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Abstract. We consider networks of quadratic integrate-and-fire neurons coupled via

both chemical synapses and gap junctions. After transforming to “theta neuron” co-

ordinates, a network’s governing equations are of a form amenable to the use of the

Ott/Antonsen ansatz. This ansatz allows us to derive an exact description of a net-

work’s dynamics in the limit of an infinite number of neurons. For an all-to-all con-

nected network we derive a single (complex) ordinary differential equation while for

spatially extended networks we derive neural field equations (nonlocal partial differ-

ential equations). We perform extensive numerical analysis of the resulting equations,

showing how the presence of gap junctional coupling can destroy certain spatiotempo-

ral patterns such as stationary “bump” solutions and create others such as travelling

waves and spatiotemporal chaos. Our results provide significant insight into the effects

of gap junctions on the dynamics of networks of Type I neurons.

1. Introduction

Neural field models have been used for many years to understand largescale spatiotem-

poral dynamics of the brain [9, 13, 20, 15, 2]. Specific applications include neurophys-

iological phenomena such as working memory [44], binocular rivalry [11], orientation

tuning in the visual cortex [4], the head direction system [66] and EEG rhythms [62].

The models normally take the form of nonlocal differential equations, where the non-

locality arises from long distance synaptic connections between different parts of the

cortex. The dynamic variables in such models are normally referred to as “average

somatic voltage” or “synaptic drive”, but despite this the derivation of a neural field

model from a particular network of individual neurons is often not discussed. When

such derivations are performed they normally rely on a number of assumptions such as

a separation of timescales between neuron and synaptic dynamics [9, 20].

Almost all neural field models studied so far have included synaptic connections but

have ignored the other common form of connectivity, namely gap junctions [6, 26]. At the

Date: June 29, 2015.

2000 Mathematics Subject Classification. 92C20, 34C15, 37G35, 34D06, 35B36.
Key words and phrases. neural field, quadratic integrate-and-fire, gap junction, Ott/Antonsen, bi-

furcation, theta neuron.
1



2 CARLO R. LAING

simplest level of description, gap junctions act by allowing a current to flow between two

connected neurons in direct proportion to the difference in voltages of the two neurons

(the current flows from high voltage to low voltage). Many authors have investigated

the effects of gap junctional coupling between model neurons, [14, 18, 12, 22, 32] often

using the assumption of weak coupling [29, 56]. Many of these studies have been for

pairs of neurons rather than networks [3, 47, 60, 30].

In this paper we give an exact derivation of neural field models for networks of qua-

dratic integrate-and-fire neurons, coupled through both synapses and gap junctions, thus

resolving (at least partially) the issues mentioned above. The models are exact in the

limit as the number of neurons goes to infinity, but we find that they predict well the

behaviour of large networks of individual neurons. Note that the derivations do not rely

on coupling being weak. Fully understanding all possible effects of gap junctional cou-

pling is clearly a huge undertaking, so here we focus on a small number of representative

scenarios.

Our work builds primarily on the results of Ermentrout on gap junction coupled

noisy theta neurons [22], Luke et al.’s success in applying the Ott/Antonsen ansatz to

networks of theta neurons [48], similar work by Montbrió et al. on quadratic integrate-

and-fire neurons [50], and the work of Laing [42]. The structure of the paper is as

follows. We consider all-to-all connected networks in Sec. 2, with both excitatory and

inhibitory synaptic coupling. In Sec. 3 we consider several one-dimensional networks of

neurons with spatially-structured coupling, one with Mexican-hat type coupling which

supports “bump” solutions, and one with purely excitatory coupling for which front

solutions exist. In Sec. 4 we study two-dimensional networks, but for brevity only

consider circularly-symmetric solutions. We conclude in Sec. 5.

2. All-to-all connectivity

Consider a network of N quadratic integrate-and-fire (QIF) neurons [46, 28], all-to-all

coupled via both synapses (which act by injecting currents into the neurons) and gap

junctions. Such neurons are canonical models for Type I neurons for which the onset of

firing is through a saddle-node on an invariant circle bifurcation [21]. Initially ignoring

synaptic coupling, the equations are

(1)
dVj
dt

= Ij + V 2
j +

g

N

N∑

k=1

(Vk − Vj)

for j = 1, 2, . . .N , with the rule that if Vj(t
−) = ∞ then Vj(t

+) = −∞. Ij is the current

injected into the jth neuron when all of them are uncoupled, and g is the strength of
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gap junction coupling. First, rewrite (1) as

(2)
dVj
dt

= Ij + V 2
j − gVj +

g

N

N∑

k=1

Vk.

Now let Vj = tan (θj/2) (the standard transformation to the “theta neuron” [24]). Then

(3)
dVj
dt

=
dθj/dt

2 cos2 (θj/2)
= Ij + tan2 (θj/2)− g tan (θj/2) +

g

N

N∑

k=1

tan (θk/2)

so

(4)
dθj
dt

= 1− cos θj + (1 + cos θj)

[
Ij − g tan (θj/2) +

g

N

N∑

k=1

tan (θk/2)

]

Noting that

(5) tan (θ/2) =
sin θ

1 + cos θ

we have

(6)
dθj
dt

= 1− cos θj − g sin θj + (1 + cos θj)

[
Ij +

g

N

N∑

k=1

tan (θk/2)

]

When a neuron fires, at θ = π, the term involving tan becomes infinite. To avoid this

problem we follow [22] and replace tan (θ/2) in (6) by

(7) q(θ) ≡ sin θ

1 + cos θ + ǫ

where 0 < ǫ≪ 1, thereby removing the singularity.

