
PDE Methods for Two-Dimensional Neural
Fields

Carlo R. Laing

Abstract We consider neural field models in both one and two spatial dimensions
and show how for some coupling functions they can be transformed into equivalent
partial differential equations (PDEs). In one dimension wefind snaking families of
spatially-localised solutions, very similar to those found in reversible fourth-order
ordinary differential equations. In two dimensions we analyse spatially-localised
bump and ring solutions and show how they can be unstable withrespect to pertur-
bations which break rotational symmetry, thus leading to the formation of complex
patterns. Finally, we consider spiral waves in a system withpurely positive coupling
and a second slow variable. These waves are solutions of a PDEin two spatial di-
mensions, and by numerically following these solutions as parameters are varied,
we can determine regions of parameter space in which stable spiral waves exist.

1 Introduction

Neural field models are generally considered to date back to the 1970s [1, 41],
although several earlier papers consider similar equations [4, 25]. These types of
equations were originally formulated as models for the dynamics of macroscopic
activity patterns in the cortex, on a much larger spatial scale than that of a single
neuron. They have been used to model phenomena such as short-term memory [36],
the head direction system [43], visual hallucinations [20,19], and EEG rhythms [7].

Perhaps the simplest formulation of such a model in one spatial dimension is

∂u(x, t)
∂ t

=−u(x, t)+
∫ ∞

−∞
w(x− y) f (u(y, t))dy (1)
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where

• w is symmetric, i.e.w(−x) = w(x),
• limx→∞ w(x) = 0,
•
∫ ∞
−∞ w(x)dx< ∞,

• w(x) is continuous,

and f is a non-decreasing function with limu→−∞ f (u) = 0 and limu→∞ f (u) = 1 [36,
12]. The physical interpretation of this type of model is that u(x, t) is the average
voltage of a large group of neurons at positionx ∈ R and timet, and f (u(x, t)) is
their firing rate, normalised to have a maximum of 1. The function w(x) describes
how neurons a distancex apart affect one another. Typical forms of this function
are purely positive [6], “Mexican hat” [19, 26] (positive for small x and negative
for largex) and decaying oscillatory [36, 18]. To find the influence of neurons at
positiony on those at positionx we evaluatef (u(y, t)) and weight it byw(x− y).
The influence of all neurons is thus the integral overy of w(x− y) f (u(y, t)). In the
absence of inputs from other parts of the network,u decays exponentially to a steady
state, which we define to be zero. Equation (1) is a nonlocal differential equation,
with the nonlocal term arising from the biological reality that we are modelling.
Typically, researchers are interested in either “bump” solutions of (1), for which
f (u(x)) > 0 only on a finite number of finite, disjoint intervals, or front solutions
which connect a region of high activity to one of zero activity [12]. Note that this
type of model is invariant with respect to spatial translations, which is reflected in
the fact thatw appears as a function of relative position only (i.e.x− y), not the
actual values ofx andy.

The function f is normally thought of as a sigmoid (although other functions
are sometimes considered [26]), and in the limit of infinite steepness it becomes the
Heaviside step function [36, 12]. In this case stationary solutions are easily con-
structed since to evaluate the integral in (1) we just integratew(x−y) over the inter-
val(s) ofy where f (u(y, t)) = 1. The stability of these solutions can be determined
by linearising (1) about them and using the fact that the derivative of the Heaviside
function is the Dirac delta function [6, 40].

When f is not a Heaviside, constructing stationary solutions becomes more diffi-
cult and we generally have to do so numerically. A stationarysolution of (1) satisfies

u(x) =
∫ ∞

−∞
w(x− y) f (u(y))dy. (2)

In all but Section 4 of this chapter we consider only spatially-localised solutions,
i.e. ones for whichu and all of its relevant spatial derivatives decay to zero as
|x| → ∞. Generally speaking, integral equations such as (2) are notstudied in as
much detail as differential equations. As a result more methods for analysis — and
software packages — exist for the numerical solution of differential equations, as
opposed to integral equations. For these reasons we consider rewriting (2) as a dif-
ferential equation for the functionu(x). The key to doing so is to recognise that the
integral in (2) is a convolution. This observation providesseveral equivalent ways
of converting (2) into a differential equation.
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The first method involves recalling that the Fourier transform of the convolu-
tion of two functions is the product of their Fourier transforms. Thus, denoting by
F [u](k) the Fourier transform ofu(x), wherek is the transform variable, Fourier
transforming (2) gives

F[u](k) = F [w](k)×F[ f (u)](k) (3)

where “×” indicates normal multiplication. Suppose that the Fourier transform ofw
was a rational function ofk2, i.e.

