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We consider the simplest network of coupled non-identical phase oscillators capable of displaying a
“chimera” state (namely, two subnetworks with strong coupling within the subnetworks and weaker
coupling between them) and systematically investigate the effects of gradually removing connections
within the network, in a random but systematically specified way. We average over ensembles of
networks with the same random connectivity but different intrinsic oscillator frequencies and derive
ODEs whose fixed points describe a typical chimera state in a representative network of phase os-
cillators. Following these fixed points as parameters are varied we find that chimera states are quite
sensitive to such random removals of connections, and that oscillations of chimera states can be either
created or supressed in apparent bifurcation points, depending on exactly how the connections are
gradually removed.
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Chimera states are known to occur in networks of identical phase oscillators and are characterised
by some fraction of the oscillators being synchronised while the remainder are asynchronous. Previous
studies of these states have considered highly symmetric networks, with all-to-all connectivity. The
question as to the robustness of these states with respect to changes in the network structure naturally
arises. Here we systematically investigate this issue for what is arguably the simplest network that
shows chimera states, considering two different systematic ways of perturbing an all-to-all connected
network. By varying parameters controlling the oscillators’ dynamics, as well as parameters controlling
the topology of the network, we can determine the effects of changing this topology on the existence
and stability of chimera states. We find that chimera states are quite sensitive to changes in the network
topology, and that one of the perturbations considered supresses oscillations of chimera states, while
the other promotes oscillations.

I. INTRODUCTION

Networks of coupled oscillators have been studied for many years, with the Kuramoto model of phase
oscillators being one of the most studied [1–10]. In these models, the state of oscillator i is given by the angu-
lar variable θi, and oscillators are coupled to one another through sinusoidal functions of phase differences.
Much effort has gone into characterising the influence of coupling strength and oscillators’ intrinsic frequen-
cies on oscillator synchronisation [4, 5, 8, 10]. However, in the last decade or so a number of researchers
have studied an interesting phenomenon referred to as a “chimera” state, observed in highly-symmetric
networks of identical phase oscillators [1, 7, 11–16]. This state is one in which — although the oscillators are
identical — some fraction of them are synchronous while the remainder are asynchronous. One of the sim-
plest systems used to study this phenomenon is a network formed from two identical sub-networks, with
strong all-to-all coupling within sub-networks and weaker all-to-all coupling between subnetworks. Such a
system was studied by Abrams et al. [7], who used the ansatz of Ott and Antonsen [17–19] to show that this
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system, in the limit of an infinite number of oscillators, could be described by three ordinary differential
equations. However, Pikovsky and Rosenblum [20] showed, using the ansatz of Watanabe and Strogatz
[21], that the Ott/Antonsen (OA) ansatz did not completely describe the dynamics of such a system when
the oscillators were identical. Subsequently, Laing [3] studied the same network but with non-identical os-
cillators, for which the OA ansatz does correctly predict the dynamics. A later study [22] of planar (rather
than phase) oscillators coupled as above showed that chimera states are robust with respect to variation
of the oscillator amplitude, at least for this type of network. A number of other authors have considered
similar pairs of networks of oscillators [23–25].

All previous analyses of chimera states have considered highly structured networks, with either all–
to–all coupling within and between subnetworks (but with different strengths within and between sub-
networks) [3, 7, 15, 22], or networks with physical spatial structure in which the coupling strength between
oscillators depends on only the distance between oscillators [1, 11–13, 16]. Such precisely coupled networks
are unlikely to exist in nature, so it is of interest to investigate the robustness of chimera states with respect
to changes in the network structure, defined by the coupling between oscillators. This is the question we ad-
dress here. We use techniques presented in Barlev et al. [8] to study an ensemble of networks, each of which
has the same structure, namely a fixed perturbation from the case discussed above (a network formed from
two statistically identical sub-networks, with all-to-all coupling both between and within sub-networks).
For each ensemble member, the set of intrinsic frequencies of the oscillators is chosen randomly and in-
dependently from a given distribution, i.e. we consider the case of nonidentical oscillators. By averaging
over the ensemble we obtain a set of 2N ODEs, where N is the number of oscillators in each subnetwork.
The fixed points of these ODEs (when they exist) can be followed as parameters are varied, giving typical
behaviour of a network of phase oscillators with the same specified connectivity.

