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Abstract. We consider directed networks of Winfree oscillators with power law distributed

in- and out-degree distributions. Gaussian and power law distributed intrinsic frequencies are

considered, and these frequencies are positively correlated with oscillators’ in-degrees. The

Ott/Antonsen ansatz is used to derive degree-based mean field equations for the expected

dynamics of networks, and these are numerically analysed. In a variety of cases “explosive”

transitions between either two different steady states or between a steady state and a periodic

solution are found, and these transitions are explained using bifurcation theory.

1. Introduction

The study of networks is driven by the many real-world systems which can be represented

in this way [23], such as networks of neuronal [28], cardiac [4] or smooth muscle [40] cells. In

networks of oscillators it is often the conditions under which the oscillators synchronise which

are of interest [29, 36]. For networks of nonidentical oscillators there is often a continuous

transition from asynchrony to higher and higher levels of synchrony as the strength of coupling

between oscillators is increased [12, 36]. But recently a different form of transition known

as “explosive synchrony” (ES) has been observed. Here, there is a discontinuous increase in

network coherence as the coupling strength between oscillators is increased (see [6] for a review).

This behaviour was first reported by [8] in an undirected network of Kuramoto oscillators [12]

for which the intrinsic frequency of an oscillator was equal to its degree, the degrees having an

inverse power law distribution. The authors emphasised that the explosive transition was due

to there being a relationship between a local network property (an oscillator’s degree) and a

property of an oscillator (its intrinsic frequency) — in this case a positive correlation between

the two. Since the publication of [8] there have been many studies of ES [17, 2, 42, 41].

As recently noted by [11], ES is not actually an unexpected phenomenon, since if there is a

continuous transition to synchrony through either a transcritical or pitchfork bifurcation as, say,

the strength of coupling between oscillators is increased, then by varying a second parameter

sufficiently the criticality of the bifurcation will change. This change leads to bistability and a

region of hysteresis as the original parameter is varied (i.e. an “explosive” transition).

Many studies of ES use Kuramoto phase oscillators which are coupled through phase dif-

ferences. However, more realistic oscillators are not coupled in this way, instead having in-

teractions which depend on the states of the two oscillators which are coupled [37, 21, 3, 19].

The oscillator we study – the Winfree model [39] – is a phase oscillator similar in form to the

Kuramoto oscillator but is not described with phase differences, instead involving a “phase

response curve” and a pulsatile function of phase. We are not aware of any reports of ES in

networks of Winfree oscillators, and as one of our contributions we report here our observa-

tions of this phenomenon in our numerical explorations of networks of Winfree oscillators in a

variety of network configurations.
1
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Most previous studies of networks of Winfree oscillators have focused on the all-to-all coupled

case [1, 26, 10, 7, 27], with an exception being [16]. Many previous studies of ES have considered

undirected networks, where oscillators are either coupled or not. However, we consider directed

networks – as seen in neuronal systems – where one oscillator influences other oscillators coupled

downstream but without necessarily a reciprocal influence back upstream.

The bistability that often accompanies ES is of interest as it allows a network to have more

than one stable state for a given set of parameters, with the current state often determined by

the network’s history. A prominent example of such bistability is in networks which exhibit Up

and Down states [38, 30], with transitions between these states driven by either fluctuations

or noise of some form, or by transient inputs. The abrupt transitions between states may also

provide a model for the conscious-unconscious transition when awaking from anesthesia [35].

The structure of the paper is as follows. In Sec. 2 we present the network we consider

and the degree-based mean field description of its dynamics, derived using the Ott/Antonsen

ansatz. Specific cases of independent in- and out-degrees, and equal in- and out-degrees,

are considered. In Sec. 3 we consider a Gaussian distribution of intrinsic frequencies which

are positively correlated with oscillators’ in-degrees. In Sec. 4 we consider an inverse power

law distribution of intrinsic frequencies and again correlate them with oscillators’ in-degrees.

We consider the cases of independent in- and out-degrees, and equal in- and out-degrees. A

variety of “explosive” transitions are observed and explained using simple bifurcation theory.