F[w](k) =
P(k2)

Q(k2)
(4)

whereP andQ are polynomials. Multiplying both sides of (3) byQ(k2) we obtain

Q(k2)×F[u](k) = P(k2)×F[ f (u)](k) (5)

Recalling that if the Fourier transform ofu(x) is F [u](k), then the Fourier transform
of u′′(x) is −k2F[u](k), the Fourier transform ofu′′′′(x) is k4F [u](k) and so on,
where the primes indicate spatial derivatives, taking the inverse Fourier transform
of (5) gives

D1u(x) = D2 f (u(x)) (6)

whereD1 andD2 are linear differential operators involving only even derivatives
associated withQ andP respectively [32]. As an example, consider the decaying
oscillatory coupling function

w(x) = e−b|x|(bsin|x|+ cosx) (7)

whereb is a parameter (plotted in Fig. 1 (left) forb= 0.5), which has the Fourier
transform

4b(b2+1)
k4+2(b2−1)k2+(b2+1)2 . (8)

For this exampleD2 is just the constant 4b(b2+1) and

D1 =
d4

dx4 −2(b2−1)
d2

dx2 +(b2+1)2 (9)

and thus (for this choice ofw) eqn. (2) can be written

d4u
dx4 −2(b2−1)

d2u
dx2 +(b2+1)2u= 4b(b2+1) f (u(x)). (10)

Our decision to consider only spatially-localised solutions vaidates the use of
Fourier transforms and gives the boundary conditions for (10), namely

lim
x→±∞

(u,u′,u′′,u′′′) = (0,0,0,0). (11)
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Fig. 1 Left: w(x) given by (7) whenb= 0.5. Right: f (u) given by (21) forr = 0.1,h= 1.

The other method for converting (2) into a differential equation is to recall that the
solution of an inhomogeneous linear differential equationcan be formally written
as the convolution of the Green’s function of the linear differential operator together
with the appropriate boundary conditions, and the functionon the right hand side
(RHS) of the differential equation. Thus ifw was such a Green’s function, we could
recognise (2) as being the solution of a linear differentialequation withf (u) as its
RHS.

Using the example above one can show that the Green’s function of the opera-
tor (9) with boundary conditions (11), i.e. the solution of

d4w
dx4 −2(b2−1)

d2w
dx2 +(b2+1)2w= δ (x) (12)

satisfying (11), whereδ is the Dirac delta function, is

w(x) =
e−b|x|(bsin|x|+ cosx)

4b(b2+1)
(13)

and thus the solution of (10)-(11) is (2). This second method, of recognising that
the coupling functionw is the Green’s function of a linear differential operator, is
perhaps less easy to generalise, so we concentrate mostly onthe first method in this
chapter. An important point to note is that the Fourier transform method applies
equally well to (1), i.e. the full time-dependent problem. Using the function (7) and
keeping the time derivative one can convert (1) to

[

∂ 4

∂x4 −2(b2−1)
∂ 2

∂x2 +(b2+1)2
](

u(x, t)+
∂u(x, t)

∂ t

)

= 4b(b2+1) f (u(x, t))

(14)
Clearly stationary solutions of (14) satisfy (10), but keeping the time dependence
in (14) enables us to determine the stability of these stationary solutions via lineari-
sation about them.
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Note that the Fourier transform of(1/2)e−|x| is 1/(1+ k2), and thus for this
coupling function (2) is equivalent to

(

1−
∂ 2

∂x2

)

u= f (u) (15)

Also, the Fourier transform of the “wizard hat”w(x) = (1/4)(1−|x|)e−|x| is k2/(1+
k2)2, giving the differential equation [12]

(

1−
∂ 2

∂x2

)2

u=−
∂ 2

∂x2 f (u) (16)

and thus a variety of commonly used connectivity functions are amenable to this
type of transformation. (See also [26] for another example.)

