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We consider a pair of coupled heterogeneous phase oscillator networks and investigate their dy-
namics in the continuum limit as the intrinsic frequencies of the oscillators are made more and
more disparate. The Ott/Antonsen ansatz is used to reduce the system to three ordinary differen-
tial equations. We find that most of the interesting dynamics, such as chaotic behaviour, can be
understood by analysing a gluing bifurcation of periodic orbits; these orbits can be thought of as
“breathing chimeras” in the limit of identical oscillators. We also add Gaussian white noise to the
oscillators’ dynamics and derive a pair of coupled Fokker-Planck equations describing the dynamics
in this case. Comparison with simulations of finite networks of oscillators are used to confirm many

of the results.
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The synchronisation of coupled oscillator net-
works is an ongoing topic of interest. Here we
consider a pair of networks of phase oscillators,
with all-to-all coupling both within and between
networks. When the oscillators are identical, the
system is known to support both stationary and
“breathing” chimera states, where one popula-
tion is synchronised while the other is not. We
use the degree of heterogeneity of the oscillators
as a parameter, and by varying it we investigate
the new dynamics induced by this “frozen” dis-
order. We find that for sufficiently high disorder,
the differential equations governing the dynam-
ics of the macroscopic order parameters of the
network show chaotic behaviour. This chaotic be-
haviour is the result of a gluing bifurcation involv-
ing a saddle fixed point in a three-dimensional
phase space. We also consider adding Gaussian
white noise to the oscillator dynamics and show
that this “temporal” disorder can have surprising
effects on the network dynamics.

I. INTRODUCTION

The behaviour of large collections of interacting
“units” has long been of interest [1]. One commonly-
studied example is that of coupled oscillator networks,
where each unit in isolation is capable of oscillating and
the collective dynamics are of interest [2, 3]. The dynam-
ics of a moderate number of non-identical oscillators may
be quite complex [4, 5], but one productive approach for
this type of problem is to take the continuum limit of
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an infinite number of oscillators and derive a dynamical
equation governing the evolution of the probability den-
sity function describing the state of the network [6, 7].
This approach has been particularly successful for net-
works of phase oscillators, where the state of each os-
cillator is described by a single angular variable [8-11].
Of course, the relationship between the behaviour in the
continuum limit and that of a finite network should be
carefully considered [12].

One question of interest in the study of coupled phase
oscillator networks is whether or not chaotic behaviour
can occur in the continuum limit. In finite networks sev-
eral authors have numerically found evidence for chaotic
behaviour [4, 13, 14], but in all cases the most posi-
tive Lyapunov exponent decayed to zero as the size of
the network increased. This question was recently ad-
dressed by So and Barreto [15], who considered an infi-
nite network of coupled phase oscillators whose intrinsic
frequencies were drawn from a particular bimodal dis-
tribution, and which was periodically forced. These au-
thors used the recent ansatz of Ott and Antonsen [16-18]
to reduce the infinite system to two coupled, complex,
non-autonomous ordinary differential equations (ODEs).
By assuming that the two complex variables had equal
magnitude, and examining only the difference in phases
between the variables, they reduced this system to a pair
of coupled, real, non-autonomous ODEs. Building on the
analysis of the autonomous case [19] they then numeri-
cally showed that this pair of equations exhibited chaotic
behaviour. However, they did not discuss the relationship
between this “macroscopic” chaos and the dynamics of a
finite network at the same parameter values. They gave
only a heuristic explanation of the origin of the chaotic
behaviour in terms of “moving targets”, and conjectured
that either periodic forcing or the presence of a “slow”
variable would be necessary in order to observe macro-
scopic chaos in a network of coupled phase oscillators.



One of the results of this paper is to show that macro-
scopic chaos can occur in an infinite network consisting
of a pair of coupled heterogeneous networks of phase os-
cillators. Neither periodic forcing nor the presence of a
slow variable are required, and we show that the chaotic
behaviour is associated with a symmetric “gluing” bifur-
cation, which has been analysed previously in different
contexts [20-22]. This result is part of the general anal-
ysis of this network, where the degree of heterogeneity
in the network is a key parameter. Specifically, we show
that the network must be sufficiently heterogeneous for
this chaotic behaviour to occur.

