima of the secondary branches are therefore at
(τ, T ) = ((n+ 1/2)T , T ). (For this value of κ we have T = π/2.) The primary branch exists for
0≤ τ ≤ π, so the transitions between branches occur when τ is a multiple of π; these are also the
locations of the maxima where the periodic orbit is also superstable.

(ii) The case of inhibitory delayed self-coupling

Figure 8 shows the shows the branches of periodic solutions for n= 0, 1, 2, 3, 4, 5 with I = I2p =

1 and an inhibitory self-coupling with κ=−2. At τ = 0 the period is again π but this is now
the minimum period possible; this makes sense since inhibitory feedback can only increase the
period. The primary branch is again entirely stable, while the secondary branches each have two
points of saddle-node bifurcation that delimit a sub-branch where the periodic orbit is unstable.

The branches in Fig. 8 have been plotted by evaluating (3.4) and (2.22) for κ< 0. However,
they can also be obtained directly from those in Figs. 7 via the following interesting geometric
relationship between the branches of periodic solutions for κ> 0 and for κ< 0.

Proposition 2 (Transformation between excitatory and inhibitory cases).
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Figure 8. Branches of periodic solutions for n= 0, 1, 2, 3, 4, 5 of (1.1) with positive current I and negative κ, showing

their period T as a function of the delay τ . Periodic solutions are stable along solid curves, unstable along dashed curves,

and superstable at the minima of T ; stars indicate saddle-node bifurcations. Here, I = I2p = 1 and κ=−2; compare

with Fig. 7.

For positive current I = 1 and given n≥ 0, the nth branch of periodic orbits of (3.3) for κ=K > 0 maps
to the nth branch for κ=−K < 0 under rotation over π about the point

(τc, Tc) = ((n+ 1/2)π, π) , (3.6)

and vice versa; see Figs. 7 and 8.

Proof: Suppose that (τ, T ) is a point on the nth branch for κ=K > 0, i.e. (τ, T ) satisfies

(n+ 1)T = τ +
π

2
− tan−1

[
K + tan

(
τ − nT +

π

2

)]
. (3.7)

Rotating this point through π radians about the center of rotation (τc, Tc) from (3.6) gives the new
point

(τ̂ , T̂ ) = (2(n+ 1/2)π − τ, 2π − T ).

Solving for τ and T and substituting back into (3.7), we see that (τ̂ , T̂ ) satisfies

(n+ 1)T̂ = τ̂ +
π

2
− tan−1

[
−K + tan

(
τ̂ − nT̂ +

π

2

)]
,

which is exactly of the form (3.7) but now for κ=−K.

It follows immediately from Proposition 2 that the minima in Fig. 8 all occur at T = π when
τ is a multiple of π; similarly, the maximum on the nth branch is at (τ, T ) = ((n+ 1/2)(2π +

T )/2, 2π + T ); recall here that T = 2 cot−1(κ/2) and that κ is now negative.

(d) Bifurcation curves in the (τ, κ)-plane for positive current
To find the saddle-node bifurcations on the nth branch for I = I2p > 0 we follow the analysis in
Sec. 2(c) of letting τ0 be the value of τ on the primary branch and solving T ′(τ0) =−1/n, where
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Figure 9. Curves of saddle-node bifurcations of periodic orbits in the (τ, κ)-plane for n= 1, 2, 3, 4, 5 (see legend)

of (1.1) with positive current I = I2p = 1. The curves with κ> 0 are for excitatory self-feedback, and those with κ< 0

are for inhibitory self-feedback. Compare with Figs. 7 and 8, respectively, which correspond to horizontal slices through

this figure at κ= 2 and κ=−2.