We conclude in Sec. 5.

2. Model

The model describing a directed network of Winfree oscillators is as presented in [16, 26]:

dθj
dt

= ωj + U(θj)
ϵ

⟨k⟩

N∑
n=1

AjnT (θn); j = 1, 2 . . . N (1)

where ϵ is the strength of coupling, ⟨k⟩ is the mean degree of the network and the connectivity

is given by the adjacency matrix A with Ajn = 1 if oscillator n connects to oscillator j and

zero otherwise. The ωj are chosen from a Lorentzian distribution with centre and half-width

at half-maximum to be discussed below. The phase response curve [32, 22] is chosen to be

U(θ) = − sin θ and the pulsatile function T which has a maximum at θ = 0 is

T (θ) =
8

35
(1 + cos θ)4 (2)

The in-degree of oscillator j is

kin,j =

N∑
n=1

Ajn (3)

and the out-degree of oscillator n is

kout,n =

N∑
j=1

Ajn (4)

We consider large networks where all in- and out-degrees are large and assume that the

network can be characterised by its degree distribution P (k) where k = (kin, kout), and an

assortativity function a(k′ → k) giving the probability that an oscillator with degree k′ con-

nects to one with degree k, given that such oscillators exist. P (k) is normalised such that
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k P (k) = N and we choose the marginal distributions of the in-degrees and the out-degrees

to be equal.

Using the theory in [16] (or see [15, 5] for similar derivations) one can show that the long-time

dynamics of the network is described by

∂b(k, t)

∂t
=

ϵR(k, t)

2
+ [iω0(k)−∆(k)]b(k, t)− ϵR(k, t)

2
[b(k, t)]2 (5)

where ω0(k) and ∆(k) are the centre and half-width at half-maximum, respectively, of the

Lorentzian distribution from which the values of ωj for oscillators with degree k are chosen:

g(ω(k)) =
∆(k)/π

[ω(k)− ω0(k)]2 +∆2(k)
(6)

The variable

b(k, t) =

∫ ∞

−∞

∫ 2π

0
f(θ, ω|k, t)e−iθdθ dω (7)

is the complex-valued order parameter for oscillators with degree k, where f(θ, ω|k, t)dθdω
is the probability that an oscillator with degree k has phase in [θ, θ + dθ] and frequency in

[ω, ω + dω] at time t. R(k, t) is given by

R(k, t) =
1

⟨k⟩
∑
k′

P (k′)a(k′ → k)G(k′, t) (8)

where

G(k, t) = 1 +
4
[
b(k, t) + b(k, t)

]
5

+
2
[
b2(k, t) + b

2
(k, t)

]
5

+
4
[
b3(k, t) + b

3
(k, t)

]
35

+
b4(k, t) + b

4
(k, t)

70
(9)

where overline indicates the complex conjugate. The form of G is determined by the function

T (θ). This derivation of a degree-dependent mean field description uses the Ott/Antonsen

ansatz [24, 25]. A crucial ingredient for the use of this ansatz is the sinusoidal form of the

function U(θ).

We are interested in the case of neutral assortativity, for which [31]

a(k′ → k) =
k′outkin
N⟨k⟩

(10)

and cases where either the in- and out-degree of an oscillator are independent, or they are

equal (and thus perfectly correlated). Writing P (k′in, k
′
out) instead of P (k′)/N we have

R(kin, kout) =
kin
⟨k⟩2

∑
k′in

∑
k′out

P (k′in, k
′
out)k

′
outG(k′in, k

′
out, t) (11)

which is clearly independent of kout. Thus both b and G must also be independent of kout and

we have

R(kin, t) =
kin
⟨k⟩2

∑
k′in

Q(k′in)G(k′in, t) (12)

where

Q(k′in) =
∑
k′out

P (k′in, k
′
out)k

′
out. (13)
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For the case of the in- and out-degrees of an oscillator being independent, P (k′in, k
′
out)

factorises: P (k′in, k
′
out) = p(kin)p(k

′
out) where p is the marginal distribution of either the in- or

out-degrees. In this case,

R(kin, t) =
kin
⟨k⟩

∑
k′in

p(k′in)G(k′in, t). (14)

Alternatively, if kin = kout for each oscillator (i.e. each oscillator has the same in- and out-

degree) then Q(k′in) = k′inp(k
′
in) and

R(kin, t) =
kin
⟨k⟩2

∑
k′in

p(k′in)k
′
inG(k′in, t). (15)

In either case the “input” to an oscillator with in-degree kin is proportional to its in-degree,

i.e. kin.