The structure of the paper is as follows: in Sec. II
we present the equations describing a finite network of
coupled phase oscillators and their reduced description
obtained in the continuum limit using the ansatz of Ott
and Antonsen. Section III gives the results of analysing
those reduced equations in both the small heterogene-
ity regime and the large heterogeneity regime. We also
discuss the relationship between the macroscopic chaos
seen and the dynamics of a finite network. In Sec. IV we
consider adding Gaussian white noise to the oscillator
dynamics, as another form of disorder, and briefly anal-
yse the resulting coupled Fokker-Planck equations. We
use the strength of noise as a parameter and show that
the behaviour predicted by these Fokker-Planck equa-
tions also occurs in finite networks of oscillators. We
conclude in Sec. V.

II. MODEL EQUATIONS

The equations describing the finite network of 2N
phase oscillators that we will consider are
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for i =1,... N, where the superscript indicates to which
of two populations an oscillator belongs, p and v are
given by = (1 + A)/2 and v = (1 — A)/2 where A is
a positive parameter, a € (0,27) is a constant, and the
intrinsic frequencies wil 2 are all chosen randomly from
a distribution g(w). This system was previously stud-
ied by Abrams et al. [9] for the case that g(w) = d(w),
i.e. identical oscillators, and by Laing [23] and Montbrié
et al. [24] for the case that g(w) was a Lorentzian. A
more general system of this form was considered by Bar-
reto et al. [25]. This pair of networks can be thought

of as the simplest form of a “network of networks” [26].
Alternatively, it can be regarded as the simplest form of
network with “non-local” coupling [27-29]: there is all-
to-all “local” coupling of strength y within a population
and all-to-all “non-local” coupling of strength v between
populations. Note that a system of discrete chemical os-
cillators conceptually equivalent to (1)-(2) has recently
been studied [30], and that several electrical systems of
importance can be described by coupled oscillator net-
works of this form [31, 32]. Also, recent experiments in
an optical system have shown the existence of “chimera”
states similar to those discussed in this paper [33].

The ansatz of Ott and Antonsen [16-18] has proved
very useful in the study of infinite networks of
sinusoidally-coupled phase oscillators such as (1)-(2) [15,
19, 34-43]. The ansatz is essentially an assumption on
the form of the Fourier series describing the angular de-
pendence of the probability density function; it allows
one to derive exact dynamical equations for macroscopic,
order-parameter-like variables, which are valid on an at-
tracting invariant manifold. The ansatz applies to infinite
networks of heterogeneous phase oscillators (although
see [44, 45] for an application to an infinite ensemble of
finite-size networks), and simplifies the analysis of such
systems by effectively removing one of the variables from
the continuity equation governing the evolution of the
probability density function.

Under the assumption that g(w) is a Lorentzian cen-
tred at w = €, i.e.

D/m
g(w) = m (3)

where D is a measure of the width of ¢, and in the limit
N — oo, the Ott/Antonsen ansatz [16-18] allows one
to show that the order parameters describing the net-
work (1)-(2) satisfy the complex ODEs
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where the order parameters [8, 46] are given by
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for £ = 1,2. The derivation of these equations is given
in [23] and similar ideas are used in [9, 10, 19], so we do
not repeat the derivation here. Note that the magnitude
of the order parameter z; is a measure of the degree of
synchrony within population k.

Writing 21 = rie” 1 and zg = r9e 2 and defining



¢ = ¢1 — d2, (4)-(5) can be written as
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Note that £ (the mean of the intrinsic frequencies) does
not appear in these equations. The case when D = 0
(identical oscillators) was studied by Abrams et al. [9].
They noted that in this case, r; = 1 defines an invariant
manifold; they then analysed the resulting pair of ODEs
for ro and ¢. Their interest was in “chimera” states, in
which one population is synchronised (population 1 in
this case, as 11 = 1) and the other is not (i.e. ro # 1).
They found that for « less than but sufficiently close to
/2, increasing A lead to the creation of two chimera
states through a saddle-node bifurcation, one of which
went unstable through a supercitical Hopf bifurcation as
A was increased further, leading to a “breathing” chimera
state. This was destroyed in a homoclinic bifurcation
as A increased yet further. Their results are shown in
Fig. 4 of Abrams et al. [9], where 5 = /2 — . Note that
these authors did not show that r; = 1 was an attracting
manifold, only that it was invariant.

