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Abstract: We give an overview of the analysis of a new type of bursting (“ghostbursting”)
seen in pyramidal cells of weakly electric fish. We start with the experimental observations
and characterization of the bursting, describe a compartmental model of a pyramidal cell that
undergoes ghostbursting and the development of a simplified yet realistic conductance–based
model of this cell. This model then motivates a minimal leaky integrate–and–fire model that
also has the qualitative features of ghostbursting.

1 Introduction

Bursting, the slow alternation between spiking behavior and quiescence, is a common cellular
phenomenon [7, 8]. It was recognised early on that not all bursting is qualitatively the same,
and early classifications of bursting systems reflected their qualitative nature, e.g. parabolic
or square–wave bursting [16]. An almost universal assumption in the mathematical analysis
of bursting systems was that the system could be decomposed into two subsystems, a “fast”
subsystem and a “slow” subsystem, and that when the variables in the slow subsystem were
held constant the fast subsystem either oscillated or was quiescent [7, 16]. The slow variables
were assumed to be driven by the dynamics of the fast subsystem and thus bursting could be
viewed as a slow cycling through phase space, with the fast subsystem periodically moving
from a spiking regime to a quiescent one and back again.

While this approach has been very successful, a new type of bursting — referred to as
“ghostbursting” — which does not fit into any of the previous categories for bursting types
has been recently investigated [4]. Ghostbursting occurs under constant current injection in
in vitro preparations of pyramidal cells from the electrosensory lateral line lobe (ELL) of the
weakly electric fish Apteronotus leptorhychus. These cells receive direct synaptic input from
electroreceptors on the fish’s skin which detect the amplitude modulation of a self–generated
electric field around the fish [2], and are thus near the start of the electrosensory processing
system. Here we give a brief summary of the stages in the study of this type of bursting.

What is now referred to as ghostbursting was observed in the early 1990s [18]. An example
of a typical experimental recording is shown in Figure 1. Several features are apparent. The
most prominent is the monotonic decrease in interspike intervals (ISIs) during the burst. This
is in contrast with most other types of bursting in which there is either an increase of ISIs
during a burst, a decrease and then an increase, or no particular trend [7, 8, 16]. Another
interesting feature of the bursting shown in Figure 1 is the slow rise in the minimum voltage
between spikes during a burst and the sudden drop in the voltage after the final spike in a
burst.

In Ref. [18] it was determined that there were active ion channels in the dendrite of these
pyramidal cells, and that the interaction between somatic and dendritic action potentials was
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Figure 1: Somatic membrane potential as a function of time for a pyramidal cell from the ELL
of A. leptorhychus. This is part of a 4 sec long recording, during which a constant current of
0.8 nA was injected. Three bursts are shown. Data provided by Anne-Marie Oswald.
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a necessary component of the bursting. These authors observed that most somatic action
potentials were followed by a depolarizing afterpotential (DAP) of similar duration to the
dendritic action potential, and that during repetitive firing the DAPs could increase in ampli-
tude, resulting in progressively shorter interspike intervals and an increase in the minimum
voltage between spikes in a burst [13]. This process of DAP growth was terminated when a
very short ISI (a “doublet”) occurred at the soma, which was followed by a long ISI. These
long ISIs thus grouped the action potentials into bursts (see Figure 1). The existence of DAPs
in Figure 1 is inferred, since without them the voltage after each action potential would drop
to a lower value, similar to that seen immediately after each doublet.

Further work [13] determined that the dendritic refractory period was longer than the
somatic, and the termination of a burst occurred when a somatic ISI (the doublet) was shorter
in duration than the dendritic refractory period and the dendrite could not produce an action
potential in response to the second of the two somatic action potentials forming the doublet.
It was also determined that the pyramidal cells switched from periodic to burst firing as the
injected current was increased (in contrast with many other types of bursting [8, 15]), and that
the duration of bursts (once they occurred) decreased as current increased.