T (τ) is given by (3.4). This now gives (generically) two values of τ0 for each n, given by

τ
(n)
0,± = cot−1

[
κ(n+ 1)±

√
κ2(n2 + n)− 1

]
. (3.8)

Substituting these into (3.4) gives the corresponding T -values

T
(n)
± = cot−1

[
κ(n+ 1)±

√
κ2(n2 + n)− 1

]
+

π

2
− tan−1

[
∓
√

κ2(n2 + n)− 1− κn

]
. (3.9)

We now consider first the case that κ is positive. Then the upper sign corresponds to the saddle-
node bifurcation with the larger period and the lower sign to that with the smaller period; see
Fig. 7. The saddle-node bifurcations with T

(n)
± occur at

τ = τ
(n)
0,± + nT

(n)
± . (3.10)

Note that for the values of τ
(n)
0,± to be real we must have κ2(n2 + n)> 1. So for a fixed κ only

branches with √
1 + 4/κ2 − 1

2
<n (3.11)

have saddle-node bifurcations on them. For κ= 2, as in Fig. 7, this is satisfied for all n≥ 1, which
means that all secondary branches have a pair of saddle-node bifurcations on them. (The same is
true for Fig. 8.)

Equation (3.10) (via (3.9)) provides, for each choice of the sign, the value of τ at the respective
saddle-node bifurcation of the nth branch as an explicit function of κ. For each n satisfying (3.11)
there are two curves in the (τ, κ)-plane and they coincide at cusp points when κ2(n2 + n) = 1,
that is, at

(τ, κ) =

[
(n+ 1) cot−1

(√
n+ 1

n

)
+

nπ

2
+ n tan−1

(√
n

n+ 1

)
,

1√
n2 + n

]
. (3.12)

Figure 9 shows the curves of saddle-node bifurcations for n= 1, 2, 3, 4, 5 of periodic orbits
of (3.3) with I = I2p = 1. Note that a single stable periodic orbit exists when τ = 0; compare with
Figs. 7 and 8. Hence, the saddle-node bifurcations create or destroy other periodic orbits, leading
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Figure 10. The pulsatile function P (θ) given in (4.2) as used in the theta neuron with smooth self-feedback (4.1).

to the possibility of multistability. The case of excitatory self-feedback is shown in the upper half
of the (τ, κ)-plane where κ> 0. Notice that the respective cusp points, where the two curves
defined by (3.10) come together, are minima here. Figure 9 also shows the curves of saddle-node
bifurcations for n= 1, 2, 3, 4, 5 for the case of inhibitory coupling, namely in the lower half of the
(τ, κ)-plane where κ< 0. These curves can be obtained from Eq. (3.10) (via (3.9)), now for negative
κ. However, Proposition 2 implies a transformation also of the loci of saddle-node bifurcations on
the nth branch of periodic solutions when the sign of κ is changed. Specifically, these two loci are
each other’s images under rotation by π about the point

(τc, κc) = ((n+ 1/2)π, 0) . (3.13)

It follows that the cusp points for negative κ are at

(τ, κ) =

[(
1 +

3n

2

)
π − (n+ 1) cot−1

(√
n+ 1

n

)
− n tan−1

(√
n

n+ 1

)
,

−1√
n2 + n

]
. (3.14)

4. Theta neuron with smooth self-feedback
We now consider the model of a theta neuron with smooth feedback given by

dθ

dt
= 1− cos θ + (1 + cos θ) [I + κP (θ(t− τ))] (4.1)

where τ is the delay and
P (θ) = (8/63)(1− cos θ)5 (4.2)

is a pulsatile function centred at θ= π; here the factor 8/63 is a normalisation ensuring that∫2π
0 P (θ)dθ= 2π.

The function P (θ) is shown in Fig. 10. Its pulse is quite broad, certainly compared to the Dirac
delta function that models the instantaneous delay in system (1.1). Such forms of smooth coupling
have been considered elsewhere [33–35], although in infinite networks and without delays. In
contrast, the mathematically similar Kuramoto model of coupled phase ocillators with delayed
coupling has been well-studied [36–38].

We study here the theta neuron with smooth feedback (4.1)–(4.2), or smooth theta neuron for
short, to investigate the validity of the results we found for the case of instantaneous feedback in
system (1.1). A significant difference between these two systems is that P is a function of θ, not of
time. So if θ increases through π with a speed bounded away from zero, the function P (θ(t)) will
be pulse-like in time with a maximum at the time at which θ= π. However, if θ decreases through
π (as a result of inhibitory coupling, for example) the neuron will then emit a spurious pulse.