A partial analysis of (7)-(9) was given by Laing [23],
with concentration on the effects of increasing D for fixed
A and «, and determining the fate of chimera states. In
this paper we fix & = 7/2 — 0.05 and consider in much
greater detail the effects of varying A and D. We are in-
terested in not only whether chimera states are robust to
heterogeneity, i.e. increasing D (they are [23]) but what
other dynamics can occur as the networks are made more
heterogeneous. For example, can chaotic dynamics occur,
and if so what is the mechanism for their creation?

III. RESULTS

We now show the results of analysing (7)-(9) in two
regimes: 0 < D < 0.001 (small D) and 0.001 < D < 0.01
(large D). Recall that we fix o = 7/2 — 0.05 and that
uw=(1+A)/2and v = (1-A)/2. Firstly, note that (7)-(9)
are invariant under the transformation X : (r1,72,¢) —
(rq,71, —¢), corresponding to an interchange of the two
oscillator populations. Clearly, the origin is always a
fixed point, (which we will not consider from now on)
and there exists another fixed point that we will call S,
which is fixed by X. The coordinates of S are given by
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(r1,72,0) = (y/1—=2D/cosa, /1 —2D/cosa,0); this
fixed point exists for 0 < D < (cosa)/2 = 0.025.

All numerical results were obtained using Matlab [47]
and most numerical integration was performed using
ode45 with default settings. Local bifurcations were fol-
lowed using pseudo-arclength continuation, and global
bifurcations were found manually by sweeping through
parameter space. Simulations such as those shown in
Fig. 4 took several seconds, while Fig. 7 took many hours
of computation. Equations (20)-(21) are time-consuming
to simulate due to the powers of n on their right-hand
sides.

A. Small Heterogeneity

The results of following the fixed points of (7)-(9) and
the resulting bifurcations are shown in Fig. 1. We start by
discussing the limit of D = 0, as studied by Abrams et al.
[9]. They used the Ott/Antonsen ansatz to derive (4)-
(5), but it was later shown that the manifold described by
this ansatz was attracting only when non-identical oscil-
lators were used, i.e. when D > 0 [16]. (The manifold is
invariant for all D.) Instead, the dynamics for D = 0 are
described by using the Watanabe/Strogatz ansatz [48],
and Pikovsky and Rosenblum [49] showed that the net-
work (1)-(2) could undergo more complicated dynamics
than those found by Abrams et al. [9] (for D = 0). In
our analysis of (7)-(9) we varied D from positive to nega-
tive and found that the intersection of bifurcation curves
with the line D = 0 were consistent with those found
by Abrams et al. [9]: we see a saddle-node bifurcation,
then a Hopf, then a homoclinic, as A is increased. These
bifurcations are all generic and codimension-one, so in
(D, A) parameter space we expect curves on which they
occur, with these curves leading away from the A-axis,
and that is what is observed. However, other interest-
ing behaviour occurs as D is increased. We now describe
Fig. 1 in detail.

In region a, the only invariant set of interest is the fixed
point S, which is stable. As we cross from region a to
region b, two pairs of symmetrically related fixed points
are created in saddle-node bifurcations. These points are
labelled P (P;" is stable and P, is a saddle) and P
The transformation ¥ takes P;” to Py~ and similarly for
P and P; . As we cross from region b to region ¢, both
Pl+ and P2+ undergo supercritical Hopf bifurcations, cre-
ating periodic orbits I'y and I'y, which are mapped to one
another by ¥ (see Fig. 2, top). Crossing from region ¢ to
region d, I'y and I'y collide with P~ and P, , respectively,
in a homoclinic bifurcation. In region d the only attrac-
tor is fixed point S. Crossing from region b to region h,
P and P; collide with S in a subcritical pitchfork bi-
furcation, making S a saddle in region h. Crossing from
region h to region g, both P1+ and P2+ undergo supercriti-
cal Hopf bifurcations, creating the periodic orbits that we
have called I'; and I'y. Crossing from region ¢ to region f,
both I'; and T's collide with S in a gluing bifurcation [50],
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FIG. 1: Bifurcation set of (7)-(9) for small heterogeneity.
Curves of the three local bifurcations are labelled in the Fig-
ure. Squares: homoclinic bifurcation of P, and P, , destroy-
ing I'1 and I'z. Circles: symmetric homoclinic connection to
S, gluing I'1 and I'> together to form II. Stars: symmetric
heteroclinic bifurcation of P;” and P, , destroying II.
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FIG. 2: Typical examples of the periodic orbits I'1 (top, when
A = 0.35) and II (bottom, when A = 0.5). The left column
shows time series of 71 (solid) and r2 (dashed) and the right