2 A Large Compartmental Model

The first model of a neuron capable of ghostbursting was presented in [5]. This was a “com-
partmental” model, in which a particular neuron was photographed and the main features
of its morphology digitized, so that a “virtual neuron” could be constructed within a com-
puter. The neuron was necessarily represented as a finite number of isopotential compart-
ments (over 300), and appropriate ion channels were distributed over the compartments. The
exact nature of these channels was chosen so as to match experimental recordings of indi-
vidual action potentials as closely as possible, with some parameters being estimated from
previous experimental work. Doiron et al. [5] found that to successfully reproduce the exper-
imentally observed burst patterning they had to include a slow cumulative inactivation of the
repolarizing potassium current in the dendrite.

While this large compartmental model was very realistic, it was too complex for many
such neurons to be simulated at the same time (for example, in a simulation of a network of
neurons) and more importantly, it was very difficult to understand the “essence” of bursting
in the model in the same way that bursting in minimal models can be understood [16]. Thus
the next stage was to create a minimal model which reproduced the qualitative (and to a large
extent, quantitative) behavior of the large model just discussed. This minimal model would
be easier to analyse than the large compartmental model, and could be used in the implemen-
tation of a large–scale network simulation. This would be of interest, as the pyramidal cells
discussed here receive different inputs depending on their position within the ELL, and also
receive much feedback from other brain structures [1]. Their role in these networks has only
recently been studied [3].

3 The “ghostburster”

In order to reduce the large compartmental model [5] to a minimal model several things were
done. Firstly, the entire dendrite, which was represented by all but one of the compartments
in the large compartmental model, was represented as a single compartment. The soma was
represented by another compartment, resulting in a two–compartment model, similar to that
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in [15]. Secondly, the ion channels not thought to be necessary for the bursting behavior were
eliminated. Crucially, it was important not to eliminate the dendritic potassium current, as
it is thought that the presence of this current underlies the bursting discussed here. Thirdly,
previously–used simplifications were used to further reduce the number of variables. (Specif-
ically, it was assumed that the activation of sodium channels is instantaneous. Also, use was
made of the observation that

���������
is approximately equal to 1 during an entire action

potential [4, 8], where
���

is the somatic sodium inactivation variable and
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is the somatic
potassium activation variable.)

The resulting equations, presented in [4], are
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Subscripts = and 
 refer to somatic and dendritic variables, respectively. Equations (1) and (3)
are current balance equations for the soma and dendrite of the neuron, respectively, and the
other equations govern the ion channel dynamics. The variables

�
and

�
are activation and

inactivation of Na > , respectively, and
�

and ; are activation and inactivation of K > , respec-
tively. Parameter values are
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. � is the somatic input current, �L5 is the
coupling conductance, and 6 is the ratio of the somatic area to the total area of the cell. Other
functions are
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eter values are the same as used in the large model [5].

An example of the behaviour of (1)-(6) is shown in Figure 2 for �]� ( 7
. Note that the

dendritic action potentials are wider than the somatic. During a burst, the dendritic potas-
sium inactivation variable ; , slowly decreases, resulting in the progressive widening of the
dendritic action potentials and the decrease in ISIs. There are several differences between the
results plotted in Figure 2 and the experimental results in Figure 1 and elsewhere. For exam-
ple, the minimum somatic voltage between action potentials in the experimental recordings
gradually rises during a burst, whereas such a rise is not seen in the model results. Also,
experimental recording show a slow decrease in the amplitude of dendritic action potentials
during a burst [4, 5], whereas this does not appear in Figure 2. These are minor discrepancies
that do not affect the understanding of the mechanisms involved in the bursting, and overall,
the model (1)-(6) qualitatively, and to a large extent quantitatively, reproduces the bursting
seen both in experiments [13] and in the large compartmental model [5].
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Figure 2: An example of ghostbursting in (1)-(6). Top: somatic voltage, middle: dendritic
voltage, bottom: dendritic potassium inactivation. The full burst shown starts at � � Z 7
and ends at � � E < with a high frequency “doublet”. � � ( 7