We consider systematic perturbations of network topology, and by considering a number of different
ensembles, each of which is chosen from the same family of perturbed networks, we can determine overall
trends in the behaviour of such networks as they move away from the highly-symmetric (all-to-all coupled)
case. We choose two different parametrised families of network topologies, both of which asymptote in
particular limits to the all-to-all coupled case. By varying both the parameters governing the topology of
the network and other natural parameters in the system, we can systematically determine the effects of
varying the network structure on the existence and stability of chimera states.

We present the model and analyse it in Sec. II, using the techniques of Barlev et al. [8] to average over an
ensemble of networks and obtain equations describing the statistics of the corresponding phase oscillator
networks. Our results are given in Sec. III, where we first consider the all-to-all coupled case, and then
investigate two parametrised families of increasingly sparse networks. We conclude with a discussion in
Sec. IV.

II. MODEL AND ANALYSIS

Our system consists of two populations of non-identical phase oscillators, with coupling both between
and within populations, but of different respective strengths. The governing equations are

dθ1j
dt

= ω1

j +
µ

N

N∑

k=1

Ajk sin (θ
1

k − θ1j − α) +
ν

N

N∑

k=1

Bjk sin (θ
2

k − θ1j − α) (1)

dθ2j
dt

= ω2

j +
µ

N

N∑

k=1

Cjk sin (θ
2

k − θ2j − α) +
ν

N

N∑

k=1

Djk sin (θ
1

k − θ2j − α) (2)

for j = 1, . . . N , where N is the number of oscillators in each population (subnetwork). The two populations
are labelled 1 and 2, with connectivity within population 1 given by the matrix Ajk , from population 2 to 1
by Bjk, within population 2 by Cjk and from 1 to 2 by Djk . The entries of these matrices are either constant
(the same constant within each matrix) or 0. The superscripts on the angles label the population to which
they belong; the ωj are all taken from a distribution g(ω); and µ and ν are given by µ = (1 + E)/2, ν =
(1− E)/2, where E is a parameter, as in [3, 7].

If the connectivity matrices are full, i.e. all entries are 1, the system reverts to that studied by Abrams
et al. [7] if g(ω) is a delta function, and to that by Laing [3] (and earlier, by Montbrió et al. [9]) if g(ω) is a
Lorentzian. These authors studied the effects of varying α,E, and the width of the distribution of intrinsic
frequencies, g(ω). (The mean of g can be set to zero by going to a rotating coordinate frame.) Here, instead,
we are interested in the combined effects of systematically varying the connectivity matrices A, . . .D, and
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FIG. 1: A chimera solution of (1)-(2) for full connectivity matrices. Top: a temporal snapshot of the phase θi as a
function of index, i, where those in population 1 are numbered 1 to 500, and those in population 2 are numbered 501
to 1000. Bottom left: histogram of oscillator phases in population 1. Bottom right: histogram of oscillator phases in
population 2. Parameter values: N = 500, E = 0.2, α = π/2− 0.05. All ωj chosen from a Lorentzian distribution with
half-width-at-half-maximum 0.001.

varying the parameters just mentioned. As an illustration, Fig. 1 shows an example of a chimera state for (1)-
(2) when the matrices A, . . .D are full. We see that in population 1 the oscillators are tightly synchronised,
whereas in population 2 they are significantly more asynchronous.

