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Abstract 

Homoclinic bifurcations in autonomous ordinaty differential equations provide useful organizing centres for the analysis 
of examples. There are four generic types of homoclinic bifurcation, depending on the dominant eigenvalues of the Jacobian 
matrix of the flow near a stationary point. A family of differential equations is presented which, for suitable choices of 
parameters, can exhibit each of these four homoclinic bifurcations. In one of the cases this provides the first smooth example 
of the bifurcation in the literature. 
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A hom~linic orbit of an autonomous ordinary 
differential equation is a nontrivial solution, x,(r), 
which tends to a stationary point, x0, in both for- 
ward and backward time, i.e. x,(t) 4 x0 as t -+ fm 

and ~~(0) # x0. In typical (e.g. non-Hamiltonian) 
families of ordinary differentid equations the exis- 
tence of a homoclinic orbit is not a s~c~lly stable 
situation, and typical perturbations of the system will 
no longer have a homoclinic orbit close to the origi- 
nal one. Thus, in a one-parameter family of ordinary 
differential equations, there may be a parameter, 
or, = pu say, at which the system has a homoclinic 
orbitandan e>Osuchthatif ~E(~u-e,~n+ 
E)\{ pn} there is no homoclinic orbit close to the 

orbit which exists at p = pn. If this is the case we 
say that there is a homoclinic bifurcation at p = pu. 

The study of homoclinic bifurcations goes back 
(at least) to Poincare, and later Andronov. More 
recent work has been stimulated by a series of papers 
by Shilnikov [l-3] in which it was shown that, given 
certain con~tions described below, there is chaotic 
motion in a tubular neighbourhood of the homoclinic 
orbit, although the net effect of the bifurcation is to 
create a single periodic orbit (see, e.g., Ref. [4] for a 
discussion). Complicated sequences of local bifurca- 
tions at parameter values near pn may also occur 
[5,4] as well as more complicated homoclinic bifur- 
cations, for which the homoclinic orbit loops several 
times through the tubular neighbourhood of the orig- 
inal homoclinic orbit [6]. 
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These theoretical results can be a great help when 
investigating examples. The conditions which deter- 
mine whether complicated dynamics occurs are based 
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on the linearized flow near the stationary point. 
Suppose that the stationary point is hyperbolic. Then, 
after a change of coordinates we may assume that it 
is at the origin for all values of p which are of 
interest and the family of differential equations can 
be written in the form 

Now, since x = 0 is hyperbolic, the eigenvalues 
of A can be divided into two sets, {A,], i = 1,. . . , n,, 
and{vJ, i= l,..., ns, n, + ffU = n, such that Re(A,) 

f=Ax+F(x, /.L) 

> 0 and Re(vi) < 0. These can be ordered so that 

(1) 

for x E lQ”, n > 2. Here F(0, p) = 0, A is a con- 
stant n X n matrix and F is smooth and contains 
only nonlinear terms. Assume that if ,u = 0 then the 
system has a homoclinic orbit, x,(r), biasymptotic 
to the origin, and that if p E ( - E, e)\(O) there are 
no homocli~ic orbits close to xn (by close we mean 
that for 77 sufficiently small I x(t) - x,(t) I < q for 
all t E (- cQ, Ml). 

Re ( v,,,) G . . . GRe(Y,)GRe(v,) <O 

<Re(h,) <RetA,) < . . . GRe(A,“}. 

(2) 

Typically, trajectories which tend to x = 0 as t --, ~0 
do so tangential to the eigenspace corresponding to 
those eigenvalues with Re(vj) = Re(v,), which we 
refer to as the dominant stable eigenvalues. Simi- 
larly, almost all trajectories which tend to x = 0 as 
I + --a do so tangential to the eigenspace corre- 
sponding to the dominant unstable eigenvalues, i.e. 
those with Ret Aj) = Re( A, ). We assume that the 
homoclinic orbit, x,(t) is typical in this sense. 

There are four generic cases (up to time reversal). 
(I) Saddle-node humoclinic orbit. The set of dom- 

inant eigenvalues is {vi, A,}, with v,, A, E !I%, and 
Vr f A, f 0. 

In this case (which can occur for n >, 21, provide 
some generic&y conditions are satisfied, the homo- 
clinic bifurcation creates a single periodic orbit which 
exists in either p< 0 or p > 0 f2]. As ~1 tends to 
zero from the appropriate side the periodic orbit 
tends to the homoclinic orbit and the period of the 
orbit tends to infinity as the log~~rn of I p 1 for 
typical parametrizations. If n, = 1 then the orbit is 
stable if Y, + A, < 0, otherwise it is a saddle. 