One could use this theory to investigate the effects of choosing different degree distributions

p as in [14] but instead we fix p as a power law distribution and look at the effects of correlating

an oscillator’s frequency with its degree. Specifically, we make ∆ independent of degree but

choose ω0 to be a function of kin only. (One could make ω0 a function of kout as well, or

instead, but doing so increases the computational cost, and the phenomena we are interested

in occur when ω0 is a function of kin only.) Thus the equations of interest are

∂b(kin, t)

∂t
=

ϵR(kin, t)

2
+ [iω0(kin)−∆]b(kin, t)−

ϵR(kin, t)

2
[b(kin, t)]

2 (16)

where m ≤ kin ≤ M , where m and M are the minimum and maximum in- and out-degrees

respectively, R is given by either (14) or (15) and G is given by (9) but with only dependence

on in-degree.

Note that in previous work [16] we used similar equations as those above to investigate

the effects of varying the correlation between in- and out-degrees of Winfree oscillators, and

of parameter- and degree-based assortativity. We also examined the effects of correlating

oscillators’ intrinsic frequencies with their in-degrees, but did not consider varying the coupling

strength. Also, there we considered uniform degree distributions rather than power law, as we

do here and as many other researchers do.

Below we will use the mean firing frequency of a network to describe its behaviour, so now

derive an expression for that. The dynamics of an oscillator with in-degree kin is

dθ

dt
= ω(kin)− ϵR(kin) sin θ. (17)

If |ω(kin)| > ϵR(kin) then the oscillator will fire periodically with frequency√
ω2(kin)− ϵ2R2(kin)

2π
. (18)

Thus the expected frequency for oscillators with in-degree kin is

f(kin) =
1

2π
Re

(∫ ∞

−∞
g(ω(kin))

√
ω2(kin)− ϵ2R2(kin) dω(kin)

)

=
1

2π

√
ω2
0(kin)−∆2 − ϵ2R2(kin) +

√
[ω2

0(kin)−∆2 − ϵ2R2(kin)]2 + 4∆2ω2
0(kin)

2
(19)
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where g is the Lorentzian (6) and thus the mean firing rate over the network is

F =
1

2π

∑
kin

p(kin)f(kin) (20)

For comparison with our results below we briefly describe the dynamics of a fully connected

network of Winfree oscillators. Two types of behaviour are typically seen in such a network:

synchronous and asynchronous [26, 7], although the fraction of oscillators actually oscillating

varies in different asynchronous states. Increasing ϵ tends to destroy synchronous behaviour

through a saddle-node-on-invariant-circle (SNIC) bifurcation, as many of the oscillators “lock”

to an approximate fixed point. For moderate ϵ increasing the spread of intrinsic frequencies

tends to destroy synchronous behaviour through a supercritical Hopf bifurcation, as the oscil-

lators become too dissimilar in frequency to synchronise [26]. Below we will see a wider variety

of bifurcations resulting from the networks’ structure.

3. Gaussian frequency distribution

We choose the degree distribution p(k) to be a truncated power law distribution with expo-

nent −3, as many others have done when studying ES [18, 8]:

p(k) =

{
a/k3 m ≤ k ≤ M

0 otherwise
(21)

where a is a normalisation such that
M∑

k=m

a

k3
= 1. (22)

Since the degrees are all large (i.e. 1 ≪ m) we treat k as a continuous variable and approximate

the sum in (22) by an integral, giving a = 2m2M2/(M2 −m2). The cumulative distribution

function for k is

p̂(k) =

∫ k

m
p(s) ds =

a

2

(
1

m2
− 1

k2

)
. (23)

We need to specify the dependence of ω0 on kin. In this section we consider the case where

for a particular realisation of the network, we randomly choose the target frequencies from a

Gaussian distribution with mean 1 and standard deviation σ, then assign the smallest target

frequency to the oscillator with smallest in-degree, the second smallest target frequency to the

oscillator with second smallest in-degree, etc. (For oscillators with equal in-degree, they are

ranked in random order.) For oscillator j the actual ωj is then chosen from a Lorentzian with

centre equal to the target frequency for oscillator j and half-width at half-maximum (HWHM)

equal to ∆, similar to the scheme in [34].

