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Abstract

Homoclinic bifurcations in autonomous ordinary differential equations provide useful organizing centres for the analysis
of examples. There are four generic types of homoclinic bifurcation, depending on the dominant eigenvalues of the Jacobian
matrix of the flow near a stationary point. A family of differential equations is presented which, for suitable choices of
parameters, can exhibit each of these four homoclinic bifurcations. In one of the cases this provides the first smooth example

of the bifurcation in the literature.
AMS classification: 58F13; 58F14
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A homoclinic orbit of an autonomous ordinary
differential eqaaticvn is a nonirivial solution, xﬂ\u,
which tends to a stationary point, x,, in both for-
ward and backward time, i.e. xy(t) = x5 as t >
and x4(0) # x,. In typical (e.g. non-Hamiltonian)
families of ordinary differential equations the exis-
tence of a homoclinic orbit is not a structurally stable
situation, and typical perturbations of the system will
no longer have a homoclinic orbit close to the origi-
nal one. Thus, in a one-parameter family of ordinary
differential equations, there may be a parameter,
1= gy say, at which the system has a homoclinic
orbit and an €> O such that if p€ (uy — €, py +

€)\{py} there is no homoclinic orbit close to the
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orbit which exists at p = Ky If this is the case we
say that there is a homoclinic bifurcation at g = py.

The study of homoclinic bifurcations goes back
(at least) to Poincaré, and later Andronov. More
recent work has been stimulated by a series of papers
by Shilnikov [1-3] in which it was shown that, given
certain conditions described below, there is chaotic
motion in a tubular neighbourhood of the homoclinic
orbit, although the net effect of the bifurcation is to
create a single periodic orbit (see, e.g., Ref. [4] for a
discussion). Complicated sequences of local bifurca-
tions at parameter values near u, may also occur
[5,4] as well as more complicated homoclinic bifur-
cations, for which the homoclinic orbit loops several
times through the tubular neighbourhood of the orig-

3 ing hie (&1
inal homoclinic orbit 16].

These theoretical results can be a great help when
investigating examples. The conditions which deter-
mine whether complicated dynamics occurs are based
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on the linearized flow near the stationary point.
Suppose that the stationary point is hyperbolic. Then,
after a change of coordinates we may assume that it

ig at the arioin far all valnes nf 1+ which are nf
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interest and the family of differential equations can
be written in the form

i=Ax+F(x, pn) (D
for x& R", n> 2. Here F(0, u)=0, A is a con-
stant n X n matrix and F is smooth and contains

onlv nonlinear terms. Assume that if 1 = 0 then the
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system has a homoclinic orbit, x,(#), biasymptotic
to the origin, and that if u € (—¢, €)\ {0} there are
no homoclinic orbits close to x; (by close we mean
that for 7 sufficiently small | x() — x,()| < n for
all t € (—o, ®)).

Now, since x =0 is hyperbolic, the eigenvalues
of A can be divided into two gets. {A) i=1

of A can be divided int osets, {A), ! eees By

and {»}, i=1,...,n, n,+ n, = n, such that Re(A,)
> 0 and Re(v;) < 0. These can be ordered so that

Re(y,) < ... <Re(v,) <Re(v,) <0

<Re(A,) <Re(A;) < ... <Re(Rr,).

(2

Typically, trajectories which tend to x=0 as 1 -
do so tangential to the eigenspace corresponding to
those eigenvalues with Re(y;) = Re(v,), which we
refer to as the dominant stable eigenvalues. Simi-
larly, almost all trajectories which tend to x=0 as
t— —« do so tangential to the eigenspace corre-

anandinga tn tha daminant nnetahla sinanvaliee 1o
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those with Re(A;) = Re(A;). We assume that the
homoclinic orbit, x4(?) is typical in this sense.

There are four generic cases (up to time reversal).

(D) Saddle-node homoclinic orbit. The set of dom-
inant eigenvalues is {v;, A,}, with v,, A, € R, and
v, + A, #0

ceur for n > 2), provide

some genericity condmons are satisfied, the homo-
clinic bifurcation creates a single periodic orbit which
exists in either £ <0 or >0 [2]. As u tends to
zero from the appropriate side the periodic orbit
tends to the homoclinic orbit and the period of the
orbit tends to infinity as the logarithm of | ,ui for
typical parametrizations. If n =1 then the orbit

stable if », + A, <0, otherwnse it is a saddle.
(II) Saddle-focus homoclinic orbit. The set of

In thic cage {w hich can occur
in s ¢ase \wmch ¢ar u

dominant eigenvalues is {v,, v,, A}, with v, = v,
€ C\R, A, €R, and Re(v) + A, # 0.
This case can occur if n> 3. There are two

cnthracac
JUUAIVI.