(II) ~~~e~c~ ~~oc~i~ic orbit. The set of 

dominant eigenvalues is (v,, or, A,}, with vi = V; 
EQ=\LR, A,~~,~dRe~~~)+A,#O. 

This case can occur if n & 3. There are two 
subcases. 

(IIa) Re(v, > i- A, < 0. The bifurcation is essen- 
tially the same as case (I). 

(IIb) Re( vi) f A, > 0. If p = 0 there are chaotic 
solutions in a tubular neighbourhood of the homo- 
clinic orbit. There are sequences of saddle-node bi- 
furcations accumulating on p = 0 from both sides, 
and sequences of fgeometrically more complicated~ 
homoclinic bifurcations accumulating on p = 0 from 
one side only [1,3,5-91. 

This case can arise if n & 4. The dynamics is 
similar to that described for case (IIb), but typically 
there are more complicated hom~lini~ bi~rcations 
on both sides of the bifurcation point p = 0 [10,7,3]. 

(III) B~~c~~ homucf~n~c orbit. The set of domi- 
nant eigenvalues is { vz, vI, A,, A,) with V, = V; E 
~\~~dA,=A~~~\~. 

The results sketched above form the basis of 
global bi~rcation theory, ~~ogous to statements 
about the saddle-node, period-doubling and Hopf 
bifurcations in local bifurcation theory. Whilst there 
are many examples of cases (I) and (II) in the 
literature it is extraordinary that (to the best of our 
knowledge) no unambiguous examples of case (III) 
have been described to date. There are examples 
with homoclinic orbits to stationary points satisfying 
the spectral condition of case (III), but these are 
nongenetic, being in Hamiltonian or reversible sys- 
tems, which have a very special bifurcation structure 
[11,12]. A piecewise linear example of case III is 
described in Ref. [ 131, and here we use the same 
ideas, described below, to construct a smooth (poly- 
nomial) system for which there is strong numerical 
evidence for the existence of a bifocal homoclinic 
orbit. In so doing we derive a hierarchy of equations 
in two, then three, and then four dimensions. Each 
equation is obtained from the previous system by 
extending it in an appropriate manner to an extra 
dimension. In p~nciple this cons~ction could be 
extended to obtain a hierarchy of equations in higher 
and higher dimensions each having a homoclinic 
orbit to a stationary point with a prescribed spec- 
trum. 

Simple examples of interesting dynamical phe- 
nomena have been constructed using a variety of 
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techniques. AmCodo, Coullet and Tresser [14] used 
piecewise linear systems to prove the existence of a 
case (IIb) saddle-focus homoclinic orbit, whilst Deng 
[15] uses slow manifolds. Here (cf. Ref. [13]) we use 
the adjoint eigenvectors of the linear part of a “seed” 
equation to define the coupling between the equation 
and an extra variable in such a way that the linear 
part of the new equation has the desired spectral 
condition. We then appeal to perturbation theory and 
numerical experiment to suggest that the dynami- 
cally interesting behaviour (in this case, the existence 
of a homoclinic orbit) is inherited by the new equa- 
tion from the “seed” equation. The new equation 
can in turn be treated as a “seed” equation and the 
process can be repeated. The use of adjoint eigenvec- 
tors is not entirely necessary (one could try trial and 
error) but ensures that complete control of the spec- 
tral properties of the stationary point is maintained 
throughout the hierarchy. 

Two-dimensional examples illustrating case (I) 
are easy to find, so let 

f=Ax+f(r, p) (3) 

be one such example (x E lQ*, f is a smooth func- 
tion of the plane to itself which contains only nonlin- 
ear terms, f (0, p) = 0 and there is a homoclinic 
orbit, biasymptotic to the stationary point at the 
origin if p = 0). Assume that the eigenvalues of the 
constant 2 X 2 matrix A are vl and A, with V, < 0 
<A, and 

I VI I > A,. (4) 

Now let e, and e, be the eigenvalues of A corre- 
sponding to the eigenvalues it and A, respectively, 
and let ei and et be the corresponding adjoint 
eigenvectors (see e.g. Ref. [16] for a discussion of 
adjoint eigenvectors in dynamical systems). Thus 
ATef=v,eI, ATe~=A,e~,ef.e,=e~.e,=O and 
the eigenvectors can be normalized so that ef * e, = 
et . e, = 1. 