We now add synaptic coupling to the model, following [22]. Our full model is

(8)
dθj
dt

= 1− cos θj − g sin θj + (1 + cos θj)

[
Ij +

g

N

N∑

k=1

q(θk) + κs̄

]

where κ is the strength of synaptic coupling and

(9) s̄ =
1

N

N∑

k=1

sk,

where each sk satisfies

(10) τ
dsk
dt

= an(1− cos θk)
n − sk; n ∈ N

+

and an is chosen so that

(11)

∫ 2π

0

an(1− cos θ)ndθ = 2π



4 CARLO R. LAING

i.e. an = 2n(n!)2/(2n)!. Setting τ = 0 we recover the instantaneous synapses of [48].

We assume that the Ij are randomly chosen from a distribution h(I) and take the

continuum limit, N → ∞. The system is then described by the probability density

function F (I, θ, t) which satisfies [51, 64, 1]

(12)
∂F

∂t
+

∂

∂θ
(Fv) = 0

where

(13) v(I, θ, t) ≡ 1− cos θ − g sin θ + (1 + cos θ) [I + gQ(t) + κS(t)] ,

where

(14) Q(t) ≡
∫ ∞

−∞

∫ 2π

0

F (I, θ, t)q(θ) dθ dI

and S(t) satisfies

(15) τ
dS

dt
=

∫ ∞

−∞

∫ 2π

0

F (I, θ, t)an(1− cos θ)n dθ dI − S.

We also introduce the complex order parameter, as considered by Kuramoto in the

context of coupled phase oscillators [33, 64]

(16) z(t) ≡
∫ ∞

−∞

∫ 2π

0

F (I, θ, t)eiθ dθ dI.

The form of (13) means that (12) is amenable to the use of the Ott/Antonsen ansatz [54,

53], and thus we write

(17) F (I, θ, t) =
h(I)

2π

{
1 +

∞∑

j=1

[α(I, t)]jejiθ + c.c.

}

for some function α, where “c.c.” means the complex conjugate of the previous term.

Functions of the form (17) are said to lie on the Ott/Antonsen (OA) manifold and [54, 53]

showed that solutions of (12), where v is of a particular form, exponentially decay onto

the OA manifold provided the oscillators are not identical. Thus we can determine

the asymptotic dynamics of (12) by restricting to the OA manifold. Substituting the

ansatz (17) into (16) we have

(18) z(t) =

∫ ∞

−∞

h(I)ᾱ(I, t) dI
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where overbar indicates complex conjugate. If h(I) is the Lorentzian centered at I = I0,

with width ∆, i.e.

(19) h(I) =
∆/π

(I − I0)2 +∆2

then z(t) = ᾱ(I0+i∆, t) [53]. Repeating calculations from [61, 42] we find that S satisfies

(20) τ
dS

dt
= H(z(t);n)− S

where

(21) H(z;n) = an

[
C0 +

n∑

j=1

Cj(z
j + z̄j)

]

and

(22) Cj =

n∑

k=0

k∑

m=0

δk−2m,jPkj

and

(23) Pkj =
n!(−1)k

2k(n− k)!j!(k − j)!

It can be shown that for impulsive coupling, H(z;∞) = (1−|z|2)/(1+ z+ z̄+ |z|2). We

will set n = 2 in all following calculations. We express q(θ) in the Fourier series

(24) q(θ) =

∞∑

m=−∞

bme
imθ

where

(25) bm =
1

2π

∫ 2π

0

q(θ)e−imθ dθ

Note that b0 = 0, each bm is imaginary and that b−m = b̄m. For m ≥ 1 we have

(26) bm =
i(ρm+1 − ρm−1)

2(ρ+ 1 + ǫ)

where ρ ≡
√
2ǫ+ ǫ2 − 1− ǫ. Thus

(27)

∫ 2π

0

F (I, θ, t)q(θ) dθ = h(I)
∞∑

m=1

(bmᾱ
m + c.c.)

and

(28) Q(t) =
∞∑

m=1

(bmz
m + c.c.)
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We will set ǫ = 0.01 and truncate (28) after 100 terms in all following calculations. Now

from the form of (13) we know [49] that α satisfies

∂α

∂t
= −i

[
I + gQ+ κS − 1 + ig

2
+ (1 + I + gQ+ κS)α

+

(
I + gQ+ κS − 1− ig

2

)
α2

]
(29)

and evaluating this at I = I0 + i∆ we obtain

(30)
dz

dt
=

(iI0 −∆)(1 + z)2 − i(1− z)2

2
+
i(1 + z)2(gQ+ κS) + g(1− z2)

2

The first term in (30) describes the dynamics of the uncoupled network, and the second,

the influence of coupling, both synaptic and gap junctional. Equations (30) and (20)

exactly describe the dynamics of the network, where Q is given by (28). One physical

meaning of z ∈ C is as follows: writing z(t) = r(t)eiψ(t) and marginalising (17) over I

we obtain the probability density function

(31) p(θ, t) =
1− r2(t)

2π{1− 2r(t) cos [θ − ψ(t)] + r2(t)}
which is a unimodal function of θ with maximum at θ = ψ, and whose sharpness is

governed by the value of r [42, 39]. For an alternative interpretation, we follow [50] and

define

(32) w ≡ 1− z̄

1 + z̄
=

1 + 2ir sinψ − r2

1 + 2r cosψ + r2
.

In the continuum limit, the firing rate of (8), f , is equal to the flux through θ = π, i.e.