We now use the results of Barlev et al. [8] to derive 2N ODEs which describe an ensemble of networks all
having the same connectivity, but with different realisations of the ωj in different members of the ensemble.
The advantage of this is that the fixed points of these ODEs describe, on a statistical level, some of the
typical behaviour seen in a realisation of the phase oscillator network with the same connectivity. (The
states we are interested in, chimera states, do not correspond to actual fixed points of the phase oscillator
system (1)-(2).) These fixed points, which represent on a statistical level typical behaviour which is sampled
by a realisation of the phase oscillator network, can then be followed as parameters are varied, and any
bifurcations found will lead to insight into the possible representative behaviour of a corresponding phase
oscillator network with the same connectivity. By doing this for many different random network structures
that are generated in the same systematic way (i.e. that are statistically the same) we can examine the effects
of randomly changing, in a prescribed way, connectivity matrices in the above network. By considering
different random network structures that are statistically the same, we are effectively averaging over both
the intrinsic frequencies of the oscillators, and different realisations of these networks.

First we define four N -dimensional vectors whose jth entries are

Âj ≡
1

N

N∑

k=1

Ajk exp (iθ
1

k) B̂j ≡
1

N

N∑

k=1

Bjk exp (iθ
2

k) (3)

Ĉj ≡
1

N

N∑

k=1

Cjk exp (iθ
2

k) D̂j ≡
1

N

N∑

k=1

Djk exp (iθ
1

k) (4)

which allows us to write (1)-(2) as

dθ1j
dt

= ω1

j + µ Im
[
Âj exp (−iθ1j ) exp (−iα)

]
+ ν Im

[
B̂j exp (−iθ1j ) exp (−iα)

]
(5)

dθ2j
dt

= ω2

j + µ Im
[
Ĉj exp (−iθ2j ) exp (−iα)

]
+ ν Im

[
D̂j exp (−iθ2j ) exp (−iα)

]
(6)

for j = 1, . . .N . Now consider an ensemble of systems of this form, with fixed connectivities (i.e. matrices
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A,B,C and D), but where each member of the ensemble has a randomly chosen set of frequencies {ω1

j} and

{ω2

j} (these both come from the same distribution g, and g is the same for each member of the ensemble).
Letting the number of members of the ensemble go to infinity we describe the state of population 1 by the
probability density function

f1(θ1
1
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2
, . . . , θ1N ;ω1

1
, ω1

2
, . . . ω1

N ; t)

and population 2 by the function

f2(θ2
1
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2
, . . . , θ2N ;ω2

1
, ω2

2
, . . . ω2

N ; t)

which, by conservation of oscillators [4, 18], satisfy

∂fσ

∂t
+
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(
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)]
= 0 (7)

for σ = 1, 2. In this limit the jth entries of the vectors Â, B̂, Ĉ and D̂ are defined by
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where fσ
k (k ∈ {1, . . .N}) is the marginal distribution for the phase of the kth oscillator defined by

fσ
k (θ

σ
k , ω

σ
k , t) =

∫
fσ({θσ}; {ωσ}; t)

∏

j 6=k

dωσ
j dθσj .

Note that the vectors Â, B̂, Ĉ and D̂ are functions of time only. Multiplying (7) by
∏

j 6=k dωσ
j dθσj and

integrating we find that each fσ
k satisfies

∂fσ
k

∂t
+

∂

∂θσk

[
fσ
k

(
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)]
= 0 (12)

The OA ansatz [17–19] is an assumption on the form of the Fourier series in the angular direction for the
fk, namely that

f1

k (θ
1

k, ω
1

k, t) =
g(ω1

k)

2π

[
1 +

∞∑

n=1

[αk(ω
1

k, t)]
n exp (inθ1k) + c.c.

]
(13)



5

and
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2
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where “c.c.” is the complex conjugate of the previous term and |αk|, |βk| ≤ 1 for convergence. Substituting
these Fourier series into (12) we find that the αk and βk satisfy

dαk

dt
= −iω1

kαk + (eiα/2)
(
µÂk + νB̂k

)
− (e−iα/2)

(
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α2
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where overline indicates complex conjugate. Substituting the ansatz (13)-(14) into (8)-(11) we obtain
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Ĉj =
1

N

N∑

k=1

Cjk

∫ ∞

−∞

βk(ω
2

k, t)g(ω
2

k) dω
2

k (19)