. Note the reduced dendritic
voltage in the second action potential of the doublet, and the DAPs (the small rise and then
fall in voltage) that occur after most somatic action potentials. The bursting is chaotic, as the
maximal numerically-determined Lyapunov exponent is positive [4]; thus no two bursts are
identical.
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As � is increased in (1)-(6), the system moves from quiescence to periodic firing of ac-
tion potentials (spikes) to bursting, in the same way as the large model [5] and real neu-
rons [10, 13]. The small number of variables in (1)-(6) allowed the authors to determine that
the bifurcation separating periodic from burst firing was a saddle–node bifurcation of peri-
odic orbits [4]. One of the implications of this is that the length of a burst should scale as the
inverse square root of the amount by which the system is above the periodic/burst threshold.
This provides an explanation for the observation that burst duration decreased as current was
increased [13].

In [4] the effect of varying the conductance �?,/. � , (in Eqn. (3)) was studied, and it was shown
that by varying both �L,/. � , and the injected current � burst patterns with a variety of lengths
and interburst intervals could be obtained. This was understood in terms of a bifurcation
analysis of (1)-(6) using �L,/. � , and � as bifurcation parameters.

Despite there being no actual slow subsystem in (1)-(6) (the longest time constant is 5 ms)
some insight was gained by treating ; , as a slow variable and studying the “fast” subsys-
tem (1)-(5) with ; , as a parameter. It was found that as ; , was gradually reduced the fast
subsystem abruptly switched from simple periodic behavior to a periodic oscillation in which
the variables had two maxima per period; see Figure 3. In this “period–two” phase the sec-
ond somatic action potential in the doublet falls within the dendritic refractory period and
thus the dendrite cannot fully respond to it. In analogy with the usual “slow–fast” analysis of
bursters [7, 16], ; , can be thought of as being driven down by the period–one behavior until
the full system enters the period two regime, leading to the failure of the dendrite to respond
to a somatic action potential, which then creates a long ISI in which ; , recovers to its value at
the start of the next burst (see Figure 2).

Figure 3 shows the behavior of the fast subsystem (1)-(5) when ; , is held constant. The
sudden change from period-one to period-two behavior as ; , decreases through � 7
8 (

is
seen by plotting the local maxima of � , during one period. The ; , nullcline (obtained from
� , � ; ���� � ,  ; , " , see eqution (6)) is also plotted, and a single burst of the full system (1)-(6) is
superimposed.

The ghostburster does not fit into any previous categorizations of bursting neurons [7]
since the fast subsystem is not bistable for any fixed values of the slow subsystem, yet the
slow subsystem has only one variable (; , ). Also, one of the bifurcations involved in bursting
(the period–one to period–two transition mentioned above) has not been previously regarded
as a possible relevant component of a bursting system. Another interesting point is that the
apparently slow segment of a burst (the interburst interval) is not due to a slow variable in the
model but rather to the system’s passage in phase space close to a saddle–node bifurcation.
This is the origin of the name “ghostburster”, as such a motion has been referred to as sensing
the “ghost” of a saddle–node bifurcation [17].

4 A minimal model

While the model (1)-(6) qualitatively and largely quantitatively reproduced the behaviour
seen in the large model of [5], it still involves six variables, resulting in difficulties when trying
to visualize the system’s phase space. The next step was to create a minimal model that kept
only the qualitative features of ghostbursting and which had as few variables as possible.
A one–variable “integrate and fire” neuron was chosen to provide the action potentials for
the model, and a second variable ( � ) was added whose modulation would give rise to the
bursting patterns [11].
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Figure 3: One burst of the system (1)-(6) superimposed over a “skeleton” obtained by using; , as a bifurcation parameter and studying the fast system (1)-(5). Joined stars: local maxima
of � , . Dashed: nullcline for ; , ; above this line 
 ; , M 
�� � 7 , below this, 
 ; , M 
���� 7 . Solid line:
the trajectory of one burst. See text for discussion. � � : .
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In the ionic models, the dendritic action potential halfwidth is greater than that of the so-
matic, and the effect of this is that a short time after each somatic spike (except for the second
one in a doublet), a depolarizing current flows from the dendrite to the soma. This “delayed
feedback” was implemented in the minimal model with an actual delay. The failure of the
dendrite to respond to a somatic action potential was implemented with a simple comparison
between the last ISI and the dendritic refractory period, and the effective DAP height was
used to instantaneously increment the effective somatic voltage.