(33) f = v(I, π, t)p(π, t) =
Re(w)

π
.

If V = tan (θ/2) we can show using (31) that the expected value of V in the original

quadratic integrate-and-fire network, V̂ , is given by V̂ = Im(w). Writing (30) in terms

of w we obtain

(34)
dw

dt
= iI0 +∆− iw2 + i(gQ+ κS)− gw

and writing w = πf + iV̂ , (34) becomes the two real equations

df

dt
=

∆

π
+ 2fV̂ − gf(35)

dV̂

dt
= I0 − π2f 2 + V̂ 2 + g(Q− V̂ ) + κS(36)
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where Q and S can be determined as functions of w by writing z = (1 − w̄)/(1 + w̄) =

(1−πf+iV̂ )/(1+πf−iV̂ ). Equations (35)-(36) provide a description equivalent to (30),

but we will study (30) and its analogues, and will sometime use (32)-(33) to extract the

meaningful quantity f from a calculation. Note that setting g = 0 and S = f in (35)-

(36) we obtain equations (12a) and (12b) in [50]. (The replacement of S with f is a

result of [50] defining synaptic dynamics slightly differently than in (10).)

The system (30) and (20) was analysed by [48] for g = 0 (i.e. no gap junction coupling)

and τ = 0 (instantaneous synapses). They found that the system supported stable fixed

points, stable periodic orbits, and sometimes the coexistence of these, depending on

parameter values. We will now examine two cases, focussing on the effects of g > 0.

2.1. Results (excitatory coupling). We take τ = 0 for simplicity, set ∆ = 0.05, and

consider I0 = −0.3, i.e. a case where most neurons are quiescent when uncoupled. Luke

et al. [48] found that for g = 0, there was a range of κ values for which the system had

three fixed points, two of which were stable, and otherwise only one fixed point existed,

and this was stable, as shown in Fig. 1.

We investigate the effect of gap junction coupling on this dynamics by numerically

following fixed points and their bifurcations. The results are shown in Fig. 2, where

various bifurcation curves are shown. In regions A,E and F there is one fixed point; it is

stable in regions A and F, and unstable in E. In regions B,C and D there are three fixed

points; only one is stable in regions B and C, and two are stable in region D. A stable

periodic orbit exists in regions C and E. There is bistability only in regions C and D.

We see that (for this parameter set) including gap junctions (i.e. increasing g from 0)

can induce oscillations via a Hopf bifurcation, and destroy bistability.

Figure 3 shows the dynamics as g is increased from zero at κ = 1.3, i.e. passing

from region D to C. In region D there is a stable fixed point, and the (constant) mean

frequency f of the network is plotted in panel (a) of Fig. 3. As g is increased this fixed

point undergoes a supercritical Hopf bifurcation, leading to oscillations in z, and thus

in f . The maximum and minimum of f during one period of oscillation are also shown

in panel (a) of Fig. 3. The period of this macroscopic oscillation is shown in panel (b)

of Fig. 3; it increases rapidly as the homoclinic bifurcation is approached. This scenario

is qualitatively the same as that observed by [22].

Figure 4 shows the behaviour of both a finite network (8) and the continuum de-

scription (30) and (20) at a point in region A in Fig. 2. We see that most neurons are

quiescent, as reflected by the very low firing rate f . The magnitude of z is close to 1,

indicating that the phases of the oscillators are very similar. The argument of z gives the
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Figure 1. Average firing rate (from (33)) at fixed points of (30) as a

function of κ for g = 0. Solid: stable; dashed: unstable. Parameters:

τ = 0, I0 = −0.3,∆ = 0.05.

average of the phases — it is close to −1, i.e. near the stable fixed point of an uncoupled

neuron with subthreshold input.

Figure 5 shows similar behaviour but for a point in region E, clearly showing the

macroscopic oscillations in both the order parameter z and the instantaneous firing rate

f . Figure 6 shows the long time average firing frequency of neurons for the parameter

values used in Fig. 5. We see that while several hundred of the neurons are synchronised

and fire at the same frequency at which the mean field oscillates, i.e. once per oscillation,

the majority are not synchronised and fire at a higher frequency.

2.2. Results (inhibitory coupling). We next consider the case κ = −9 (i.e. strong

inhibitory synaptic coupling), keeping τ = 0,∆ = 0.05. Varying I0 with g = 0 we

find the scenario shown in Fig. 7. For these parameter values there is a small range

of I0 values for which the system shows bistability, either between two fixed points, or

between a periodic orbit and a fixed point.

The results of increasing g are shown in Fig. 8. (The leftmost saddle-node bifurcation

is not shown, as it only involves unstable solutions.) The Hopf bifurcation changes from

supercritical to subcritical as g is increased, corresponding to the start of the curve of
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Figure 2. Bifurcations of (30) and (20). Solid black curves: saddle-node

bifurcations of fixed points; dashed red curve: homoclinic bifurcation;

dash-dotted blue curve: Hopf bifurcation. Fig. 1 corresponds to a hori-

zontal “slice” through this Figure at g = 0, while Fig. 3 corresponds to a

vertical “slice” at κ = 1.3. See text for further explanation. Parameters:

τ = 0, I0 = −0.3,∆ = 0.05.

saddle-node bifurcations of periodic orbits (magenta). For simplicity we only describe

the dynamics in the large regions A,B,C and D. There are three fixed points in regions

A,B and C, and only one (which is stable) in region D. In region A only one fixed point

is stable, whereas in regions B and C two are stable, and thus there is bistability in

regions B and C. We see that (roughly speaking, and for this parameter set) increasing

g stabilises a fixed point with high average firing frequency (in regions B and C). The

results shown in Fig. 8 have been verified in simulations of appropriate finite networks

of neurons (not shown).