In this case we have

ω0(k) = q̂−1(p̂(k)) (24)

where q̂ is the cumulative distribution function of the appropriate Gaussian distribution, i.e.

q̂(ω) =
1

2

[
1 + erf

(
ω − 1√

2σ

)]
(25)

A demonstration of this is shown in Fig. 1 where we create a directed network with N = 2000

nodes using the configuration model [23], then randomly chose N target frequencies from a

Gaussian distribution with mean 1 and standard deviation 0.01, then associated the smallest
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Figure 1. (a): solid line: (24); dots: target frequencies and degrees for one

realisation of a network. (b): solid line: (24); dots: actual frequencies and

degrees for one realisation of a network. Parameters: m = 100,M = 400, N =

2000, σ = 0.01,∆ = 0.00005.

frequency with the node with smallest in-degree etc. These values are shown as dots in panel

(a), along with the theoretical relationship (24). Panel (b) shows the actual values of the

ωj (dots), taken from a Lorentzian with centre equal to the values in panel (a) and HWHM

0.00005.

Clearly there is a positive correlation between kin,j and ωj , but the Pearson correlation

coefficient between them, defined by

ρkω =

∑N
j=1(kin,j − ⟨k⟩)(ωj − ω̄)√∑N

j=1(kin,j − ⟨k⟩)2
√∑N

j=1(ωj − ω̄)2
(26)

where ω̄ is the mean of the ωj , is less than 1 and (using this construction) cannot be system-

atically varied, as was possible in [16, 15]. Note that the idea of not having a perfect match

between an oscillator’s degree and a prescribed frequency (as we have here for ∆ ̸= 0) was

discussed in [33], where it was shown that such a mismatch actually created ES.

To investigate the influence of varying the correlation between kin,j and ωj , we created a se-

quence of the appropriate degrees, chose values of ω from a Gaussian distribution and randomly

paired them. We then repeatedly performed Monte Carlo swaps of ω values; potential swaps

were accepted if they increased the Pearson correlation coefficient toward a target value – typ-

ically a positive number. This approach required substantial effort to satisfy high correlations

(≥ 0.9), since a sequence of ω randomly paired with degree sequences typically exhibited no

correlation. Alternatively, we maximised the correlation between the kin,j and ωj by initially

sorting both sequences as above. Aligning maximal-minimal values then produced the highest

possible correlation coefficient for given sequences which we then reduced using Monte Carlo

swaps, with swaps accepted if they pushed the correlation value toward a target value. Se-

quences of degrees and frequencies generated with this approach were assembled into adjacency
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matrices utilising our network assembly scheme, the “permutation method”, presented previ-

ously [20]. Note that with this approach of constructing networks the Ott/Antonsen approach

cannot be used, and we must simulate the resulting networks to determine their behaviour.

3.1. Results. We numerically investigate (16) with (14). We evaluate functions at all integer

in-degrees satisfying m+ 1 ≤ kin ≤ M − 1 to avoid the singularities in q̂−1 when its argument

is either 0 or 1, resulting in a moderately large set of ordinary differential equations. We could

use a more efficient method which approximates the sum in (14) with fewer “virtual” degrees

as explained in [15], but that is unnecessary here. Typically we integrate (16) to a stable fixed

point and then use pseudo-arclength continuation to follow the fixed point as parameters are

varied, determining the stability of the fixed point from the eigenvalues of the linearisation of

the dynamics about the fixed point [13, 9]. Periodic solutions are studied in a similar way by

putting a Poincaré section in the flow (at Re[b(m+1, t)] = 0) and integrating from this section

until the solution next hits this section. Stability is given by the Floquet multipliers of the

periodic solution.