Eq. (3) is the fast member of the homoclinic 
hierarchy. Now define the extended system 

_?=Ax-ze,+f(x, p), 

In coordinates ( xU, x,, z> defined by x = x,e, + 
x,e, the linear part of this equation is obtained by 
dotting through with et and es to give 

i”=A,x”, i,=v,x,--z, i= ElX, + VIZ, (6) 

with eigenvalues A, > 0 and y1 &- \i-. Hence if 
l t > 0 the linear part of (3) satisfies the conditions of 
case (IIa). Since homoclinic bifurcations are typi- 
cally of codimension one we expect (at least for 
small ei > 0) there to be a curve of homoclinic 
bifurcations in ( CL, l i) parameter space of the form 
p = H(E,) with H(O) = 0. If this curve does exist 
then (5) provides an example of case (IIa). 

Similarly, if we consider 

GJ = e2( ei - x) + A,w, 

i=Ax-we,+f(x, p), (7) 

the linear part of the equation has eigenvalues v1 < 0 
and A, + d_ and so, using (4), under similar 
assumptions we obtain homoclinic bifurcations of 
class (IIb) in reverse time if e2 > 0. 

Finally, putting Eqs. (5) and (7) together to obtain 

G = e2( e: * x) + A,w, 

k=AAx--ze,-we,+f(x, p), 

i = e,(eb * x) + V,Z, (8) 

we should be able to find bifocal homoclinic bifurca- 
tions (case (III)) if ei and l 2 are small and positive, 
the eigenvalues of the linear flow at the origin being 
A,fi&andv,fi&. 

To illustrate the hierarchy (31, (5), (7) and (8), we 
have chosen, rather arbitrarily, to start with the two- 
dimensional system 

f=y, jJ=6x-y-6x2+@y, (9) 

for which there is strong numerical evidence that a 
homoclinic orbit exists if p = mu = 1.164371. For 
this example, in the notation of (31, 

_ 
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Fig. 1. Numerical simulations of (5). (7) and (8) with A, f and the adjoint eigenvectors given by (10) and (11). (a) Period against parameter 
( CL) for ET.q. (5) with e, = 0.1 showing the approach of the simple periodic orbit to the homoclinic orbit (b) A homoclinic orbit of (5) with 
c, = 16 and p = 2.556795. (c) As (a) using Eq. (7) with er = 16. (d) A homoclinic orbit of (7) with es = 16 and 1~ = - 1.351357. (e) As 
(a) using Eq. (8) (or, equivalently, (12)) with c, = l 2 = 4.260467. (f) A homoclinic orbit of (8) with et = es = 4.260467 and 
p = 0.6466121. In all cases the periodic orbits have been followed to much higher periods than plotted, and the “homoclinic orbits” are in 
fact periodic orbits of large period (greater than 100 in all three cases) which, we assume, are good approximations to the homoclinic orbits. 



P. Glendinning, C. Luing / Physics Letters A 21 I (1996) 155-160 159 

so A, = 2, V, = - 3 and (4) is satisfied. A simple 
calculation gives 

e”=f(;), e:=(;), 

es=i( _k), ei=( _t), (11) 

and so (8), from which (5) and (7) follow, becomes 

rG=eE2(3x+y)+2w, i=y-fz-fw, 

j~=6x-y+$ z-$w-6x*+pxy, 

i = E,(2X - y) - 3z. (12) 

Although our argument for the existence of homo- 
clinic orbits in (12) (and hence (5) and (7)) is 
essentially perturbative (1 E, I and I e2 I small), nu- 
merical experiments suggest that the curve of homo- 
clinic orbits exists over a broad range of values of 
I q ) (i = 1, 2). We use larger values of the parame- 
ters to illustrate our results since the qualitative 
features of the orbits, in particular the spiralling 
motion near the stationary point, is much clearer at 
these values. In all cases, the approximate parameter 
value of the homoclinic bifurcation is obtained by 
following a periodic orbit using AUTO [17] to very 
high period with changing parameter. The homo- 
clinic orbit can be thought of as the limit of this orbit 
as the period tends to infinity. 

Fig. 1 shows the results of three sets of numerical 
experiments obtained using AUTO [17]. In Figs. la, 
lb we have set l 2 = w = 0 (equivalent to choosing 
(5) with A and f given by (10) and the adjoint 
eigenvectors by (11)). This figure shows a plot of the 
period of a simple periodic orbit as a function of p 
illustrating the familiar logarithmic increase in pe- 
riod as the orbit approaches the homoclinic orbit in 
case (IIa) with l 1 = 0.1. In Fig. lb we show a 
homoclinic orbit for this system with l 1 = 16 and 
p = 2.556795, again corresponding to case (IIa>. 