The model (1) assumes that information about activity at position y propagates
instantaneously to positionx, but a more realistic model could include a distance-
dependent delay:

∂u(x, t)
∂ t

=−u(x, t)+
∫ ∞

−∞
w(x− y) f

(

u

(

y, t −
|x− y|

v

))

dy (17)

wherev > 0 is the velocity of propagation of information. Equation (17) can be
written

∂u(x, t)
∂ t

=−u(x, t)+ψ(x, t) (18)

where
ψ(x, t)≡

∫ ∞

−∞

∫ ∞

−∞
K(x− y, t− s) f (u(y,s))dy ds (19)

andK(x, t) = w(x)δ (t −|x|/v) [12, 33]. Recognising that both integrals in (19) are
convolutions, and making the choicew(x) = (1/2)e−|x|, one can take Fourier trans-
forms in both space and time and convert (19) to

(

∂ 2

∂ t2 +2v
∂
∂ t

+ v2− v2 ∂ 2

∂x2

)

ψ(x, t) =

(

v2+ v
∂
∂ t

)

f (u(x, t)) (20)

This equation was first derived by [30], and these authors maywell have been the
first to use Fourier transforms to convert neural field modelsto PDEs. We will not
consider delays here, but see [15] for a recent approach in two spatial dimensions.

2 Results in one spatial dimension

We now present some results of the analysis of (14), similar to those in [36]. From
now on we make the specific choice of the firing rate function
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f (u) = e−κ/(u−h)2H(u−h) (21)

whereκ > 0 andh ∈ R are parameters, andH is the Heaviside step function. The
function (21) for typical parameter values is shown in Fig. 1(right). Note that if
h> 0 then f (0) = 0.

We start with a few comments regarding the equation (10)-(11). Firstly, equa-
tion (10) is reversible under the involution(u,u′,u′′,u′′′) 7→ (u,−u′,u′′,−u′′′) [18].
Secondly, spatially-localised solutions of (10) can be regarded as homoclinic orbits
to the origin, i.e. orbits for whichu and all of its derivatives tend to zero asx→±∞.
Linearising (10) about the origin one finds that it has eigenvaluesb± i and−b± i,
i.e. the fixed point at the origin is a bifocus [34], and thus the homoclinic orbits
spiral into and out of the origin. Thirdly, eqn. (10) is Hamiltonian, and homoclinic
orbits to the origin satisfy the first integral

u′u′′′−
(u′′)2

2
− (b2−1)(u′)2+(b2+1)2Q(u) = 0 (22)

where

Q(u)≡
∫ u

0

(

s−
4b f(s)
b2+1

)

ds (23)

This Hamiltonian nature can be exploited to understand the solutions of (10)-(11)
and the bifurcations they undergo as parameters are varied [18]. See for exam-
ple [11] for more details on homoclinic orbits in reversiblesystems.

We are interested in stationary spatially-localised solutions of (14), and how they
vary as parameters are varied. Figure 2 shows the result of following such solutions
as the parameterh (firing threshold) is varied. As was found in [35, 18] the family of
solutions forms a “snake” with successively more large amplitude oscillations added
to the solution as one moves from one branch of the snake to thenext in the direction
of increasing max(u). (Note thatb, not h, was varied in [35, 18].) Similar snakes
of homoclinic orbits have been found in other reversible systems of fourth-order
differential equations [10, 42], and Faye et al. [21] very recently analysed snaking
behaviour in a model of the form (1).

Figure 3 shows three solutions from the family shown in Fig. 2, all at h = 0.5.
Solutions at A and C are stable, and are referred to as “1-bump” and “3-bump” so-
lutions, respectively, since they have 1 and 3, respectively, regions for whichu> h.
The solution at B is an unstable 3-bump solution. Stability of solutions was deter-
mined by linearising (14) about them. The curve in Fig. 2 showsN-bump solutions
which are symmetric about the origin, whereN is odd. A similar curve exists forN
even (not shown) and asymmetric solutions also exist [17]. In summary, spatially-
localised solutions of (10) are generic and form families which are connected in a
snake-like fashion which can be uncovered as parameters arevaried. For more de-
tails on (10)-(11) the reader is referred to [36]. We next consider the generalisation
of neural field models to two spatial dimensions and again investigate spatially-
localised solutions.
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Fig. 2 Spatially-localised
steady states of (14) as a
function of h. The vertical
axis is the maximum over
the domain ofu(x). Solid
curves indicate stable while
dashed indicate unstable. The
solutions at points A,B and
C are shown in Fig. 3. Other
parameters areb= 0.25,κ =
0.1.
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Fig. 3 Spatially-localised steady states of (14) at the three points marked A,B and C in Fig. 2.
Other parameters areb= 0.25,κ = 0.1.