The usual complex-valued order parameter defined for the network (1) is

Y (t) =
1

N

N∑
j=1

eiθj (27)

and for (16) the appropriate measure is

Z(t) =
∑
kin

p(kin)b̄(kin, t) (28)

We first vary ϵ with σ = 0.01. Results are shown in Fig. 2, where panel (a) shows results

from (16). For small ϵ (16) has a stable fixed point at which the network is incoherent, with

|Z| being small. As ϵ is increased the fixed point undergoes a subcritical Hopf bifurcation,

becoming unstable. (In the all-to-all coupled network, this Hopf bifurcation is supercritical.)

The unstable periodic orbit created in this bifurcation is shown with red crosses and it becomes

stable in a saddle-node bifurcation. Thus there is a small range of ϵ values for which the network

is bistable. (For periodic orbits, the quantity plotted on the vertical axis is the average over

one period of |Z(t)|.)
Panel (b) of Fig. 2 shows |Y | for the network (1) with ϵ quasistatically increased or decreased,

using the final state of the network at one value of ϵ as the initial condition for the next value.

The value plotted is the mean over 5000 time units of |Y (t)|. The bistability and hysteresis is

clear. Networks of the form used in (1) were created using the configuration model [?]. Both

self-connections and multiple connections between oscillators removed in a random way [16].

Values of ωj were then assigned as above, using Lorentzian distributions centred at target

frequencies.

Following the Hopf bifurcation and saddle-node bifurcation of periodic orbits shown in

Fig. 2(a) as both σ and ϵ are varied we obtain Fig. 3. Although the range of values of ϵ

for which the system is bistable is small, it increases as σ is increased. We have shown that

even with very different distributions of in-degrees and intrinsic frequencies, positively corre-

lating them can induce ES in a directed network of Winfree oscillators.

The results of our numerical investigation into the effects of varying the correlation between

the kin,j and ωj (ρkω) are shown in Fig 4 (panels C and D). We varied ρkω between 0.6 and

0.95 using the Monte-Carlo degree-swapping method explained above and for each network we
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Figure 2. (a): |Z| for fixed point (lines) and periodic solutions (symbols)

of (16). Blue solutions are stable while red are unstable. (b): |Y | for the

network (1). Black corresponds to increasing ϵ and magenta to decreasing.

Parameters: m = 100,M = 400, N = 2000, σ = 0.01,∆ = 0.0005.

0 0.01 0.02 0.03 0.04
0
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0.08
saddle-node p.o.
Hopf

Figure 3. Curves of Hopf and saddle-node bifurcations as seen in Fig. 2(a) as

both σ and ϵ are varied. The network is bistable between the curves. Parame-

ters: m = 100,M = 400,∆ = 0.0005.
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quasistatically increased or decreased the coupling strength ϵ and measured the time-averaged

value of |Y |. This is shown in Fig 4C where we see results similar to those in Fig. 2 — a small

region of bistability. Panel D of Fig 4 shows the fraction of effective frequencies as the coupling

strength is progressively increased, at ρkω = 0.95.

The distribution of frequencies and their fractional evolution corresponds to the mean and

standard deviation of the Gaussian distribution, and the highest concentration of frequen-

cies around the mean emerge dominant. However, the effects of having a large value of ρkω
for Gaussian distributed intrinsic frequencies is minimal compared with that for power law

distributed frequencies, considered next.