(11a) Re(v,) + A, <0. The bifurcation is essen-
tially the same as case (I).

(I1b) Re(v,) + A, > 0. If =0 there are chaotic
solutions in a tubular neighbourhood of the homo-
clinic orbit, There are sequences of saddle-node bi-
furcations accumulating on u =0 from both sides,

and qamnannas nf (mnm‘m—.m v mnras samnlicatad)
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homoclinic bifurcations accumulating on z = 0 from
one side only [1,3,5-9].

(II1) Bifocal homoclinic orbit. The set of domi-
nant eigenvalues is {v,, v, A}, A} with v, = v, €
C\Rand A, = A; e C\R.

This case can arise if n> 4. The dynamics is
similar to that described for case (IIb), but typically
there are more complicated homoclinic bifurcations
on both sides of the bifurcation point u = 0[10,7,3].

The results sketched above form the basis of
global bifurcation theory, analogous to statements
about the saddle-node, period-doubling and Hopf
bifurcations in local bifurcation theory. Whilst there
are many examples of cases (I} and (II) in the
literature it is extraordinary that (to the best of our
knowledge) no unambiguous examples of case (IIT)
have been described to date. There are examples
with homoclinic orbits to stationary points satisfying
the spectral condition of case (III), but these are
nongeneric, being in Hamiltonian or reversible sys-

tamea whicrh hava a varu cnanial hifurnatian ctrncstiira
wCMs, Wil Nave a vory Spedia: SliurCauion suuciurd

[11,12]. A piecewise linear example of case I is
described in Ref. [13], and here we use the same
ideas, described below, to construct a smooth (poly-
nomial) system for which there is strong numerical
evidence for the existence of a bifocal homoclinic
orbit. In so doing we derive a hierarchy of equations

in twn then three and then fonr dimencinng Racrh
m two, ien three, ang then our ammensions. xach

equation is obtained from the previous system by
extending it in an appropriate manner to an extra
dimension. In principle this construction could be
extended to obtain a hierarchy of equations in higher
and higher dimensions each having a homoclinic
orbit to a stationary point with a prescribed spec-
trum,

Simple examples of interesting dynamical phe-
nomena have been constructed using a variety of
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techniques. Arnéodo, Coullet and Tresser [14] used
piecewise linear systems to prove the existence of a
case (IIb) saddle-focus homoclinic orbit, whilst Deng
[15] uses slow manifolds. Here (cf. Ref. fl3D we use
the adjoint eigenvectors of the linear part of a ‘‘seed”’
equation to define the coupling between the equation
and an extra variable in such a way that the linear
part of the new equation has the desired spectral

condition. We then appea1 to perturoauon meory and

numerical experiment to suggest that the dynami-
callv interesting behaviour (in this case, the existence

Caily LRI DLAAVIOUT AR BAA1S €a0h, M0 CALIK

of a homoclinic orbit) is inherited by the new equa-
tion from the ‘‘seed’’ equation. The new equation
can in turn be treated as a ‘‘seed’’ equation and the
process can be repeated. The use of adjoint eigenvec-
tors is not entirely necessary (one could try trial and
error) but ensures that complete control of the spec-
tral properties of the stationary point is maintained
throughout the hierarchy.

Two-dimensional examples illustrating case (1)
are easy to find, so let

£

i=Ax+f(x, p) (3)
be one such example (x € R?, f is a smooth func-
tion of the plane to itself which contains only nonlin-
ear terms, f(0, w) =0 and there is a homoclinic
orbit, biasymptotic to the stationary point at the
origin if u = 0). Assume that the eigenvalues of the
constant 2 X 2 matrix A are v, and X with v, <0

LIS Wi wia L dd | @ Ry WAl H

< A, and
v, [ > A (4)

ues of A corrte-
sponding to the exgenvalues v, and A, respectively,
and let e/ and e be the corresponding adjoint
eigenvectors (see e.g. Ref. [16] for a discussion of
adjoint eigenvectors in dynamical systems). Thus
ATel = v el, ATel =rel, el -e,=el e, =0 and
the eigenvectors can be normalized so that e! - e, =
el e =1

Eq. (3) is the first member of the homoclinic
hierarchy. Now define the extended system

lVUW lCl e auu C UC LllC CIECII / l

x=Ax—ze, +f(x, n),

i=¢el - x)+ vz (5)