3 Two dimensional bumps and rings

Neural field equations are easily generalised to two spatialdimensions, and the sim-
plest are of the form

∂u(x, t)
∂ t

=−u(x, t)+
∫

R2
w(|x− y|) f (u(y, t))dy (24)

wherex∈R
2 andw and f have their previous meanings. Note thatw is a function of

the scalar distance between pointsx andy. Spatially-localised solutions of equations
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of the form (24) have only recently been analysed in any depth[38, 35, 24, 9, 23,
16, 22, 29]. The study of such solutions is harder than in one spatial dimension for
the following reasons:

• Their analytical construction involves integrals over subsets of the plane rather
than over intervals.

• The determination of the stability of, say, a circular stationary solution is more
difficult because perturbations which break the rotationalsymmetry must be con-
sidered.

• Numerical studies require vastly more mesh points in a discretisation of the do-
main.

However, the use of the techniques presented in Sec. 1 has been fruitful for the
construction and analysis of such solutions. One importantpoint to note is that the
techniques cannot be applied directly when the functionw is one of the commonly
used ones mentioned above. For example, ifw(x) = e−x−Me−mx (of Mexican-hat
type when 0< M < 1 and 0< m< 1) then its Fourier transform is

F [w](|k|) =
1

(1+ |k|2)3/2
−

Mm

(m2+ |k|2)3/2
(25)

wherek ∈ R
2 is the transform variable. Rearranging and then taking the inverse

Fourier transform one faces the question as to what a differential equation containing
an operator like(1−∇2)3/2 actually means [15]. One way around this is to expand
a term like(1+ |k|2)3/2 around|k|= 0 as 1+(3/2)|k|2+O(|k|4) and keep only the
first few terms, thus (after inverse transforming) giving one a PDE. This is known
as the long wavelength approximation [37]; see [15] for a discussion.

A more fruitful approach is to realise that neural field models are qualitative only,
and we can gain insight from models in which the functionsw and f are qualitatively
correct. Thus we have some freedom in our choice of these functions. The approach
of Laing and co-workers [35, 36, 32] was to use this freedom tochoose notw, but
its Fourier transform. If the Fourier transform ofw is chosen so that the Fourier
transform of (24) can be rearranged and then inverse transformed to give a simple
differential equation, and the resulting functionw is qualitatively correct (i.e. has
the same general properties as connectivity functions of interest) then one can make
much progress.

As an example, consider the case when

F [w](|k|) =
A

B+(|k|2−M)2 (26)

whereA,B andM are parameters [35]. Taking the Fourier transform of (24), us-
ing (26), and rearranging, one obtains

{

|k|4−2M|k|2+B+M2}F

[

u+
∂u
∂ t

]

(k) = AF[ f (u)](k) (27)

and upon taking the inverse Fourier transform one obtains the differential equation
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Fig. 4 The functionw(x)
defined by (29) for parameter
valuesM = 1,A = 0.4,B =
0.1.
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∇4+2M∇2+B+M2]
(

u+
∂u
∂ t

)

= A f(u) (28)

The functionw is then defined as the inverse Fourier transform of its Fourier trans-
form, i.e.

w(x) = A
∫ ∞

0

sJ0(xs)
B+(s2−M)2ds (29)

whereJ0 is the Bessel function of the first kind of order zero [35]. (w(x) is the Han-
kel transform of order 0 ofF[w].) Figure 4 shows a plot ofw(x) for parameter values
M = 1,A= 0.4,B= 0.1. We see that it is of a physiologically-plausible form, quali-
tatively similar to that shown in Fig. 1 (left). We have thus formally transformed (24)
into the PDE (28).