D̂j =
1

N

N∑

k=1

Djk

∫ ∞

−∞

αk(ω
1

k, t)g(ω
1

k) dω
1

k. (20)

If

g(ω) =
∆/π

ω2 +∆2

i.e. g(ω) is a Lorentzian with half-width-at-half-maximum of ∆ and centred (without loss of generality) at
ω = 0, then we obtain (using contour integration [3, 18])

Âj =
1

N

N∑

k=1

Ajkαk(−i∆, t) B̂j =
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N
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k=1
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Defining ak(t) ≡ αk(−i∆, t) and bk(t) ≡ βk(−i∆, t) and evaluating (15)-(16) at ω1

k = ω2

k = −i∆ we obtain
the 2N ODEs

dak
dt

= −∆ak +Rk −Rka
2

k (23)

dbk
dt

= −∆bk + Sk − Skb
2

k (24)

for k = 1, . . .N where
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(
µÂk + νB̂k

)
/2 (25)

Sk = e−iα
(
µĈk + νD̂k

)
/2 (26)
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and

Âj =
1

N

N∑

k=1

Ajkak B̂j =
1

N

N∑

k=1

Bjkbk (27)

Ĉj =
1

N

N∑

k=1

Cjkbk D̂j =
1

N

N∑

k=1

Djkak (28)

The interpretation of the ak is that the magnitude of ak gives the “peaked-ness” of the angular distribution
over the ensemble of the θ1k — the closer |ak| is to 1 the more peaked the distribution, while |ak| = 0 corre-
sponds to a uniform angular distribution. The argument of ak gives the phase about which the distribution
of the θ1k are peaked. Similarly for the bk and population 2.

Note that when A,B,C and D are full, there exists a solution of (23)-(28) for which ak = a and bk = b ∀k,
where a and b are governed by the two complex equations studied by Laing [3]:

da

dt
= −∆a+ (eiα/2)(µa+ νb)− (e−iα/2)(µa+ νb)a2 (29)

db

dt
= −∆b+ (eiα/2)(µb+ νa)− (e−iα/2)(µb+ νa)b2 (30)

If ∆ = 0, (29)-(30) are the same equations as studied by Abrams et al. [7]. As Barlev et al. [8] noted, this
type of sychronised solution, for which ak = a and bk = b ∀k, also exists when the coupling matrices all
have the same row sum, i.e. all of the oscillators have the same in–degree. Note that (29)-(30) were derived
by Abrams et al. [7] not by averaging over an infinite ensemble of finite networks as done by Barlev et al.
[8], but by considering the limit N → ∞ for a single network with full connectivity.

III. RESULTS

We now consider the solutions of (23)-(28). For concreteness we set ∆ = 0.001; we also define β = π/2−α.
In order to understand the results for randomly connected networks we first consider the all-to-all coupled
case. We then consider increasingly sparsely connected networks where the sparseness is gradually intro-
duced in two different random but systematic ways. Firstly, we randomly remove connections between
oscillators, with the same probability of removal for all connections. We then consider randomly removing
connections in a preferential way so as to create a specific skewed degree distribution.

A. All-to-all coupling

Firstly, consider the all-to-all coupled case. We are interested in chimera state solutions of (29)-(30). A
chimera state is a solution of (29)-(30) for which |a| is very close to 1 with |b| significantly less than 1, or vice
versa. (If ∆ = 0, the chimera state would have |a| exactly equal to 1.) The interpretation of this solution is
that oscillators in population 1 are tightly “clustered” in phase, while those in population 2 are significantly
less clustered, as seen in Fig. 1. There is also a constant phase difference between the most likely phases
of the oscillators in the two populations. For the same parameters as used in Fig. 1 numerical calculations
show that the chimera solution of (29)-(30) has |a| = 0.98573 and |b| = 0.68862 with a phase difference
between a and b of 0.095742 (compare with Fig. 1).