4. Power law frequency distribution

We keep the power law distribution of degrees (21) and now consider the case where the

target distribution frequency distribution is also power law distributed and limited between c

and C, but with the exponent as a parameter, i.e.

pω0(ω0) =

{
aω/ω

γ+1
0 c ≤ ω0 ≤ C

0 otherwise
(29)

where aω = γcγCγ/(Cγ − cγ). As above, having created a network we randomly choose target

frequencies from the distribution (29), then assign the smallest target frequency to the oscillator

with the smallest in-degree, all the way up to the largest target frequency being associated

with oscillator with the largest in-degree. The actual ωj are then chosen from a Lorentzian

with HWHM equal to ∆ centred at the target frequency, as above. The dependence of ω0 on

k is then

ω0(k) = p̂−1
ω0

(p̂(k)) (30)

where p̂ω0 is the cumulative distribution function of pω0 , i.e

p̂ω0(ω0) =
aω
γ

(
1

cγ
− 1

ωγ
0

)
(31)

4.1. Highly correlated degree and frequency.

4.1.1. Independent degrees. We first consider the case of independent degrees, as in Sec. 3.

Thus we numerically investigate (16) with (14), but using (30). We choose ∆ = 0.01, set

c = 1, C = 6, and initially choose γ = 2. As in Sec. 3, for small ϵ the system has a stable fixed

point and this becomes unstable through a subcritical Hopf bifurcation as ϵ is increased. The

results are shown in Fig. 5 where we see the periodic orbit created in the Hopf bifurcation,

giving the same scenario as in Fig. 2 (a). Quasistatically increasing ϵ the solution of (16)

would jump from a fixed point to a periodic state with amplitude significantly larger than

zero. Decreasing ϵ, the solution would jump from a finite-amplitude periodic orbit to a fixed

point. (As above, for periodic orbits, the quantity plotted on the vertical axis is the average

over one period of |Z(t)|.)
The behaviour of a particular realisation of the discrete network (1) is slightly different,

since a fixed point of (16) corresponds to an incoherent solution of (1) for which |Y | is not

constant, having small fluctuations about an average value. An example of such dynamics is

shown in Fig. 6(a), with ϵ = 0.92. (Other parameters have the same values as in Fig. 5.) We

see that most oscillators are oscillating, but with independent phases. Similarly, a periodic

solution of (16) corresponds to a solution of (1) for which |Y | is nearly periodic, with the vast
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Figure 4. Panels A and C: |Y | as ϵ is quasistatically varied for networks with

different values of ρkω. Panels B and D: Progression of mean-effective frequency

fraction distribution over increasing coupling strength ϵ, for ρkω = 0.95; note

distinct colour scales for effective frequency evolution due to underlying ω dis-

tributions (histograms, insets Panels B & D), and distinct ϵ scales reflecting

hysteresis over different coupling strengths. Panels A and B show results when

the intrinsic frequencies are power law distributed with an exponent of −3.07

and in- and out-degrees drawn from power law distribution with same exponent

and neutral correlation between the in- and out-degrees. Panels C and D show

results for Gaussian distributed frequencies with mean 1.0 and σ = 0.01, while

in- and out-degrees are power law distributed with exponent −2.66 and the

in-degrees are highly correlated with the out-degrees (ρ = 0.89).

majority of the oscillators having the same average frequency, as shown in Fig. 6(b) (ϵ = 1).

Some with high in-degree fire at multiples of this frequency and some are unlocked, giving a

state referred to by [1] as “partially locked hybrid states.” See also [26] for examples of these

dynamics.

However for γ = 1 the results are very different. As seen in Fig. 7(a) the branch with

the lower value of |Z| still undergoes a Hopf bifurcation. Numerical integration of (16) near

the bifurcation does not show a stable periodic orbit so this bifurcation seems subcritical,

creating an unstable periodic orbit as ϵ is decreased. This orbit never becomes stable, and we



EXPLOSIVE BEHAVIOUR IN NETWORKS OF WINFREE OSCILLATORS 11

Figure 5. |Z| for fixed point (lines) and periodic (symbols) solutions of (16).

Blue solutions are stable while red are unstable. Parameters: c = 1, C = 6,m =

100,M = 400, γ = 2,∆ = 0.01.

hypothesise that it is destroyed in a homoclinic bifurcation with the “middle” unstable branch.

Thus the system has no stable periodic orbits, but rather a region of bistability between two

fixed points with different values of |Z|. Either increasing or decreasing ϵ the network jumps

from one fixed point to another. Fig. 7(b) shows the mean firing rate F across the network

and we see that the branch with large |Z| has small F and vice versa. So even if |Z| is large,
normally indicating synchronous oscillations, here it corresponds to a state in which most of

the oscillators are locked at an approximate fixed point, not firing.