We now move on to study networks with spatial structure.
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Figure 3. Hopf and homoclinic bifurcations in regions D and C in Fig. 2.

(a): maximum and minimum of f over one oscillation. (b): period of the

macroscopic oscillation. κ = 1.3. Other parameters as in Fig. 2.

3. One spatial dimension

We consider N QIF neurons, equally-spaced on a one-dimensional domain of length

L, with periodic boundary conditions. Each neuron is connected via a gap junction

with strength g to its M neighbours either side, a coupling previously used by [29], for

example. (Since gap junctions occur when the bodies of two neurons touch, it is natural

for this type of coupling to be relatively local.) Thus the dynamics without synapses are

(37)
dVj
dt

= Ij + V 2
j +

g

2M + 1

j+M∑

k=j−M

(Vk − Vj)

for j = 1, 2, . . .N , where indices are taken mod N . Changing variables and approximat-

ing the tan term as in Sec. 2 we obtain

(38)
dθj
dt

= 1− cos θj − g sin θj + (1 + cos θj)

[
Ij +

g

2M + 1

j+M∑

k=j−M

q(θk)

]

Including synaptic coupling we have

(39)
dθj
dt

= 1− cos θj − g sin θj + (1 + cos θj)

[
Ij +

g

2M + 1

j+M∑

k=j−M

q(θk) + sj

]

where each sj satisfies

(40) τ
dsj
dt

=
anL

N

N∑

k=1

wjk(1− cos θk)
n − sj
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Figure 4. Top: sin θ for N = 1000 model neurons. Bottom: results

of simulating (30) and calculating f using (32)-(33). Parameters: κ =

0.5, g = 0.4, τ = 0, I0 = −0.3,∆ = 0.05.

the n and an are as above and

(41) wjk = w(|j − k|∆x)
where ∆x = L/N and the coupling function w will be specified below. The coupling

strength between neurons depends only on the distance between them; this type of

coupling is commonly used in neural field modelling [13, 20, 15].

Taking the limit N,M → ∞ in such a way that M/N → α, where 0 < α < 1/2, we

describe the system by the probability density function F (x, I, θ, t). This satisfies (12),

but with

(42) v(x, I, θ, t) ≡ 1− cos θ − g sin θ + (1 + cos θ) [I + gQ(x, t) + S(x, t)]

where

(43) Q(x, t) =

∫ L

0

C(x− y)

∫ ∞

−∞

∫ 2π

0

F (y, I, θ, t)q(θ) dθ dI dy
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Figure 5. Top: sin θ for N = 1000 model neurons. Bottom: results of

simulating (30) and calculating f using (32)-(33). Parameters: κ = 3, g =

0.2, τ = 0, I0 = −0.3,∆ = 0.05.

and

(44) C(x) =

{
1

2αL
, |x| < αL

0, otherwise

and S satisfies

(45) τ
∂S(x, t)

∂t
=

∫ L

0

w(x− y)

∫ ∞

−∞

∫ 2π

0

F (y, I, θ, t)an(1− cos θ)n dθ dI dy − S(x, t)

where the spatial integrals are evaluated using periodic boundary conditions. Note that

as α→ 0, i.e. the spatial extent of the gap junction coupling tends to zero, C(x) → δ(x)

and we have

(46) Q(x, t) =

∫ ∞

−∞

∫ 2π

0

F (x, I, θ, t)q(θ) dθ dI.
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Figure 6. Average firing frequency of neurons for the simulation in

Fig. 5. The neurons have been ordered by their Ij value, and the ver-

tical scale has been truncated. Note that several neurons are quiescent.

Defining the spatial order parameter

(47) z(x, t) ≡
∫ ∞

−∞

∫ 2π

0

F (x, I, θ, t)eiθ dθ dI

and repeating the analysis in Sec. 2 we obtain

(48)
∂z

∂t
=

(iI0 −∆)(1 + z)2 − i(1− z)2

2
+
i(1 + z)2(gQ+ S) + g(1− z2)

2

where

(49) Q(x, t) =

∫ L

0

C(x− y)

∞∑

m=1

{bm[z(y, t)]m + c.c.} dy

and S(x, t) satisfies

(50) τ
∂S(x, t)

∂t
=

∫ L

0

w(x− y)H [z(y, t);n] dy − S(x, t)

where the bm and the function H are as in Sec. 2. Setting g = 0 and τ = 0 we obtain

the model briefly presented in [42]. In this section we concentrate on investigating the
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Figure 7. Average firing rate (from (33)) at fixed points of (30) as a func-

tion of I0 for g = 0. Solid: stable; dashed: unstable. As I0 is increased

a stable and unstable periodic orbit are created in a saddle-node bifurca-

tion (red dash-dotted line). The unstable one is destroyed in a homoclinic

bifurcation (green dash-dotted line) and the stable one is destroyed in a

supercritical Hopf bifurcation (black dash-dotted line). Panel (b) shows

detail of (a). Parameters: τ = 0, κ = −9,∆ = 0.05.

effects of having g 6= 0. For simplicity we will set τ = 0, i.e. we have

(51) S(x, t) =

∫ L

0

w(x− y)H [z(y, t);n] dy
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Figure 8. Bifurcations of (30) and (20). Solid black curve: saddle-node

bifurcation of fixed points; red dashed curve: homoclinic bifurcation; blue

dash-dotted curve: Hopf bifurcation; solid magenta curve: saddle-node

bifurcation of periodic orbits. Fig. 7 corresponds to a horizontal “slice”

through this Figure at g = 0. Panel (b) is an enlargement of panel (a).