Following this chimera state as β is varied we obtain Fig. 2. We see that as β is increased the stable
chimera is destroyed in a saddle-node bifurcation, and when β is decreased it dies in a pitchfork bifurcation
involving the symmetric state in which |a| = |b|. Following these bifurcations as both E and β are varied
we obtain Fig. 3. (Recall that E is the strength of the “within subnetwork” coupling relative to the “between
subnetwork” coupling, and β is related to the phase offset in (1)-(2).) We see that for moderately small E
and β a stable chimera exists. As β is increased the chimera is destroyed in a saddle-node bifurcation, and as
E is increased it undergoes a Hopf bifurcation. Although we will only consider ∆ = 0.001 in the rest of this
paper, Fig. 4 shows how some of the curves in Fig. 3 move as ∆ is varied. We only show the curves which
bound the region of parameter space in which a stable chimera exists, and see that increasing ∆, i.e. making
the oscillators more heterogeneous, causes the left-most pitchfork bifurcation to move to higher β, the Hopf
bifurcation to move to higher E, and the saddle-node bifurcation to move very little. Figure 4 should be
compared with Fig. 4 in [7], where the authors analyse chimera states when ∆ = 0, i.e. the oscillators are
identical.
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FIG. 2: (color online) Steady states of (29)-(30), where β = π/2 − α. This figure relates to the all-to-all coupled case
in the limit N → ∞. Lines indicate symmetric solutions for which |a| = |b|; solid blue: stable, dashed red: unstable.
Points indicate chimera states where |a| 6= |b|; blue: stable, red: unstable. The symmetric state undergoes two pitchfork
bifurcations as β is varied. The lower panel is an enlargement of the upper panel. Parameters: E = 0.2,∆ = 0.001.

B. “Sparse” coupling matrices

We now return to the system (23)-(28). As noted by others [2, 12], in order to find steady states of equa-
tions like (23)-(24) we must move to a rotating coordinate frame. Thus we replace (23)-(24) by

dak
dt

= (iΩ−∆)ak +Rk −Rka
2

k (31)

dbk
dt

= (iΩ−∆)bk + Sk − Skb
2

k (32)

where Ω is the (as yet unknown) rotation frequency. Steady states of (31)-(32) and (25)-(28) are invariant
under a rotation ak 7→ ake

iγ and bk 7→ bke
iγ for any γ ∈ R, reflecting the invariance of the network (1)-(2)

under uniform phase shifts applied to each oscillator. We remove this degeneracy by “pinning” the phase
of one of the ak; this extra condition then allows us to find Ω. We first consider increasing β for E = 0.2.
From Fig. 3 we see that for full connectivity matrices this will lead to the destruction of a chimera through a
saddle-node bifurcation, and we are now interested in what happens as β is increased for “sparse” connec-
tivity matrices. (For convenience, we use the term “sparse” below to refer to connectivity matrices that are
not full. As we will see, they are not actually sparse in the usual sense of having a majority of zero entries.)
We set N = 300 and consider several different systematic ways of perturbing away from the case of full
connectivity.
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FIG. 3: (color online) Bifurcations of fixed points of (29)-(30). Green dots: Hopf bifurcation of the stable chimera; blue
line: saddle-node bifurcation of the stable and unstable chimera; red dotted: pitchfork bifurcation of the symmetric
state in which |a| = |b|. A stable chimera exists in the region bounded by the left-most pitchfork bifurcation, the saddle-
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(30) for ∆ = 0.001 (black, also shown in Fig. 3), ∆ = 0.003 (blue) and ∆ = 0.005 (red). The arrows indicate how the
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9

200 250 300
0

50

100
p=0.97

200 250 300
0

50

100
p=0.93

200 250 300
0

50

100
p=0.9

200 250 300
0

50

100

r=0.01

200 250 300
0

50

100

r=0.02

200 250 300
0

50

100

r=0.04

FIG. 5: Degree distributions for Erdös-Rényi-type networks (top row) and Chung-Lu-type networks (bottom row). See
text for explanation of parameters. Here N = 300.