Fig. 8 shows (on a logarithmic scale) the expected frequency for oscillators with in-degree

kin, given by (19), for three coexisting steady states in Fig. 7 at ϵ = 1.7. The stable solution

with highest frequencies has the lowest value of |Z| and vice versa. Interestingly, for the upper

curve the frequency increases with in-degree kin, but for the lower two curves the maximum

frequency does not occur at either extreme of the kin values.

A third scenario occurs for γ = 1.5, as seen in Fig. 9. The fixed point that is stable for small

ϵ becomes unstable through a subcritical Hopf bifurcation as ϵ is increased as in Fig. 5, but the

stable periodic orbit is destroyed in a SNIC bifurcation which occurs at a slightly lower value

of ϵ than that at which the Hopf bifurcation occurs. So if ϵ is slowly increased the network

will jump from one fixed point to another fixed point. But if ϵ is then decreased the network

will switch from a fixed point to a stable periodic orbit. This stable orbit is then destroyed in

a saddle-node bifurcation as ϵ is further decreased and the network will jump to the original

fixed point.
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Figure 6. sin θ shown in colour for a simulation of (1). The oscillators are

sorted by their in-degree. (a): ϵ = 0.92. (b): ϵ = 1. Other parameters:

N = 5000, c = 1, C = 6,m = 100,M = 400, γ = 2,∆ = 0.01.

4.1.2. Identical degrees. We now consider the case of identical in- and out-degrees. We nu-

merically investigate (16) with (15), using the power law distribution of degrees (21) and the

power law distribution of frequencies (29). The results for γ = 2 are shown in Fig. 10. The

scenario is qualitatively the same as in Fig. 9, with bistability between either two fixed points

or between a fixed point and a periodic solution.

For γ = 1 we obtain Fig. 11, showing yet another scenario. Here there are no Hopf bifur-

cations, only two saddle-node bifurcations of fixed points, with region of bistability between

them.

All of the results reported in this section have been verified using simulations of the discrete

network (results not shown).

4.1.3. Varying degree-frequency correlation. We repeated our numerical investigation into the

effects of varying degree-frequency correlations — which we denoted ρkω — generated via the

Monte-Carlo swapping and permutation assembly method with power law distributed frequen-

cies. The results are shown in Fig. 4 panels A and B. Increasing ρkω corresponds with the

appearance and subsequent widening of the region of hysteresis, for the power law distributed

ω. The Gaussian distribution (Panels C and D) alternatively demonstrates hysteresis but with

narrowing at the highest level of correlation and is more sensitive to the network realisation,

or final assembly of the connectivity matrix A given the same degree and ω sequence. Some

realisations demonstrated hysteresis but others did not with all other elements identical, and
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Figure 7. (a) |Z| and (b) mean firing rate F for fixed points of (16). Solid:

stable; dashed: unstable. The bifurcation on the lower branch in (a) is a

subcritical Hopf. Parameters: c = 1, C = 6,m = 100,M = 400, γ = 1,∆ = 0.01.
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Figure 8. Expected frequency for oscillators with in-degree kin, given by (19),

for three coexisting steady states at ϵ = 1.7. See Fig. 7. Blue: stable solutions;

red: unstable solution. Other parameters: c = 1, C = 6,m = 100,M = 400, γ =

1,∆ = 0.01.
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Figure 9. |Z| for fixed point (lines) and periodic (symbols) solutions of (16).

Blue solutions are stable while red are unstable. The stable branch of periodic

orbits terminates at the SNIC bifurcation. Parameters: c = 1, C = 6,m =

100,M = 400, γ = 1.5,∆ = 0.01.

compared to the power law distributed frequencies, we observed less consistency in emergent

hysteresis across the multiple network realisations. Further, the Gaussian ω results are clearly

and simply noisier, partly due to the scale of plots showing hysteresis at far lower ϵ values.