The equations chosen for the minimal model were
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is the Heaviside function [
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], � represents the
refractory period of the dendrite, 	 is the effective delay between the somatic action potential
and the dendritic–to–somatic current that causes the DAP, and
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and

�
are constants.

�? �� "
is

the Dirac delta function which is zero except when its argument is zero. The action potentials
are thought of as occurring at the times �

�
. (Note that the original presentation in [11] had

another parameter multiplying the � in (7), but this can be scaled out and we have done that
here.)

An example of this model’s behaviour during bursting is shown in Figure 4, and we now
give an explanation of the model’s behavior. At almost all times, � exponentially approaches� from below with time–constant

(
, and � exponentially decays towards

7
with time–constant�

. At each firing time �
�
, � is incremented: ���� �

��
 � 	
�
&
. At a time 	 after firing, and

assuming that the previous ISI, �
�
� �

�
��� , is greater than the refractory period � , � is incre-

mented: � �� � � � , where � is evaluated at a time 	 after firing. If the previous ISI is less than
the refractory period, � is not incremented. Note that the neuron will not fire if � is always
less than

(
.

This model was not derived from (1)-(6) in any systematic fashion, but rather was created
“out of the blue” using the knowledge about the bursting mechanism from Ref. [4]. It is thus
not the only minimal model the produces ghostbursting, but can be thought of as one from
a family of such models [11]. Indeed, another minimal ghostbursting model with a different
formulation was presented in [14].

The model (7)-(8) qualitatively reproduces many aspects of the bursting seen in (1)-(6),
including the transition from periodic firing to bursting through a saddle–node bifurcation
of periodic orbits. It also has far fewer parameters, and the effects of changing them on the
system’s behavior are more easily determined than would be the case for (1)-(6).

Because (7)-(8) is linear when the arguments of the delta functions are non–zero the dy-
namics can be explicitly solved during these intervals, and we can derive a piecewise two–
dimensional map for � � > ��� �

�
> � � �
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and �
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Figure 4: An example of ghostbursting in (7)-(8). Top: somatic voltage ( � ), bottom: auxil-
iary variable ( � ). Note the increment in � at a time 	 after each firing time (except when the
previous ISI was smaller than the dendritic refractory period � ). The firing times occur when
� reaches 1. The bursting is chaotic, as determined by the most positive Lyapunov expo-
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Assuming that the injected current � is constant, the map (9)-(10) is equivalent to the sys-
tem (7)-(8), but is much quicker to simulate and is also easier to analyse.

In [11] the periodic forcing of (7)-(8) (by modulating the current � ) was investigated. An
explicit map similar in form to (9)-(10) was derived for the case of sinusoidal modulation, al-
though it had three variables rather than two. This map made the analytic study of resonance
(Arnol’d) tongues possible, and also facilitated the study of stochastic resonance in (9)-(10).

5 Other Work

Other relevant work involving the ghostburster is now described. In Ref. [14] the minimal
model (7)-(8) was modified so that the second variable controlled both the width of the den-
dritic action potential and the dendritic refractory period. This formulation allowed an in-
vestigation into the effects of varying both the somatic and dendritic spike widths, as would
occur when potassium channels in the soma or dendrite were selectively blocked. The an-
alytical results derived compared favourably with experiments in which this occurred, and
provided further insight into the differential effects of such selective blocking.