1. Erdös-Rényi type networks

In our first example we consider randomly deleting entries from the matrices A,B,C and D, and increas-
ing the remaining values of the weights to compensate. More precisely, for the matrix A we choose

Aij =

{
1/p, with probability p
0, with probability 1− p

for all 1 ≤ i, j ≤ N where 0 < p ≤ 1. Thus p = 1 corresponds to A being full. If A is thought of as the ad-
jacency matrix of a graph, the constructed matrix corresponds to a weighted (with equal weights) directed
Erdös-Rényi (ER) graph, where p is the probability that any one of the N2 connections from oscillator j
to oscillator i exists. Note that we do not normalise the sum of all of the entries of A to be N2, but the
expected value of this sum is N2, due to the weighting of connections. We construct the matrices B,C and
D in the same way. Typical degree distributions (i.e. histograms of the number of oscillators connected to a
particular oscillator) for three different values of p are shown in Fig. 5 (top row).

An example of a stable chimera state for the ensemble ODEs (i.e. a stable fixed point of (31)-(32) and (25)-
(28)) when p = 0.97 is shown in Fig. 6 (top two panels), where population 1 is partially coherent and
population 2 is largely synchronised, as indicated by the magnitudes of the ai and bi. This Figure also shows
(in the bottom panel) a snapshot of the corresponding chimera state in the phase oscillator network (1)-(2).
If we follow a fixed point of (25)-(28) and (31)-(32) as β is increased, by referring to Fig. 3 we expect the
stable solution to be destroyed in a saddle-node bifurcation. This does happen, and recording the value
of β at which this occurs (βsn) for a number of different realisations of the networks and different values
of p, we obtain Fig. 7. We see that the chimera state is destroyed at a smaller value of β than the value
corresponding to the case of full connectivity, and that these values decrease as p is decreased, i.e. as the
networks are made more sparse. We repeated these calculations with N = 100 and found that smaller
networks were more sensitive to the removal of connections. That is, for N = 100 and the values of p used
in Fig. 7, the saddle-node bifurcations occurred at even lower values of β than those shown in Fig. 7 for
N = 300 (results not shown).

Setting B and D to be full while keeping A and C sparse, viz. the case where there are sparse connections
only within populations, not between them, gives results very similar to those in Fig. 7. However, if A
and C full and B and D are sparse, i.e. there are sparse connections only between populations, this makes
the system more robust in the sense that (in this case) for the same values of p, the curve of saddle-node
bifurcations seen in Fig. 7 does not move down so much (not shown). Referring to Fig. 3, the interpretation
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FIG. 6: A chimera solution in a network with Erdös-Rényi-type connectivity. Oscillators in population 1 are numbered
1 to 300, those in population 2 are numbered 301 to 600. Top and middle panels show fixed points of (31)-(32), while the
bottom panel is a snapshot of (1)-(2) for the same connectivity matrices. Top: magnitudes of the ai (left) and bi (right).
Middle: argument of the ai (left) and bi (right). Other parameters: N = 300, p = 0.97, E = 0.2,∆ = 0.001, β = 0.05.

of these results is that modifying the network in this way decreases the size of the (E, β) parameter space
in which a stable chimera exists.

Now consider holding β = 0.05 and increasing E. We see from Fig. 3 that when the coupling matrices
are full this results in a Hopf bifurcation of the chimera state. The results of doing this for the modified net-
works and various values of p are shown in Fig. 8. We see a similar trend as for the saddle-node bifurcation:
removing more and more connections in this way decreases the value of the parameter at which a stable
chimera undergoes a bifurcation, again shrinking the size of the parameter space in which a stable chimera
exists. Figure 8 suggests something perhaps surprising: if we hold E at say 0.26, a system with full connec-
tivity will support a stable chimera, but if we decrease p to 0.9, the chimera should (with high probability)
undergo a Hopf bifurcation. We show an example of this in Fig. 9 for the full oscillator network (1)-(2),
where we abruptly switch the connectivity matrices from full to sparse (p = 0.9). As predicted, we see
the onset of coherent oscillations. The type of simulation shown in Fig. 9 was repeated for a number of
different realisations of the ωi and different connectivity matrices, and the results were always qualitatively
the same.
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FIG. 7: The values of βsn for which there is a saddle-node bifurcation of fixed points of (25)-(28) and (31)-(32) for
Erdös-Rényi-type random matrices A,B,C and D, as a function of p. At each value of p, 10 realisations of the random
matrices were used, and the mean and standard deviation of the 10 βsn are shown. Other parameters: N = 300, E =
0.2,∆ = 0.001.
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FIG. 8: Values of E at which a Hopf bifurcation of a stable stationary chimera state occurs for an Erdös-Rényi-type
network, for different values of p. At each value of p, 10 realisations of the random matrices were used, and the mean
and standard deviation of the 10 values of E are shown. Other parameters: N = 300, β = 0.05,∆ = 0.001.