panels show orbits in the (r1,72) plane. Other parameters:
D = 0.0005.

¢

which creates a stable “period-two” orbit which we label
IT, mapped to itself under ¥ (see Fig. 2, bottom), which
exists in region f. Crossing from region f to region e,
S undergoes a subcritical pitchfork bifurcation, creating
P and P, , and becoming stable. Crossing from region
e to region d, the periodic orbit II is involved in a sym-
metric heteroclinic bifurcation (destroying II), where the
unstable manifold of P; intersects the stable manifold of
P, and vice versa. There is bistability in regions b,c and
e.

There is one codimension-two point in Fig. 1, where
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FIG. 3: Circles joined by lines: the gluing bifurcation shown
in Fig. 1. Solid lines are contours of equal values of the saddle
index for S, 6 = A1/|A2|, where the eigenvalues of the Jacobian
at S are A3 < A2 < 0 < A;. Note that the zero contour
corresponds to the pitchfork bifurcation curve shown in Fig. 1.

the curves of homoclinic and heteroclinic bifurcations in-
tersect the curve on which S undergoes a pitchfork bi-
furcation. The unfolding of this pitchfork-homoclinic bi-
furcation is given in Deng [51] and our results are con-
sistent with that analysis. We note that on the curve of
homoclinic bifurcations separating regions ¢ and d, the
destruction of the stable periodic orbits I'y and I's is con-
sistent with the saddle indices of P;” and P, being less
than one [21, 52|, where the saddle index is defined to
be § = A1/|A2|, and the eigenvalues associated with P
(and Py ) are A3 < Ay < 0 < Ay. Also, along the gluing
bifurcation separating regions f and g, the saddle index
of the fixed point S is less than one, as shown in Fig. 3.
Such a bifurcation is discussed in [20-22] and it is known
that for § < 1, the gluing bifurcation corresponds to the
destruction of the two stable periodic orbits I'y and I'y
and their replacement by the stable periodic orbit II.

The main effects of increasing D that we have seen are
the conversion of the symmetric fixed point S from sta-
ble to unstable through a pitchfork bifurcation, and the
creation of the periodic orbit II, which is invariant under
Y, through either a gluing bifurcation or a symmetric
heteroclinic bifurcation. On the orbit II the oscillator
populations take turns being nearly synchronous (when
the corresponding order parameter has magnitude close
to one). When one population is nearly synchronous the
other is largely asynchronous, with small order parameter
(see Fig. 2 (bottom) and Fig. 4 (bottom)).

We have verified that the different types of behaviour
predicted by Fig. 1 for an infinite network actually oc-
cur in a finite network of phase oscillators. Figure 4
shows the behaviour of a network of 2N = 600 oscil-
lators governed by (1)-(2) when D = 7 x 107* and
A =0.05,0.15,0.35,0.45. The top panel shows the stable
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FIG. 4: Dynamics of the phase oscillator network (1)-(2) for
N = 300 at (top to bottom) A = 0.05,0.15,0.35,0.45, when
D = 0.0007. Left panels show sin #;, colour-coded; right pan-
els show 71 and r2, where 1 = |(1/300) 230:01 exp (i0;)| and

r2 = |(1/300) 250:0301 exp (i6;)|. Parameters: 2 = 0.5.

fixed point S, the second shows one of the stable states
P;t/Ps", the third panel from the top shows one of the
periodic orbits I'1 /T2, and the bottom panel shows the
symmetric periodic orbit II.