In Ref. [10] the concept of “burst excitability”, first introduced in [11], was investigated.
Burst excitability is a generalization of “normal” excitability [8], in which a small perturbation
causes a system to return monotonically to rest, but a large perturbation causes the system
to make a stereotypical large excursion in phase space before returning to rest. Since the
transition from periodic firing to bursting in (1)-(6) is via a saddle–node bifurcation, and a
burst involves a large stereotypical excursion through phase space, there is an analogous
form of excitability in (1)-(6). The main difference between burst excitability in (1)-(6) and
normal excitability is that the large excursion is a burst, and the system returns to periodic
firing after the burst, rather than to a steady state.

The effects of time–varying input to a model ghostbursting neuron were further investi-
gated in [12]. Here, the input current to the soma was sinusoidally modulated. It was found
that the modulation could switch the model neuron from bursting to periodic firing, or vice
versa, depending on the frequency of forcing and the distance from the periodic/burst thresh-
old. This could be explained by mapping resonance tongues in parameter space. Stochastic
resonance was also observed in this periodically forced system, assuming that the doublet at
the end of a burst was used to form the “signal”.

The pyramidal cells that show burst excitability and entrainment to periodic inputs are
primary sensory neurons, i.e. they receive input directly from electroreceptors on the fish’s
skin [2]. It is reasonable to suppose that bursts are somehow involved in signalling informa-
tion about the environment of the fish to its higher brain centres, and it was discussed in [10]
how burst excitability might contribute to this processing and transfer of information. For ex-
ample, given the unreliability of some neural processes, a burst of action potentials could be
a more robust means of signalling an event than a single action potential. Also, it may be the
case that a facilitating synapse could be “tuned” to pick out the accelerating action potentials
that characterize ghostbursting.

The role of the saddle–node bifurcation of periodic orbits that separates periodic from
burst firing was further investigated in [6]. Here, the authors added a persistent sodium cur-
rent with a slow timescale (on the order of one second) to the compartmental model in [5]. The
effect of this is qualitatively the same as slowly increasing the current injected into the cell’s
soma, and thus results in the cell’s firing frequency slowly increasing until burst discharge
starts. The lengths of these bursts then slowly decrease over time. The purpose of adding this
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slow current was to reproduce the behavior just described, as this is what is observed when
a constant current is injected into a pyramidal cell’s soma for several seconds [6]. The change
in burst duration over time was understood in terms of the scaling properties associated with
saddle–node bifurcations [4, 17].

In [9] the effects of varying both the coupling conductance between the soma and dendrite
( �-5 ) and the ratio of somatic to total area ( 6 ) in the model (1)-(6) were studied. It was found
that both parameters had to be moderately large (but not too large) in order for the neuron to
burst, and this was understood in terms of the previous bifurcation analysis [4].

6 Summary

We have given an outline of the stages in the analysis of “ghostbursting”, a type of burst-
ing seen in pyramidal cells from weakly electric fish. Initially, the distribution of ion chan-
nels on these cells and the underlying features of ghostbursting were determined experimen-
tally [13, 18]. A large compartmental model was constructed and further necessary ingredi-
ents for bursting were determined [5]. This compartmental model was simplified to a two–
compartment model involving six variables [4], which enabled the mathematical analysis of
the bursting. Once the underlying mechanism of bursting had been determined, a “toy”
minimal model was constructed [11]. This model enabled further analysis of the effects of
changing parameters in the various models, and is ideal for large simulations of networks of
ghostbursting neurons.

The development of the ghostburster has challenged previously held views about what is
necessary for a system to show bursting [7, 16]. Now that the bursting mechanism has been
characterized, future work could involve integrating the feedback circuits known to project to
the pyramidal cells [1] to form a “computational loop”, or studying spatially–extended arrays
of such neurons with appropriate feedback [3].

Acknowledgements: I thank Anne-Marie Oswald for providing the data in Figure 1, Brent
Doiron for conversations regarding this paper, and the referees for their helpful comments.
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