The smooth theta neuron (4.1)–(4.2) is a delay differential equation (DDE) with a single fixed
delay. As such, it is an infinite-dimensional dynamical system whose equilibria and periodic
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Figure 11. Coexisting stable periodic solutions of Eqs. (4.1)–(4.2) for I =−1, κ= 2 and τ = 4. Note that when θ

reaches π from below it is reset to −π. Compare with Fig. 1.

orbits must be expected to undergo standard bifurcations; see, for example, [39–42]. Periodic
solutions of DDEs such as (4.1)–(4.2) are not known analytically but must be found with numerical
methods [43,44]. To find (stable) periodic solutions we numerically integrate Eq. (4.1)–(4.2) with
Matlab’s dde23 integration routine. We then continue such periodic solutions in a parameter
with the software DDE-BIFTOOL [31]. This allows us to compute branches of periodic solutions,
regardless of whether they are stable or not, to identify their bifurcations, and to continue the
respective bifurcation curves in a two-dimensional parameter space.

(a) Excitable smooth theta neuron
We again first consider the case of an excitable smooth theta neuron with I < 0, which means that
we must have κ> 0 in (4.2) to obtain self-sustained solutions. Figure 11 shows typical coexisting
stable periodic solutions of the smooth theta neuron (4.1)–(4.2). Comparison with those in Fig. 1
reveals that they have similar shapes, with 1, 2 and 3 spikes per delay interval, respectively.
However, the influence of the self-feedback is now smooth, rather than acting instantaneously.
Note, in particular, that each periodic solution is smooth across the discontinuty in θ, that is,
when θ is seen as a point on the unit circle.

Figure 12 shows the first four branches of the periodic solutions obtained by numerical
continuation as τ is varied; observe that for τ = 4 there are indeed three stable solutions as shown
in Fig. 11. The branches of periodic orbits are distinct and, as before, can be indexed in Fig. 12
based on the number of times θ increases through π in one delay period; this corresponds to the
number n of additional spikes per delay interval. We observe qualitatively the same behaviour as
in Fig. 3 for instantaneous self-feedback: the single-spike basic branch for n= 0 is a function over
θ, while for n≥ 1 there is a stable and an unstable branch that meet at a saddle-node bifurcation.
Figure 13 shows the bifurcations for n= 0, 1, 2, 3, 4, 5, 6 as curves in the (τ, κ)-plane, which must
be found by numerical continuation. The primary branch approaches a homoclinic bifurcation,
which was identified, and then continued, as a single-spike orbit of sufficiently large period. This
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Figure 12. Branches of periodic solutions for n= 0, 1, 2, 3 (left to right) of Eqs. (4.1)–(4.2) with negative current I , found

by numerical continuation and shown by their period T as a function of the delay τ . Periodic solutions are stable along

solid curves and unstable along dashed curves; stars indicate saddle-node bifurcations. Here, I =−1 and κ= 2, and

the three stable solutions in Fig. 11 are those at τ = 4. Compare with Fig. 3.
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Figure 13. Bifurcation curves in the (τ, κ)-plane for n= 0, 1, 2, 3, 4, 5, 6 (see legend) of Eqs. (4.1)–(4.2) with negative

current I =−1. The curve for n= 0 (black) is the locus of homoclinic bifurcation of the primary branch; it was found

via the continuation of a periodic orbit of high period. The curves for n= 1, 2, 3, 4, 5, 6 are the saddle-node bifurcations

of the secondary branches; they were found by numerical continuation from the respective saddle-node bifurcations in

Fig. 12. Compare with Fig. 5.

resulted in the curve for n= 0 of Fig. 13, to the left and below of which no periodic solutions
exist. The curves for n= 1, 2, 3, 4, 5, 6 are curves of saddle-node bifurcations, and they have been
continued from the identified points of saddle-node bifurcations on the secondary branches in
Fig. 12. We observe that the bifurcation curves in Fig. 13 are also in perfect qualitative agreement
with the corresponding analytically obtained curves in Fig. 5 for instantaneous self-feedback.