See text for further explanation. Parameters: τ = 0, κ = −9,∆ = 0.05.

The frequency profile of a solution can be calculated using the spatial version of (32)-

(33), and we will use this to visualise solutions.
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3.1. Mexican hat coupling. First consider Mexican hat coupling, as in [42]. We

choose L = 2π and w(x) = 0.2 + 0.6 cosx. Setting g = 0 we obtain the behaviour

shown in Fig. 9, where the mean drive, I0, is varied and we plot quantities related to the

spatial frequency profile. The spatially uniform state shows the expected “S-shaped”

curve for net positive feedback (the average of w, in this case). This state undergoes

two pitchfork bifurcations, creating “one-bump” states which have spatial structure,

as previously seen in [38], for example. For different values of I0, either one, two or

three different states are stable, hence the interest in such models for understanding

working memory [9, 45, 65]. (The numerical results were obtained by discretising the

integrals in (49) and (51) using a spatially-uniform grid of several hundred points and

then following the fixed points of (48) as parameters were varied. Bifurcations were

detected by determining the stability of these fixed points (from the eigenvalues of the

linearisation of (48) about them) in the usual way [43, 19].)

In order to understand the effects of including gap junction coupling we will increase

g from zero when I0 = −0.35. From Fig. 9 we see that at this value of I0 there exist

three stable solutions (two spatially-uniform and one bump) and three unstable solutions

(one spatially-uniform and two bump). The results are shown in Fig. 10. We see that

as g is increased, two of the stable solutions that exist at g = 0 successively become

unstable. (The spatially uniform solution with low average firing rate remains stable

as g is increased). The first solution to become unstable is the spatially-uniform state

with high average frequency. This undergoes a Hopf bifurcation at g ≈ 0.1. It is not

clear whether this bifurcation is subcritical or supercitical, but for g = 0.2 an initial

condition near this state rapidly approaches the bump state, which is stable (results not

shown). The second solution to become unstable as g is increased is the bump solution.

This undergoes a Hopf bifurcation, which appears to be supercritical. Fig 11 shows the

behaviour of the bump state when g is increased step-wise. The oscillations after the

bifurcation are clear. One interesting observation concerns the long time average firing

frequency of the solution shown in Fig. 11, as plotted in Fig. 12. Without gap junction

coupling we see the typical “bump” profile, but once gap junctions are included the

bump top flattens, indicating that neurons in the centre are synchronised. This does

happen, as shown in Fig. 13 where we have simulated the discrete network (39) with

N = 4096 neurons for a long time, for g = 0 (left) and g = 0.6 (right). The typical

“bump” profile is seen before the bifurcation, and a region of synchrony in the centre of

the bump after the bifurcation.

As g is increased further other spatiotemporal patterns may become stable. For

example, the travelling wave shown in Fig. 14 is stable when g = 1. For this wave, the
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Figure 9. The steady states of (48), (49) and (51). Top: average firing

frequency over the whole network for spatially-uniform states (blue) and

bump states (red). Circles indicate stable solutions and crosses, unstable.

Bottom: maximum firing frequency minus minimum firing frequency, over

the spatial domain. This is zero for spatially uniform states (not shown).

Parameters: g = 0,∆ = 0.05.

argument of z varies through π (corresponding to firing) once as we move around the

domain, i.e. it is a “one-shot” wave, where at any instant in time, neurons at one point
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Figure 10. The steady states of (48), (49) and (51). Top: average firing

frequency over the whole network for spatially-uniform states (blue) and

bump states (red). Circles indicate stable solutions and crosses, unstable.

Bottom: maximum firing frequency minus minimum firing frequency, over

the spatial domain. This is zero for spatially uniform states (not shown).

Parameters: I0 = −0.35,∆ = 0.05, α = 1/16.

of the domain are firing, and this point travels at a constant speed around the domain.

This wave is of the same form as that studied in [23], although these authors considered
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(the maximum is trucated). Gap junction coupling strength g is switched

from 0 to 0.6 at t = 20. Parameters: I0 = −0.35,∆ = 0.05, α = 1/16.
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Figure 12. Long-time average firing frequency of the solution in Fig. 11.

Left: g = 0, right: g = 0.6. Parameters: I0 = −0.35,∆ = 0.05, α = 1/16.

identical neurons and no gap junction coupling. This wave travels with a constant speed

and shape, and thus is stationary in a coordinate frame which is uniformly translating

at the appropriate speed. Letting ξ = x+ ct we can write (48) as

∂z(ξ, t)

∂t
=− c

∂z(ξ, t)

∂ξ
+

(iI0 −∆)[1 + z(ξ, t)]2 − i[1 − z(ξ, t)]2

2

+
i[1 + z(ξ, t)]2[gQ(ξ, t) + S(ξ, t)] + g[1− z2(ξ, t)]

2
(52)
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Figure 13. Average firing frequency for a network of N = 4096 neurons.

Left: g = 0, right: g = 0.6. Compare with Fig. 12. Parameters: I0 =

−0.35,∆ = 0.05, α = 1/16.