2. Chung-Lu-type networks

We now consider a second type of perturbation from the fully-connected case in which edges are removed
preferentially so as to create a specific skewed degree distribution. The algorithm we use to create these
networks is motivated by the Chung-Lu algorithm [26]. We begin by assigning to each oscillator in a
subnetwork a weight wi = N(i/N)r, where i = 1, 2, . . .N is the oscillator number within the network.
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FIG. 9: Onset of a Hopf bifurcation caused by randomly removing (with equal probability) a few of the connections
within the phase oscillator network (1)-(2). At t = 1000 we switched the connectivity matrices A,B,C and D from

full to Erdös-Rényi-type matrices with p = 0.9. We define r1 = (1/N)
∑N

j=1
exp (iθ1j ) and r2 = (1/N)

∑N

j=1
exp (iθ2j ).

Other parameters: N = 300, E = 0.26, β = 0.05,∆ = 0.001.

The probability pij of the existence of a connection between oscillators i and j is given by pij = min(qij , 1),
where

qij =
wiwj∑
k wk

. (33)

We normalize each connectivity matrix so that the sum of all the entries of the matrix is N2, i.e. the con-
nections are weighted, as was the case for the Erdös-Rényi-type networks. It is easy to show that when
r = 0 all entries of the resulting connectivity matrix equal 1, i.e. we are in the fully-connected case, and the
degree distribution is effectively a delta function at N . As we increase r from zero, we obtain graphs whose
degree distributions are skewed to the left (a long tail towards lower degrees). A few representative degree
distributions are shown in Fig. 5 (bottom row) for r ranging between 0.01 and 0.04.

Note that in the original Chung-Lu algorithm pij = qij and weights wi are chosen such that qij ≤
1, ∀ (i, j). Here, since we allow qij to exceed 1, the weight wi may not exactly correspond to the expected
value of the degree of node i (as it does in the Chung-Lu algorithm).

Consider varying β while E is held constant at 0.2 for a Chung-Lu-type network. Doing so for various
values of the parameter r and recording the value (βsn) of β at which the saddle-node bifurcation occurs
(c.f. Fig. 3) we obtain the results in Fig. 10. As in the Erdös-Rényi-like case, removing connections between
oscillators in this way decreases the value of β at which the stable chimera state is destroyed. On the
contrary, if we vary E with fixed β, for various different values of r, we obtain the results in Fig. 11. Here
we see something different from the Erdös-Renyi-like case: making the matrices sparse in this way increases
the value of E at which the Hopf bifurcation occurs (EH ). These results suggest that if we set E = 0.3,
say, then for full connectivity we will see macroscopic oscillations, as the network has passed the Hopf
bifurcation point. But for these parameters and Chung-Lu-type connectivity with r sufficiently large, a
stationary chimera state is still stable. Thus if we switch connectivity from full to sparse we expect to see
suppression of the oscillations, due to the Hopf bifurcation now occurring at a value of E greater than 0.3.
This indeed occurs, as is demonstrated for the oscillator network (1)-(2) with Chung-Lu-type connectivity
in Fig. 12. This type of simulation was repeated for a number of different realisations of the ωi and different
Chung-Lu-type connectivity matrices, and the results were always qualitatively the same.