Figs. lc, Id shows similar plots for l , = z = 0 
and e2 = 16 (equivalent to (7): z = 0 is an invariant 
manifold). In this case, as expected for (IIb), the 
periodic orbit undergoes a sequence of saddle-node 
bifurcations as its period tends to infinity. The homo- 
clinic orbit at p = - 1.351357 is illustrated in Fig. 
Id. 

Finally, Figs. le, If show the analogous pictures 
for cl = e2 = 4.260467, illustrating the approach of 

the periodic orbit to a bifocal homoclinic orbit, 
which exists for p = 0.6466121. Fig. If does not 
show the homoclinic orbit, but an orbit of extremely 
long period (around 200) which lies close to the 
homoclinic orbit. 

We consider that the fact that it is possible to 
follow a periodic orbit to very high period provides 
very strong evidence for the existence of the homo- 
clinic orbit, but we have also done further numerical 
experiments to add more weight to our claim. The 
local stable manifold of the origin is tangential to the 
plane spanned by e, = (0, 0, 0, ljT and e, (extended 
to R4 in the obvious way) whilst the local unstable 
manifold is tangential to the plane spanned by e, 
(extended to W4) and e4 = (1, 0, 0, O>T. If a homo- 
clinic orbit exists for the system then the stable and 
unstable manifolds intersect, and the numerically 
computed approximation shown in Fig. If suggests 
that a point of intersection lies in the hyperplane 
y = 0 with 2 < x < 2.5. To demonstrate the existence 
of this intersection we integrated points on a circle of 
initial conditions enclosing the origin on the linear 
approximation to the local unstable manifold for- 
wards in time and monitored the first intersection of 
these trajectories with the hyperplane y = 0 with 
2 < x < 2.5 (if such an intersection exists). In this 
way we obtained a series of points on a curved line 
segment, U. A similar exercise in reverse time using 
initial conditions on the linear approximation to the 
local stable manifold provided a second curved line 
segment, S. This numerical experiment was repeated 
at different values of p. Using polynomial interpola- 
tion to obtain approximations for U and S between 
the computed points, the shortest vector from U to S 
was calculated using Newton’s method on the 
parametrized curves. Now let n be the vector ob- 
tained in this way with I_L = 0.64, and u( CL) the 
vector obtained at nearby values of cc. These results 
allow us to form the signed distance function 
sign(n - z4 pL)) I 24 pL) I. 

A zero of this signed distance function thus indi- 
cates an intersection between S and U, and hence the 
existence of a homoclinic orbit. If, in addition, the 
sign of the signed distance function changes, then the 
family of differential equations parametrized by I_L 
passes transversely through the codimension one sur- 
face of systems with homoclinic orbits. We found, 
using a circle of radius 10m4 for the initial condi- 
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tions and numerically obtained normalized eigenvec- 
tom, that for 0.55 < p < 0.64 the signed distance 
function is positive (and equal to 0.004617 at p = 
0.64 whilst for 0.65 < p < 0.71 the signed distance 
function is negative (and equal to -0.002365 at 
I_L = 0.65). Thi s s tr ongly suggests that for some val- 
ues of p between 0.64 and 0.65 there is a zero of the 
distance function, and hence a homoclinic orbit for 
the differential equation (12). Linear interpolation 
between Al. = 0.64 and p = 0.65 gives an approxi- 
mate value of p = 0.6466 for the homoclinic bifur- 
cation, in excellent agreement with the value ob- 
tained by following periodic orbits. 

We have written down a hierarchy of differential 
equations which illustrate the four fundamental ho- 
moclinic bifurcations. In particular, we have ob- 
tained a smooth example of a bifocal homoclinic 
bifurcation (case (III)). So far as we are aware, this 
is the first such example (in Ref. [13] a piecewise 
linear example is studied, for which the existence of 
a bifocal homoclinic bifurcation can be proved using 
perturbation theory, but this does not satisfy the 
standard smoothness conditions of Shilnikov’s re- 
sults [1,3] although the results can be trivially ex- 
tended to such systems; the examples of Refs. [ 11,121 
are non-generic, having either a Hamiltonian or re- 
versible structure). 

The observant reader will have noted that one 
way of interpreting example (12) is through the 
unfolding of the degenerate Jordan normal form 

A, 1 0 0 

0 A, 0 0 

0 0 V, 1 

0 0 0 V, 

(13) 

We look at the existence of bifocal homoclinic orbits 
in this light elsewhere [8]: in particular, we explore 
several codimension two bifurcations involving bifo- 
cal homoclinic bifurcations. The normal form (13) 
has codimension greater than two, and we consider 
this to be too large for useful analysis in the absence 
of some concrete physical motivation. 

C.L. is grateful to the Cambridge Commonwealth 
Trust for financial support. 
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