If c is the speed of the wave shown in Fig. 14, it will be a stationary solution of (52),

i.e. it will satisfy

0 =− c
dz(ξ)

dξ
+

(iI0 −∆)[1 + z(ξ)]2 − i[1− z(ξ)]2

2

+
i[1 + z(ξ)]2[gQ(ξ) + S(ξ)] + g[1− z2(ξ)]

2
(53)

We can follow a solution of (53) as parameters are varied and determine its stability

by linearising (52) about it, in the standard way [19, 43]. The results of doing this are

shown in Fig. 15. As g is decreased the wave is destroyed in a saddle-node bifurcation

and does not restabilise. In particular, it does not exists when g = 0. As g is increased

it becomes unstable through a Hopf bifurcation, leading to a “breathing” wave whose

shape oscillates at it travels.

While we have concentrated on the value I0 = −0.35 above, the results shown are by

no means all that can occur. For example, when (I0, g) = (0, 0.6), the system (48), (49)

and (51) appears to show spatiotemporally chaotic solutions; see Fig. 16, top and middle

panels. A simulation of the discrete network (39) shows qualitatively similar behaviour

(Fig. 16, bottom panel).

The Mexican-hat connectivity function we have used with one population of neu-

rons is an approximation to the more realistic case of two populations (excitatory and

inhibitory) which have non-negative coupling functions both within and between pop-

ulations [58]. Using this form of model we could then include gap junctions in either

population (or with different strengths and connectivities within both populations) which

is likely to be more realistic [63, 25]. The disadvantage of this is that we then have more
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Figure 14. A stable travelling wave that exists for g = 1. It is travelling

to the left. Parameters: I0 = −0.35,∆ = 0.05, α = 1/16.
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Figure 15. Speed of the travelling wave shown in Fig. 14. Solid curves

are stable, dashed unstable. Parameters: I0 = −0.35,∆ = 0.05, α = 1/16.

parameters which need to be chosen (or which could be varied), particularly if different

synaptic dynamics are used for the two populations.

3.2. Excitatory coupling. We now consider a network with purely positive coupling,

as opposed to the Mexican-hat coupling in Sec. 3.1, setting w(x) = (3/4)e−|x|. This

could model a situation in which inhibitory synaptic connections have been blocked,
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Figure 16. Spatiotemporal chaos. Top (|z|) and middle (sin (arg z)):

simulation of the continuum description (48), (49) and (51). Bottom:

simulation of the discrete system (39), N = 4096 (sin θi is shown). Pa-

rameters: g = 0.6, I0 = 0,∆ = 0.05, α = 1/16.

for example [57]. Because the mean of w is positive, we expect there to be a range of

parameters for which two spatially uniform states are stable: one with most neurons

quiescent and one with most firing incoherently. Initialising part of the domain in one of

these states and the remainder in the other state, one expects to find the development
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of a front connecting the two states, which will eventually move at a constant speed [40].

An example is shown in Fig. 17 on a domain of length L = 40 (boundary conditions are

∂z/∂x = 0 at both boundaries). For these parameter values the high frequency state

(left) invades the low frequency state (right). Since these waves travel with a constant

speed and profile, they can be investigated in the same way as the wave shown in Fig. 14.

Starting with the wave shown in Fig. 17 and increasing g we obtain the result shown

in Fig. 18. The gap junction coupling initially decreases the front speed and then

destabilises it via a Hopf bifurcation. The magnitude of the corresponding eigenfunction

is large where f is large and vice versa, so we expect the associated oscillations to appear

in the trailing end of the wave. This is demonstrated in Fig. 19, where we instantaneously

increase g once a front has developed and observe both the slowing of the front and the

oscillations in its tail.

4. Two spatial dimensions

Much insight can be gained by studying a one-dimensional domain, but the layered

structure of the cortex suggests that it is best treated as two-dimensional. Thus we now

consider a network of neurons in a two-dimensional domain. Taking the appropriate

limits the dynamics is still given by

(54)
∂z

∂t
=

(iI0 −∆)(1 + z)2 − i(1− z)2

2
+
i(1 + z)2(gQ+ S) + g(1− z2)

2

but we now have

(55) Q(x, t) =

∫

R2

C(|x− y|)B(y, t)dy

where

(56) B(y, t) ≡
∞∑

m=1

{bm[z(y, t)]m + c.c.}

and (setting τ = 0)

(57) S(x, t) =

∫

R2

w(|x− y|)H [z(y, t);n] dy

where bold indicates a two-dimensional vector. For simplicity we restrict to circularly-

symmetric solutions. Moving to polar coordinates and writing x = (r, θ) and y = (r′, θ′)

we have

(58) Q(r, t) =

∫ ∞

0

∫ 2π

0

C
(√

r2 + r′2 − 2rr′ cos θ′
)
B(r′, t)r′ dθ′ dr′



24 CARLO R. LAING

0 10 20 30 40
0

0.1

0.2

0.3

0.4

x

f

0 10 20 30 40
0

0.2

0.4

0.6

0.8

x

R
e(

z)

0 10 20 30 40
−1

−0.5

0

0.5

x

Im
(z

)

Figure 17. A front solution of (48), (49) and (51), travelling to the

right. Top: frequency f ; middle: Re(z); bottom: Im(z). Parameters:

g = 0, I0 = −0.52,∆ = 0.05, L = 40.

where, without loss of generality, we have set θ = 0. Defining C̃(ρ) to be the Hankel

transform of C, i.e.