B. Large Heterogeneity

We now consider larger values of D. There are four
bifurcation curves which reach the right side of Fig. 1.
We want to know where they go as D is increased fur-
ther, and whether any more interesting dynamics occur.
A vpartial bifurcation set for (7)-(9) is shown in Fig. 5.
There are three codimension-2 bifurcation points: the
first at (D, A) ~ (2.5 x 1073,0.1), where the pitchfork
bifurcation changes from subcritical (for small D) to su-
percritical (for large D) resulting in the termination of
the curve of saddle-node bifurcations. The second occurs

t (D,A) ~ (9 x 1072,0.43), where the Hopf bifurca-
tion which creates I'y and I's changes from supercitical
(for small D) to subcritical (for large D), resulting in
the termination of a curve of saddle-node bifurcations of
the periodic orbits I'y and I's. The third point occurs
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FIG. 5: Bifurcation set of (7)-(9) for 0.001 < D < 0.01.
Curves of the three local bifurcations are labelled in the Fig-
ure. Circles: symmetric homoclinic connection to .S, gluing
I'y and I's together. Crosses: saddle-node bifurcation of the
periodic orbit I'1 (and of I'2.) The thin line labelled “1” is
the curve on which the saddle index changes from less than 1
(below the curve) to greater than 1 (above the curve).

t (D,A) ~ (1.8 x 1073,0.35), where the saddle index
of the fixed point S involved in the gluing bifurcation
changes from less than one (for small D) to greater than
one (for large D). Associated with this is the start of
a curve of saddle-node bifurcations of periodic orbits (in
this case, I'1 and I'y) which exists in the region 6 > 1.
From the analysis in [20-22] we also expect the creation
of a chaotic attractor when § > 1, in the vicinity of the
gluing bifurcation.

As a first step towards understanding this possible
chaotic behavior we show in Fig. 6 several parameter
sweeps of (7)-(9) when D = 4 x 10~3, plotting both the
values of r; when ry increases through 0.5 (during a long
simulation and after transients have died out) and the
most positive Lyapunov exponent. In the top two panels
of Fig. 6 A was slowly decreased stepwise, with the initial
condition for each new value of A being the final state
from the previous simulation. In the bottom two panels
of Fig. 6 A was increased stepwise rather than decreased.
This technique may help in the detection of multista-
bility. We see evidence of chaotic behaviour, and bista-
bility (for example, when 0.345 < A < 0.35). Sweeping
through both A and D we obtain Fig. 7, which shows the
most positive Lyapunov exponent at each point in the pa-
rameter plane. At each point one simulation with intial
condition (ry,re,¢) = (1,0.6,0.1) was used to calculate
the exponent, so any bistability will not be detected. We
see that the chaotic region is indeed associated with the
point at which the saddle index of the fixed point in-
volved in the gluing bifurcation () passes through 1, as
predicted [20].
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FIG. 6: Parameter sweeps of (7)-(9) for A decreasing (panels
a and b) and increasing (c and d), when D = 4 x 1073, Panels
a and c¢ show the value of r1 when 72 increases through 0.5
during a long simulation and after transients have died out.
Panels b and d show the most positive Lyapunov exponent of
the solution.

C. Results for a finite network

An interesting question involves whether or not the
chaotic behaviour observed in the macroscopic descrip-
tion of the infinite network of oscillators (i.e. (7)-(9))
is actually manifested in a finite network of oscillators
(i.e. (1)-(2)). As mentioned, a number of authors have
numerically found evidence for chaotic behaviour in fi-
nite networks of phase oscillators [4, 13, 14], but in all
cases the most positive Lyapunov exponent decayed to
zero as the size of the network increased. So and Bar-
reto [15] found macroscopic chaos in an infinite network
of phase oscillators but did not consider the relationship
between this chaotic behaviour and the dynamics of a
finite network at the same parameter values.