This is also due to the modes of synchronisation for these two ω distributions: the Gaussian

with dynamic synchrony and the power law with destructive or a quiescent synchrony as ob-

served with locking the system at fixed points of zero frequency. Note the progression of mean

effective frequency distributions with increasing coupling strength (at the highest ρkω = 0.95),

where the power law ω system collapses into quiescence (Fig. 4 panel B) as opposed to the

scenario for Gaussian distributed ω (Fig. 4 panel D). Coherence frequencies emerge at levels

dictated by the concentration of ω values for each distribution: power law close to zero and

Gaussian close to the mean (µ = 1.0).

5. Discussion

We have considered directed networks of Winfree oscillators with truncated inverse power

law distributions of both in- and out-degrees. We considered the case of oscillators having

independent in- and out-degrees, and also the case where they are equal. For independent

degrees we examined both Gaussian and power law distributed intrinsic frequencies, having

these frequencies highly correlated with oscillators’ in-degrees as a result of sorting both sets
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Figure 10. Identical degrees. |Z| for fixed point (lines) and periodic (symbols)

solutions of (16). Blue solutions are stable while red are unstable. The stable

branch of periodic orbits terminates at the SNIC bifurcation. Parameters: c =

1, C = 6,m = 100,M = 400, γ = 2,∆ = 0.01.

and associating quantities of equal rank. We investigated the effects of varying this degree of

correlation. For identical in- and out-degrees we also considered power law distributed frequen-

cies with a positive correlation between an oscillator’s in-degree and its intrinsic frequency. We

varied both the width of the Gaussian frequency distribution (when used) and the exponent

in the power law frequency distribution and examined the transitions that occurred as the

strength of coupling within the network was varied.

In all cases shown there was an “explosive” transition as the coupling strength was varied

from one fixed point to another, or between a fixed point and a periodic solution. An exception

occurs with lower degree-frequency correlations for the power law frequency distributed case.

A variety of scenarios were seen. This is in contrast to the similar and much more widely

studied Kuramoto model, for which transitions are only between an incoherent fixed point and

a partially synchronous periodic solution [6, 8]. The range of scenarios is a result of the form of

a Winfree oscillator: for strong enough coupling an oscillator will approximately lock to a fixed

point, so that even though the measure of synchrony |Z| may increase as coupling strength is

increased, this does not necessarily correspond to synchronous firing, as can be seen in Figs. 7

and 11.
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Figure 11. Identical degrees. (a) |Z| and (b) mean firing rate F for fixed

points of (16). Solid: stable; dashed: unstable. Parameters: c = 1, C = 6,m =

100,M = 400, γ = 1,∆ = 0.01.
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[7] Rafael Gallego, Ernest Montbrió, and Diego Pazó. Synchronization scenarios in the winfree model of coupled

oscillators. Physical Review E, 96(4):042208, 2017.

[8] Jesús Gómez-Gardeñes, Sergio Gómez, Alex Arenas, and Yamir Moreno. Explosive synchronization transi-

tions in scale-free networks. Phys. Rev. Lett., 106:128701, Mar 2011.

[9] Willy JF Govaerts. Numerical methods for bifurcations of dynamical equilibria, volume 66. Siam, 2000.

[10] Seung-Yeal Ha, Jinyeong Park, and Sang Woo Ryoo. Emergence of phase-locked states for the winfree

model in a large coupling regime. Discrete & Continuous Dynamical Systems, 35(8):3417, 2015.

[11] Christian Kuehn and Christian Bick. A universal route to explosive phenomena. Science Advances,

7(16):eabe3824, 2021.

[12] Y. Kuramoto. Chemical oscillations, waves, and turbulence. Springer-Verlag, 1984.

[13] C. R. Laing. Numerical bifurcation theory for high-dimensional neural models. The Journal of Mathematical

Neuroscience, 4(1):1, 2014.



EXPLOSIVE BEHAVIOUR IN NETWORKS OF WINFREE OSCILLATORS 17

[14] Carlo R Laing. Effects of degree distributions in random networks of type-i neurons. Physical Review E,

103(5):052305, 2021.
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