In coordinates (x,, x,, z) defined by x=xe, +

x,e, the linear part of this equation is obtained by

dotting through with e! and e! to give

X, =ANx,, X =vx,~z, i=¢€x,+tvz, (6)
oz . < v s . T = PP

with eigenvalues A, >0 and v, + /- €, . Hence if

€, > 0 the linear part of (3) satisfies the conditions of

cace (T1a). Since homaclinic hifurcatione are tuni_
case (iia). SInce nomocame omurcauens are typt

cally of codimension one we expect (at least for

small €, > 0) there to be a curve of homoclinic

bifurcations in ( u, €,) parameter space of the form

pn=H(e,) with H(0) = 0. If this curve does exist

then (5) provides an exampie of case (Ila).
Similarly, if we consider

x=Ax—we,+f(x, n), (7

the linear part of the equation has eigenvalues v, <0
and A, +{/— €, and so, using (4), under similar
assumptions we obtain homoclinic bifurcations of
class (IIb) in reverse time if €, > 0.

Finally, putting Eqgs. (5) and (7) together to obtain

w=e(el - x)+Aw,
X=Ax—ze,—we, +f(x, p),

i=¢€ (8)
we should be able to find bifocal homoclinic bifurca-
tions (case (II)) if €, and €, are small and positive,
the eigenvalues of the linear flow at the origin being
v a3t and o o4
Ill IIVCZ aiiu Vl a1 :1 .

To illustrate the hierarchy (3), (5), (7) and (8), we
have chosen, rather arbitrarily, to start with the two-
dimensional system
i=y, y=6x—y—6x’+pxy, (9)
for which there is strong numerical evidence that a
homoclinic orbit exists if @ = uy = 1.164371. For
this example, in the notation of (3),

(o 1 B 0 "
A*(6 —1)’ f(x’”)-(—“”#xy,'

(10)
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Fig. 1. Numerical simulations of (5), (7) and (8) with A, f and the adjoint eigenvectors given by (10) and (11). (a) Period against parameter
( ) for Eq. (5) with €, = 0.1 showing the approach of the simple periodic orbit to the homoclinic orbit. (b) A homoclinic orbit of (5) with
€, =16 and u = 2.556795. (c) As (a) using Eq. (7) with €, = 16. (d) A homoclinic orbit of (7) with €, = 16 and u = — 1.351357. (¢) As
(a) using Eq. (8) (or, equivalently, (12)) with € =€, =4.260467. (f) A homoclinic orbit of (8) with €, = ¢, = 4.260467 and
= 0.6466121. In all cases the periodic orbits have been followed to much higher periods than plotted, and the **homoclinic orbits’’ are in
fact periodic orbits of large period (greater than 100 in all three cases) which, we assume, are good approximations to the homoclinic orbits.
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0 A =2, v, =
calculation gives

—3 and (4) is satisfied. A simple

vos5\2) \1)
Ny a2
“=3l-3) a=\-1) (1

and so (8), from which (5) and (7) follow, becomes

t=¢€(2x-y) -3z, (12)

Although our argument for the existence of homo-
clinic orbits in (12) (and hence (5) and (7)) is
essentially perturbative (| €, | and | €, | small), nu-
merical experiments suggest that the curve of homo-

clinic orbits exists over a broad range of values of

CRIC QI VIS CARISW « DI04l 1415 vallc

l'e | (i=1,2). We use larger values of the parame-
ters to illustrate our results since the qualitative
features of the orbits, in particular the spiralling
motion near the stationary point, is much clearer at
these values. In all cases, the approximate parameter
value of the homoclinic bifurcation is obtained by
following a periodic orbit using AUTO [17] to very
high period with changing parameter. The homo-
clinic orbit can be thought of as the limit of this orbit
as the period tends to infinity.

Fig. 1 shows the results of three sets of numerical
experiments obtained using AUTO [17]. In Figs. 1a,
1b we have set €, =w =0 (equivalent to choosing
(5) with A and f given by (10) and the adjoint
eigenvectors by (11)). This figure shows a plot of the
period of a simple periodic orbit as a function of u
illustrating the familiar logarithmic increase in pe-
riod as the orbit approaches the homoclinic orbit in
case (T1a) with =01

case (Ila}) with € =0.1
homoclinic orbit for this system with €, = 16 and
u = 2.556795, again corresponding to case (IIa).
Figs. lc, 1d shows similar plots for €, =2z=0
and €, = 16 (equivalent to (7): z= 0 is an invariant
manifoid). In this case, as expected for (iib), the
periodic orbit undergoes a sequence of saddle-node
bifurcations as it npnnd tends to infinity. The homo-

clinic orbit at u= —1.351357 is 111ustrated in Fig.
1d.