(59) C̃(ρ) =

∫ ∞

0

C(r)J0(ρr)r dr
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Figure 18. Speed of a front solution of (48), (49) and (51). Solid: stable,

dashed: unstable. Neurons are jap junction coupled to those within a

distance of 2.5 spatial units either side. Parameters: I0 = −0.52,∆ =

0.05, L = 40.

where J0 is the Bessel function of the first kind of order 0, we have

(60) C(r) =

∫ ∞

0

C̃(ρ)J0(ρr)ρ dρ

and substituting into (58) we have

(61) Q(r, t) =

∫ ∞

0

∫ 2π

0

∫ ∞

0

C̃(ρ)J0

(
ρ
√
r2 + r′2 − 2rr′ cos θ′

)
B(r′, t)ρr′ dρ dθ′ dr′

Using a summation theorem for Bessel functions [8, 27] and integrating over θ′ we find

Q(r, t) = 2π

∫ ∞

0

∫ ∞

0

C̃(ρ)J0(ρr)J0(ρr
′)B(r′, t)ρr′ dρ dr′(62)

= 2π

∫ ∞

0

B(r′, t)r′
∫ ∞

0

C̃(ρ)J0(ρr)J0(ρr
′)ρ dρ dr′

If, for example,

(63) C(r) =
e−r

2/(2α2)

2πα2
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Figure 19. Top: Re(z). Bottom: Im(z). g is switched from 0 to 0.12 at

t = 100. Neurons are jap junction coupled to those within a distance of

2.5 spatial units either side. Parameters: I0 = −0.52,∆ = 0.05, L = 40.

i.e. neurons are gap junction coupled with a strength which is Gaussian in distance, with

characteristic length α, then

(64) C̃(ρ) =
e−α

2ρ2/2

2π



EXACT NEURAL FIELDS INCORPORATING GAP JUNCTIONS 27

and

(65)

∫ ∞

0

C̃(ρ)J0(ρr)J0(ρr
′)ρ dρ =

1

2πα2
I0

(
rr′

α2

)
exp

(−(r2 + r′2)

2α2

)

where I0 is the modified Bessel function of the first kind of order 0 and thus

(66) Q(r, t) =
1

α2

∫ ∞

0

B(r′, t)I0

(
rr′

α2

)
exp

(−(r2 + r′2)

2α2

)
r′ dr′

Note that

(67)

∫ 2π

0

∫ ∞

0

C(r)rdrdθ = 1

independent of α. Now (57) is of the same form as (55), i.e. a two-dimensional convolu-

tion, so we can write

(68) S(r, t) = 2π

∫ ∞

0

H(r′, t)r′
∫ ∞

0

w̃(ρ)J0(ρr)J0(ρr
′)ρ dρ dr′

where we have dropped the dependence of H on n and w̃(ρ) is the Hankel transform of

w(r). As several others have done [16, 10] we choose w(r) to be a linear combination of

modified Bessel functions of the second kind giving a Mexican-hat shape (see Fig. 20):

(69) w(r) = 1.25K0(r)−K0(2r)− 0.25K0(r/2)

We have

(70) w̃(ρ) =
1.25

1 + ρ2
− 1

4 + ρ2
− 0.25

1/4 + ρ2

and thus
∫ ∞

0

w̃(ρ)J0(ρr)J0(ρr
′)ρ dρ ≡ L(r, r′)(71)

=

{
1.25I0(r)K0(r

′)− I0(2r)K0(2r
′)− 0.25I0(r/2)K0(r

′/2) if r < r′

1.25I0(r
′)K0(r)− I0(2r

′)K0(2r)− 0.25I0(r
′/2)K0(r/2) if r′ < r

and so

(72) S(r, t) = 2π

∫ ∞

0

H(r′, t)L(r, r′)r′ dr′

For some parameters a spatially-localised bump solution centred at the origin is stable.

Following this solution as g is increased we obtain the results in Fig. 21: the stable bump

solution is destroyed in a saddle-node bifurcation. (Note that the mostly quiescent state

is also stable for these parameter values.)
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Figure 20. The synaptic coupling function w(r) as given by (69).

Using other coupling functions such as a decaying oscillatory one may mean that

the system can support more interesting solutions such as rings or multiple bump so-

lutions [36, 59]. The stability of circularly symmetric solutions with respect to pertur-

bations which break the circular symmetry of the underlying solution could then be

investigated, as others have done for classical neural field models [10, 16, 9, 55]. Such

a system may also support spiral waves [35]. Note that [52] observed both spiral and

“lurching” waves in two-dimensional networks of synaptically coupled theta neurons,

although they included spike frequency adaptation [5], which we have not addressed

here.

5. Summary and Discussion

In conclusion, we have derived exact evolution equations describing the asymptotic dy-

namics of infinite networks of quadratic integrate-and-fire neurons, coupled by synapses

and gap junctions, in zero, one and two spatial dimensions. In one and two spatial di-

mensions these equations have the form of neural field models [9, 13, 20], being nonlocal

evolution equations for a macroscopic quantity, in this case a complex order parameter.

Physically meaningful variables can be derived from this complex variable using the

transformation (32) and then taking real and imaginary parts. We can summarise our
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Figure 21. (a): Re(z) at r = 0 for a family of stationary solutions

of (54), (66) and (72), as a function of gap junction coupling strength

g. Solid: stable; dashed: unstable. (b) and (c) show the magnitude and

argument of z(r), and the average frequency, at the point shown by the

red circle in panel (a). Parameters: I0 = −0.2,∆ = 0.05, α = 1.

results by saying that (for the parameter sets we have chosen) including gap junctions

removes multistability by destroying (in saddle-node bifurcations) or making unstable

(through Hopf bifurcations) solutions for which the majority of neurons are firing, when

synaptic connections are largely (or completely) positive. When inhibitory synaptic con-

nections are present (as in Sec. 2.2) gap junctions act to stabilise an otherwise unstable

state with high firing rate. The presence of gap junctions has little effect on solutions for

which most neurons are quiescent, as it seems to only act to make the neurons’ states

more similar.