IV. DISCUSSION

In this paper we have considered the robustness of chimera states in a particular type of network of
phase oscillators with respect to randomly removing connections between oscillators in a systematic way.
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FIG. 10: The values of βsn for which there is a saddle-node bifurcation of fixed points of (25)-(28) and (31)-(32) for
Chung-Lu-type random matrices A,B,C and D, as a function of r. At each value of r, 10 realisations of the random
matrices were used, and the mean and standard deviation of the 10 βsn are shown. Other parameters: N = 300, E =
0.2,∆ = 0.001.
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FIG. 11: Values of E at which a Hopf bifurcation of a stable stationary chimera state occurs for a Chung-Lu-type
network, for different values of r. At each value of r, 10 realisations of the random matrices were used, and the mean
and standard deviation of the 10 values of E are shown. Other parameters: N = 300, β = 0.05,∆ = 0.001.

The technique we used was first presented by Barlev et al. [8], who studied the onset of synchronisation,
and involves averaging over an ensemble of networks, all with the same connectivity, but with different
realisations of the intrinsic frequencies of the oscillators in each member of the ensemble. This technique,
combined with the ansatz of Ott and Antonsen [17–19] and an assumption that the intrinsic frequencies
are chosen from a Lorentzian distribution, allowed us to derive a set of 2N ODEs, where N is the number
of oscillators in each of the two subnetworks. Fixed points of these ODEs represent statistically stationary
states of the original phase oscillator network, and these fixed points can be followed as parameters are
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FIG. 12: Suppression of oscillations by removing some of the connections within the oscillator network (1)-(2). At t =
1000 we switched the connectivity matrices A,B,C and D from full to Chung-Lu-type matrices with r = 0.1. We define

r1 = (1/N)
∑N

j=1
exp (iθ1j ) and r2 = (1/N)

∑N

j=1
exp (iθ2j ). Other parameters: N = 300, E = 0.3, β = 0.05,∆ = 0.001.

varied. Thus, we can determine — on average — the effects of randomly removing connections from our
network in specific ways. We chose two different parametrised families of perturbations from the fully-
connected case. Firstly, we altered the probability of existence of a connection from one oscillator to another.
Secondly, we removed connections in a preferential way so as to create a skewed degree distribution. We
varied parameters relating to both the structure of the networks (p and r), and to the dynamics on the
networks (E and β).

We found several interesting results. Firstly, these chimera states are quite sensitive to random removal
of connections between oscillators. For the Erdös-Rényi-type perturbations, where we randomly remove
connections with uniform probability, choosing p = 0.93 already has a significant effect on the range of
parameter values for which a chimera state can exist (see Fig. 7). A similar statement applies for the Chung-
Lu-type networks with r = 0.02 (see Fig. 10). This is in contrast with many results regarding the dynamics
on random graphs in which transitions typically occur at much smaller values of p [27].

The second interesting result concerns the shifting of Hopf bifurcations by the removal of connections.
We have considered two different perturbations from the fully connected case and found two different
effects. With Erdös-Rényi-type perturbations, the Hopf bifurcation moves to lower values of E (see Fig. 8)
whereas for Chung-Lu-type perturbations, the Hopf bifurcation moves to higher values of E (see Fig. 11).
The implications of this are that oscillations of a chimera state via a Hopf bifurcation can be either created
(Fig. 9) or destroyed (Fig. 12) by randomly removing connections (in a particular way) from within the
network.

While we only considered a Lorentzian distribution of intrinsic frequencies, so that the integrals in (17)-
(20) could be done explicitly, we also considered (1)-(2) when the frequencies were randomly chosen from
Gaussian distributions with standard deviation 0.003 and verified that the overall trends seen in Figs. 7, 8, 10
and 11 also occurred in this case (results not shown). We have considered only two specific ways of sys-
tematically creating sparse networks by perturbing from the all-to-all coupled case, and only one type of
network. Given that all-to-all connectivity with equal weights is an idealisation that is unlikely to arise in
any naturally occuring network, our results are a first step towards a more general understanding of the
results of the interaction between the structure of a network and the dynamics on the network.
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