We conclude that system (1.1) with Dirac delta function predicts correctly the observed
behaviour of the smooth DDE model (4.1)–(4.2) for the case that the theta neuron is excitable.
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Figure 14. Periodic solutions of (4.1)-(4.2) with positive current I and positive κ, shown by period T as a function of

the delay τ . This single branch was found by numerical continuation and has been split up at its maxima into segments

associated with additional firing events n= 0, 1, 2, 3, 4, 5. Periodic solutions are stable along solid curves and unstable

along dashed curves; stars indicate saddle-node bifurcations. Here, I = 1 and κ= 1. Compare with Fig. 7.

This is quite remarkable given that the feedback spike P (θ) in (4.2) is of a considerable width and
not close to a Dirac delta function.

(b) Intrinsically oscillating smooth theta neuron
We now consider the smooth theta neuron (4.1)–(4.2) with positive I when, in the absence of
coupling, the neuron fires periodically with period π/

√
I . When κ is positive the self-coupling is

excitatory and numerical continuation started from a stable periodic solution results in the single
branch of periodic solutions shown in Fig. 14. While the periodic solution varies smoothly along
the branch, successive segments of it can still be associated with an increasing number of firings
within a single delay period. We find that the transitions between consecutive numbers of firings
take place at the maxima, and we distinguish the respective segments again by colour in Fig. 14
to represent the associated value of additional spikes n= 0, 1, 2, 3, 4, 5. This highlights the very
good agreement with Fig. 7 for (1.1) with Dirac delta function. Excellent qualitative agreement is
also observed when we continue the saddle-node bifurcations identified in Fig. 14. The resulting
bifurcation curves are shown in Fig. 15 for n= 1, 2, 3, 4, 5, and should be compared with the top
half of Fig. 9.

We finally consider the smooth theta neuron (4.1)–(4.2) with positive I for the case κ< 0 when
the self-coupling is inhibitory. As was expected from the equivalent case of the theta neuron (1.1)
with Dirac delta function in Fig. 8, there is again a single branch of periodic solutions, which
is shown in Fig. 16. More precisely, on this branch one finds orbits with a different number n

of additional spikes (this is not shown by colour here), and these all feature a pair of saddle-
node bifurcations. We remark that the corresponding curves of saddle-node bifurcations in the
(κ, τ)-plane (not reproduced here) are qualitatively as those in the bottom half of Fig. 9. However,
additional points of bifurcation are now also detected during the continuation of the branch in
Fig. 16, specifically, period-doubling and Neimark-Sacker bifurcations. This leads to additional
intervals, between pairs of these two types of bifurcations, where the respective periodic orbit
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Figure 15. Saddle-node bifurcation curves in the (τ, κ)-plane with n= 1, 2, 3, 4, 5 (see legend) of Eqs. (4.1)–(4.2) with

positive current I = 1, found by numerical continuation from the respective saddle-node bifurcations in Fig. 14. Compare

with Fig. 9 for κ> 0.
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Figure 16. Periodic solutions of (4.1)-(4.2) with positive current I and negative κ, shown by period T as a function of the

delay τ . This single branch was found by numerical continuation while detecting saddle-node bifurcations (stars), period-

doubling bifurcations (dots), and Neimark-Sacker bifurcations (triangles); solutions along the branch are stable along blue

segments and unstable along red segments. Here, I = 1 and κ=−1. Compare with Fig. 8.

is unstable. In particular, there are now ranges of τ for which neither the primary orbit nor the
secondary periodic orbit is stable. This opens up the possibility of more complicated periodic
and even chaotic dynamics. This is demonstrated in Fig. 17 with three time series near the first
period-doubling bifurcation at τ ≈ 2.99, showing periodic, period-doubled and chaotic spiking,
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Figure 17. Solutions of (4.1)–(4.2) with I = 1 and κ=−1 for τ = 2.9 (a), τ = 3.05 (b) and τ = 3.3 (c) illustrate period-

doubling to chaotic spiking.

respectively. The statement that the solution in panel (c) is chaotic has been checked by verifying
that it features a positive Lyapunov exponent.