We now compare our results with those of others. Ermentrout [22] considered a

network similar to (8) but with dynamic synapses (i.e. τ 6= 0), n = 5, and with white

noise added to the original voltage dynamics. He numerically analysed the resulting
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Fokker-Planck equation and found a scenario equivalent to passing from region D to C

to B in Fig. 2 as gap junction strength was increased, for both the high activity state and

the low activity state, which is consistent with our results (see Fig. 3). By not including

noise in our model we have been able to describe the network with a single ODE rather

than a probability density function, and thus easily determine which bifurcations occur.

Laing [38] considered a model similar to (39)-(40) although using leaky integrate-and-fire

neurons with added white noise. Using the “equation-free” approach he followed saddle-

node bifurcations of the type seen in Fig. 9 as gap junction strength was increased.

That analysis relied on the synapses being sufficiently slow, so that a separation of

timescales occurred, and we have not attempted a similar calculation here. Steyn-Ross

et al. [63] took an established neural field model in which some of the dynamic variables

are “mean voltage” and included the effects of gap junctions via diffusion acting on these

mean voltages. While gap junctional coupling between spiking neurons does provide a

diffusive coupling in voltage, it is not clear that their approach was correct, given that

action potentials were already removed in the derivation of their original model, which

describes the dynamics of population-averaged voltages and firing rates. Nevertheless,

they found that including gap junctions promoted the formation of stationary Turing

patterns, which is consistent with Fig. 10, where we see the spatially uniform state with

high activity become unstable to a bump state as g is increased.

Clearly we have not given a complete description of the dynamics of the networks

considered, and now briefly discuss various parameters that could be varied. Increasing

n from n = 2 will sharpen the synaptic input. Setting τ 6= 0 will introduce synaptic

dynamics, thus increasing the number of dynamic variables. Synaptic timescales are

known to be important when determining the stability of solutions, [7, 45, 58] so varying

τ may introduce new dynamics. We have only considered the level of heterogeneity

∆ = 0.05. It is not clear whether this should be regarded as small or large, but it

has been shown that increasing such a form of heterogeneity can create new types of

dynamics in a model of coupled phase oscillators [41]. Concerns have also been raised

by others regarding the use of the Lorentzian distribution for the heterogeneous param-

eter [34], and it would be interesting to investigate other distributions. As mentioned in

Sec. 3.1, it would be interesting to consider two coupled populations, possibly with gap

junction coupling only between inhibitory neurons; doing so would increase the number

of dynamic variables. Finally, we have not considered varying the form of the coupling

functions (or for the most part, their strength), either synaptic or gap junctional, or

considered the possibility of only gap junctional coupling.
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Note that we could use the analysis shown here to study a network in which we

modelled synaptic input as conductance changes rather than current inputs. Consider,

for example,

(73)
dVj
dt

= Ij + V 2
j − s(t)(Vj − Vr) +

g

N

N∑

k=1

(Vk − Vj)

where Vr is a reversal potential and s(t) is a known function. Letting Uj = Vj − s/2 we

have

(74)
dUj
dt

= U2
j + Ij + sVr − s2/4− gUj +

g

N

N∑

k=1

Uk −
1

2

ds

dt

We would then proceed by letting Uj = tan (θj/2).

We conclude with several more points. While we have concentrated on the case

of nonidentical neurons, some progress can be made when all neurons are identical,

i.e. ∆ = 0 and thus Ij = I0 ∀j. For the travelling wave in Sec. 3.1, in the continuum

limit, we have

(75)
∂θ(x, t)

∂t
= 1− cos θ(x, t)− g sin θ(x, t) + (1 + cos θ(x, t)) [I0 + gQ(x, t) + S(x, t)]

where

(76) Q(x, t) =

∫ L

0

C(x− y)q(θ(y, t)) dy

and S satisfies

(77) S(x, t) =

∫ L

0

w(x− y)an(1− cos θ(y, t))n dy

i.e. we have a description in terms of phase only. If c is the speed of the wave, the wave

profile will satisfy the (nonlocal) ordinary differential equation

(78) c
dθ

dξ
= 1− cos θ − g sin θ + (1 + cos θ) [I0 + gQ+ S]

where θ,Q and S are functions of ξ = x+ ct only. The travelling wave will be a periodic

solution (with period L) of this equation.

We have only considered point neurons, with no spatial extent. However, gap junction

coupling is often between cell dendrites rather than somas, so it would be of interest

to extend the results presented here to spatially-extended neurons using, for example,

ideas in [17]. It would also be interesting to include slow intrinsic currents to model

spike frequency adaptation [5] or synaptic depression [31]. We have only considered

a deterministic network of neurons, whereas noise is ubiquitous in neural systems [37]
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and, for example, Ermentrout studied a network similar to that in Sec. 2 but with white

noise applied to the voltage dynamics [22]. The inclusion of noise adds a diffusive term

to the continuity equation (12), and the Ott/Antonsen ansatz can no longer be used

to simplify the resulting Fokker-Planck equation. It can however be solved numerically,

as Ermentrout did (see also [41]) and thus the effect of noise on the spatially extended

networks studied here could be investigated, although this would be computationally

challenging.

Acknowledgements: I thank the referees for their useful comments.
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