Finally, Figs. le, 1f show the analogous pictures
for €, = €, = 4260467, illustrating the approach of

In Fie. 1b we show a
. iy g, we SinCwW a

the periodic orbit to a bifocal homoclinic orbit,
which exists for pu = 0.6466121. Fig. if does not
show the homoclinic orbit, but an orbit of extremely
long period (around 200) which lies close to the
homoclmlc orbit.

We consider that the fact that it is possible to
follow a periodic orbit to very high period provides
very strong evidence for the existence of the homo-
clinic orbii, but we have also done further numerical
experiments to add more weight to our claim. The
local stable manifold of the origin is tangential to the

plane spanned by e, = (0, 0, 0, 1T and e, (extended
to R* in the obvious way) whilst the local unstable
manifold is tangential to the plane spanned by e,
(extended to R*) and e, =(1, 0, 0, 0)". If a homo-
clinic orbit exists for the system then the stable and
unstable manifolds intersect, and the numerically
rnmnmed annrmnm;mnn shown in Fm if suggests

that a point of intersection lies in the hyperplane
y =0 with 2 < x <2.5. To demonstrate the existence
of this intersection we integrated points on a circle of
initial conditions enclosing the origin on the linear
approximation to the local unstable manifold for-
wards in time and monitored the first intersection of
these trajectories with the hyperplane v =0 with
2 < x <25 (if such an intersection exists). In this
way we obtained a series of points on a curved line
segment, U. A similar exercise in reverse time using
initial conditions on the linear approximation to the
local stable manifold provided a second curved line
segment, S. This numerical experiment was repeated
at different values of w. Using polynomial interpola-
tion to obtain approximations for U and S between
the computed points, the shortest vector from U to S
was calculated using Newton’s method on the
parametrized curves. Now let n be the vector ob-
tained in this wav with 4 =064 and u( u‘ the

VALLICAS K1 UlIS Y a Lo ey V.o, aas i
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vector obtained at nearby values of u. These results
allow us to form the signed distance function
sign(n « u( ) u(p).

A zero of this signed distance function thus indi-
cates an intersection between S and U, and hence the
existence of a homoclinic orbit. If, in addition, the
sign of the signed distance function changes, then the
famlly of differential equations parametrized by u
passes transversely through the codimension one sur-
face of systems with homoclinic orbits. We found,
using a circle of radius 10™* for the initial condi-
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tions and numerically obtained normalized eigenvec-
tors, that for 0.55 < u < 0.64 the signed distance
function is positive (and equal to 0.004617 at pu =
0.64 whilst for 0.65 < . < 0.71 the signed distance
function is negative (and equal to —0.002365 at
i = 0.65). This strongly suggests that for some val-
ues of u between 0.64 and 0.65 there is a zero of the
distance function, and hence a homoclinic orbit for
the differential equation (12). Linear interpolation
between u = 0.64 and p = 0.65 gives an approxi-
mate value of p = 0.6466 for the homoclinic bifur-
cation, in excellent agreement with the value ob-
tained by following periodic orbits.

We have written down a hierarchy of differential
equations which illustrate the four fundamental ho-
moclinic bifurcations. In particular, we have ob-
tained a smooth example of a bifocal homoclinic
bifurcation (case (I)). So far as we are aware, this
is the first such example (in Ref. [13] a piecewise
linear example is studied, for which the existence of
a bifocal homoclinic bifurcation can be proved using
perturbation theory, but this does not satisfy the
standard smoothness conditions of Shilnikov’s re-
sults [1,3] although the results can be trivially ex-
tended to such systems; the examples of Refs. [11,12]
are non-generic, having either a Hamiltonian or re-
versible structure).

The observant reader will have noted that one
way of interpreting example (12) is through the
unfolding of the degenerate Jordan normal form

A1 0 0
0 A 0 O
1
0O 0 v, 1 (13)
0O 0 0 vy

We look at the existence of bifocal homoclinic orbits
in this light elsewhere [8]: in particular, we explore
several codimension two bifurcations involving bifo-
cal homoclinic bifurcations. The normal form (13)
has codimension greater than two, and we consider
this to be too large for useful analysis in the absence
of some concrete physical motivation.

C.L. is grateful to the Cambridge Commonwealth
Trust for financial support.
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