Figure 8 shows the largest Lyapunov exponent as a
function of A for a network of 2N = 200 oscillators with
D = 0.004. Referring to Fig. 6 we see that (in the limit of
N — 00) there should be chaotic behaviour over approx-
imately 0.345 < A < 0.37. However, for the parameter
values shown in Fig. 8 the finite network always has a
positive Lyapunov exponent, and in the region where the

FIG. 7: Largest Lyapunov exponent for (7)-(9) as a func-
tion of D and A. Other curves are: dashed: gluing bifur-
cation; solid: 0 = 1; dash-dotted: Hopf; crosses joined by
lines: saddle-node bifurcation of periodic orbits. Compare
with Fig. 5.

macroscopic model (7)-(9) shows chaotic behavior with
maximal exponent on the order of 0.01, the finite net-
work has a maximal exponent larger than that. Thus the
transition of the largest Lyapunov exponent from zero to
positive and back to zero seen in Fig. 6 is not observed
in this finite network. This discrepancy is not a failure
of the Ott/Antonsen ansatz, which is valid only in the
limit N — oco. Instead it reflects one of the differences
between a finite and an infinite network, which we now
explore a little further.

Figures 9 and 10 show the state of the finite network
and the full Lyapunov spectrum (calculated using the
algorithm of Greene and Kim [53]) at A = 0.15 and
A = 0.4, respectively (c.f. Fig. 8). Similar to the ob-
servations of Wolfrum et al. [13] we see that a signif-
icant fraction of the Lyapunov exponents are positive,
i.e. the system is hyperchaotic. It may be the case that
as N — oo the most positive exponent will tend to zero,
and Fig. 8 will limit to Fig. 6 over the relevant parameter
range, but investigating this is computationally challeng-
ing and we will not pursue this here. We note that (1)-(2)
will always have an exponent of zero, due to the invari-
ance of the system under the application of a constant
phase shift to all oscillators, whereas (7)-(9) may have
all three exponents negative (at a stable fixed point).
Thus we conclude that for these parameter values, the
transition to chaotic behaviour in the reduced descrip-
tion (7)-(9) does not necessarily have any implication for
the dynamics of the finite network (1)-(2), which may
well be (weakly) chaotic over a large range of parameter
values.
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FIG. 8: The largest Lyapunov exponent for the network (1)-
(2) with N =100 and D = 0.004.

IV. NOISE

We now consider the effects of including temporal dis-
order, i.e. noise, on the dynamics of the oscillator net-
work (1)-(2). Specifically, we drive the system with Gaus-
sian white noise, replacing (1)-(2) by
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where each ¥ (t) (k = 1,2) is a Gaussian white noise with
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and o is the noise intensity [54], where the angled brack-
ets indicate averaging over realisations of the noise. In
the limit N — oo the system is described by two proba-
bility density functions, f1(6,w,t) and f2(0,w,t), [9, 23]
which satisfy the coupled Fokker-Planck equations [55]
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FIG. 9: (a): behaviour of the network (1)-(2) at A =

0.15 (sin@ is shown colour-coded). (b): 71 (solid blue)
and ry (dashed green) as functions of time for the state
in the top panel, where r1 = |(1/100) Z;iol exp (i0;)| and
re = [(1/100) 2520101 exp (i0;)|. (c)-(d): Lyapunov spectrum,
i.e. all 2N Lyapunov exponents, for the state shown here. [(d)

is an enlargement of the rightmost part of (c).] Parameters:
N =100, D = 0.004.
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and

zp(t) = /027r /700 e fr(0,w,t) dw db (17)

for £k = 1,2. Recall that w is a continuous variable with
distribution (3). The mean of the intrinsic frequencies,
Q, can be set to zero by going to a rotating coordinate
frame, so we do that here. Writing the f; as Fourier
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FIG. 10: (a): behaviour of the network (1)-(2) at A =

0.4 (sin® is shown colour-coded). (b): 71 (solid blue)
and ry (dashed green) as functions of time for the state
in the top panel, where r1 = |(1/100) Z;iol exp (i60;)| and
re = |(1/100) 250:0101 exp (i0;)|. (c)-(d): Lyapunov spectrum,
i.e. all 2N Lyapunov exponents, for the state shown here. [(d)
is an enlargement of the rightmost part of (c).] Parameters:
N = 100, D = 0.004.

series in 6:
_ g(w) - in6
f1(0,w,t) = o 1+;An(w,t)e +c.c.| (18)
_ g((U) = in6
f2(0,w,t) = o 1+;Bn(w,t)e + c.c.| (19)

where “c.c.” is the complex conjugate of the previous
term, we obtain the following ODEs:

% = —n {Dan + ona, + [e_io‘(,uﬁl + vb1)ang1

— "(par + vb)an—1] /2} (20)
% = —n{Db, + onb, + [e”"*(uby + va@1)bp+1

— € (uby + var)bn_1] /2} (21)

forn =1,2,..., where ag = bg = 1, ax(t) = Ax(—iD, 1),
and by(t) = Br(—iD,t). We have used residue theory
and the specific form of g(w) to perform the integral

over w in (17) [18, 23]. Note that when o = 0, the
Ott/Antonsen ansatz ay (t) = [a(t)]™ and b, (t) = [b(t)]"
reduces the infinite set of equations (20)-(21) to the pair
of complex ODES (4)-(5), where z; = @ and 2z, = b.

To demonstrate the effects of temporal noise alone we
set D = 0 (i.e. use identical oscillators), fix A = 0.37 and
a = 7/2—0.05 and consider several different values of o.
Figure 11 shows, in the left column, solutions of (20)-(21)
for o = 0.00003,0.0003 and 0.01 (top to bottom). (We
truncate (20)-(21) at n = 200 and set azp1 = bag1 = 0.)
Referring back to Fig. 1 (and under the assumption that
the dynamics seen for D = 0 are robust and persist for
small noise, as they do for small D) we see that for o
sufficiently small, one of the attractors at these param-
eter values should be the “breathing chimera” in which
one order parameter undergoes large oscillations while
the other undergoes small oscillations about 1. (This
state is analogous to the periodic orbit I'y (or I'z) seen
in Fig. 2, top.) This is indeed seen in Fig. 11 (top left).
As o is increased, Fig. 11 shows that this periodic orbit
seems to undergo a gluing bifurcation, resulting in the
stable periodic solution mapped to itself under ¥ shown
in Fig. 11, middle left. A further increase in o results in
a stable fixed point on which |a,| = |b,| for all n (Fig. 11,
bottom left).

To check these results we show in the right column of
Fig. 11 the results of simulating (10)-(11) with the same
parameter values as those in the left column for a net-
work with N = 1000. The agreement is very good and
gets better as N is increased (not shown). We conclude
this short section by noting that the addition of Gaussian
white noise to the oscillator dynamics can have signifi-
cant, non-trivial effects, and that these can be studied
using a finite-dimensional approximation to the coupled
Fokker-Planck equations (13)-(14).

V. CONCLUSION

We have considered a simple network formed by cou-
pling two subnetworks of heterogeneous phase oscilla-
tors. The ansatz of Ott and Antonsen was used to derive
three ODEs which governed the dynamics of our net-
work in the limit of an infinite number of oscillators, and
a Lorentzian frequency distribution. The study of these
ODEs as the spread of the oscillators’ intrinsic frequen-
cies was increased revealed several bifurcations leading
to oscillations in which the two subnetworks periodically
alternate in levels of synchrony (a pattern not seen when
the oscillators are sufficiently similar), and to chaotic be-
haviour. We investigated the relationship between the
dynamics of the macroscopic ODEs and those of finite
networks of oscillators and found that chaotic behaviour
in the former does not necessarily bear any relationship
to that in the latter. We briefly investigated the effects of
adding temporal disorder in the form of Gaussian white
noise to the oscillator dynamics and found that this could
also result in new types of behaviour (not just “washing
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FIG. 11:  Left column: lai(t)] (solid) and |b1(¢)]
(dashed) from numerically solving (20)-(21) for o =

0.00003 (top), o = 0.0003 (middle) and o = 0.01
(bottom). Right column:  ri(¢) (solid) and 72(¢)
(dashed), where r1 = |(1/1000) Z;:Olo exp (i0;)| and 72 =

[(1/1000) 230:010001 exp (i6;)|, for the same noise intensities as
in the left column. Parameters: D = 0, = w/2 — 0.05, A =
0.37.

out” of dynamics).

It is known that networks of identical, sinusoidally cou-
pled phase oscillators have non-generic behaviour [48],
and that making them non-identical reduces the number
of variables needed for their macroscopic description [16].
We have shown here that increasing the amount of dis-
order in the network by making the oscillators more and
more heterogeneous in a simple systematic way can lead
to fundamentally new behaviour, going against the in-
tuition that increasing disorder can only destroy, rather
than create, non-trivial dynamics.
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