Overall, we find a more diverse picture for the case that the theta neuron is intrinsically
oscillating. For excitatory self-feedback there is still excellent agreement between the theta
neuron (1.1) with Dirac delta function and the smooth theta neuron (4.1)–(4.2). For inhibitory self-
coupling, on the other hand, we still find a single branch with pairs of saddle-node bifurcations as
for system (1.1), but the smooth DDE (4.1)–(4.2) now features additional bifurcations that lead to
more complicated dynamics in certain ranges of the delay τ , including chaotic spiking. It might
be argued that this more complex behaviour results from the somewhat non-physical nature of
the model in this parameter regime of positive current I and negative self-feedback κ, which is
why we do not investigate it further here.

5. Discussion
We have studied the dynamics of a single theta neuron with delayed self-coupling in the form
of a delta function. Because the dynamics can be solved explicitly between times at which the
feedback occurs, we were able to analytically describe periodic orbits and determine their stability
in terms of the roots of a finite-order polynomial. The only possible bifurcations of periodic orbits
are saddle-node bifurcations, and we gave explicit expressions for curves in two-dimensional
parameter space along which they are found. In this way, we provided a complete description of
the types of spiking solutions, where they occur and their stability.

The theta neuron with delayed delta-function self-coupling can be thought of as a “normal
form” of an excitable system subject to delayed self-feedback. By this we mean that the system
is solvable explicitly, while still capturing the essentials of the behaviour of other excitable
systems with non-instantaneous feedback that do not have analytical solutions. Indeed, the kind
of dynamics and bifurcation structures presented here have been found (by means of numerical
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techniques) in different contexts as well [7,13]. To test the predictive power of our results for delta-
function feedback, we investigated a single theta neuron with smooth delayed self-coupling. This
showed that for excitatory feedback the dynamics are qualitatively the same for both types of
intrinsic dynamics (excitable and intrinsically oscillating). In the intrinsically oscillating regime
with inhibitory feedback the basic structure of periodic solutions is still as predicted, but we
found additional, more complex behaviour generated by period-doubling and Neimark-Sacker
bifurcations. These bifurcations have also been found in [28] on branches of periodic spiking in
the context of pulse-timing symmetry breaking in a nanolaser with optical feedback.

We now discuss related work that concerns networks of neurons. Several groups have studied
infinite networks of QIF (or equivalently, theta) neurons with delayed feedback [21,22,45]. Devalle
et al. [21] considered an infinite network of excitable QIF neurons with delayed delta function
coupling. The synchronous state in that network is described by the dynamics of one neuron,
as we study here. These authors considered the case of a single spike in the delay interval and
derived an expression equivalent to (2.20) giving the minimum value of the feedback strength
for which a synchronous periodic solution can exist. They also analysed the stability of such
a solution but obtained different results from us, as there are instabilities in infinite networks
that cannot occur for a single self-coupled neuron. In similar work, Pazó and Montbrió [22]
considered the same network but in the intrinsically firing regime. These authors derived an
expression describing the existence of a synchronous state equivalent to (3.3). They analysed the
stability of such a solution and again obtained different results from us, due to the instabilities
mentioned above. In relation to the occurrence of more complex spiking behaviour dynamics,
chaotic dynamics was found, also in [22], in an intrinsically oscillating infinite network of
identical QIF neurons with delayed inhibitory delta function feedback. However, this chaotic
behaviour required that the neurons are not synchronised, meaning that it is not equivalent to
the dynamics of the single-neuron model we studied here. Chaotic dynamics were also found
in a network of three intrinsically oscillating theta neurons with nondelayed smooth inhibitory
feedback [46], but this is due to the reversibility of the network’s dynamics.

Possible generalisations of our work include the study of two coupled neurons [47] or a ring of
unidirectionally coupled neurons [18]. For more complex networks, the fact that we can explicitly
solve for the dynamics of an uncoupled neuron means that we could efficiently implement
event-based simulations: jumping straight from one firing event to the next without having to
numerically integrate differential equations between them [48]. Such schemes are very efficient
and have been implemented in [49,50], for example. Another possibility is to consider an infinite
network of heterogeneous theta neurons for which the Ott/Antonsen ansatz [33,51] could be used
to derive a single complex delay differential equation for the network’s order parameter, as has
been done for delayed Kuramoto oscillators [38,52].
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