As a start we consider spatially-localised and rotationally-invariant solutions
of (28), which satisfy

[

∂ 4

∂ r4 +
2
r

∂ 3

∂ r3 −
1
r2

∂ 2

∂ r2 +
1
r3

∂
∂ r

+2M

(

∂ 2

∂ r2 +
1
r

∂
∂ r

)

+(B+M2)

](

u+
∂u
∂ t

)

= A f(u) (30)

with

∂u
∂ r

∣

∣

∣

∣

r=0
=

∂ 3u
∂ r3

∣

∣

∣

∣

r=0
= 0 and lim

r→∞

(

u,
∂u
∂ r

,
∂ 2u
∂ r2 ,

∂ 3u
∂ r3

)

= (0,0,0,0) (31)

whereu is now a function of radiusr and timet only. We can numerically find and
then follow stationary solutions of (30)-(31) as parameters are varied. For example,
Fig. 5 shows the effects of varyingh for solutions withu(0)> 0 andu′′(0)< 0. We
see a snaking curve similar to that in Fig. 2, and as we move up the snake, on each
successive branch the solution gains one more large amplitude oscillation.

For any particular solution,u(r) on the curve in Fig. 5 one can find its stability
by linearising (28) about it. To do this we write
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Fig. 5 Solutions of (30)-(31)
with u(0) > 0 andu′′(0) < 0
as a function ofh. Other pa-
rameter values:κ = 0.05,M =
1,A= 0.4,B= 0.1. The solu-
tion u(r) at the point indicated
by the circle is shown in Fig. 6
(left).
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u(r,θ , t) = u(r)+ εν(t, r)cos(mθ ) (32)

where 0< ε ≪ 1 andm≥ 0 is an integer, the azimuthal index. We choose this form
of perturbation in order to find solutions which break the circular symmetry of the
system. Substituting (32) into (28) and keeping only first order terms inε we obtain

[

∂ 4

∂ r4 +
2
r

∂ 3

∂ r3 +

(

2Mr2−2m2−1
r2

)

∂ 2

∂ r2 +

(

2m2+1+2Mr2

r3

)

∂
∂ r

+
m4−4m2+(B+M2)r4−2Mm2r2

r4

](

ν +
∂ν
∂ t

)

= A f ′(u)ν (33)

Since this equation is linear inν we expect solutions of the formν(r, t) ∼ µ(r)eλ t

ast → ∞, whereλ is the most positive eigenvalue associated with the stability of u
(which we assume to be real) andµ(r) is the corresponding eigenfunction.

Thus to determine the stability of a circularly-symmetric solution with radial
profileu(r), we solve (33) for integerm≥ 0 and determineλ (m). If N is the integer
for which λ (N) is largest, andλ (N) > 0, then this circularly-symmetric solution
will be unstable with respect to perturbations withDN symmetry, and the radial
location of the growing perturbation will be given byµ(r).

For example, consider the solution shown solid in the left panel of Fig. 6. This
solution exists ath= 0.42, so in terms of active regions (whereu> h) this solution
corresponds to a central circular bump with a ring surrounding it. Calculatingλ (m)
for this solution we obtain the curve in Fig. 6 (right). (We donot need to be restricted
to integerm for the calculation.) We see that for this solutionN = 6, and thus we
expect a circularly-symmetric solution of (28) with radialprofile given byu(r) to be
unstable at these parameter values, and most unstable with respect to perturbations
with D6 symmetry. The eigenfunctionµ(r) corresponding toλ (6) is shown dashed
in Fig. 6 (left). It is spatially-localised around the ring at r ≈ 7, so we expect the
instability to appear here.
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Fig. 6 Left: the solid curve showsu(r) at the point indicated by the circle in Fig. 5. The dashed
curve shows the eigenfunctionµ(r) corresponding toλ (6). Right: λ (m) for the solution shown
solid in the left panel. The integer with largestλ is N = 6.
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Fig. 7 A simulation of (28) with initial condition corresponding to u(r) in Fig. 6. Left: initial
condition. Right: stable final state.u(r,θ ) is plotted vertically.

Figure 7 shows the result of simulating (28) with an initial condition formed by
rotating the radial profile in Fig. 6 (left) through a full circle in the angular direction,
and then adding a small random perturbation tou at each grid point. The initial
condition is shown in the left panel and the final state (whichis stable) is shown
in the right panel. We see the formation of six bumps at the location of the first
ring, as expected. This analysis has thus successfully predicted the appearance of
a stable “7-bump” solution from the initial condition shownin Fig. 7 (left). (We
used a regular grid in polar coordinates, with domain radius30, using 200 points
in the radial direction and 140 in the angular. The spatial derivatives in (28) were
approximated using second-order accurate finite differences.)

We can also consider stationary solutions of (30)-(31) for which u(0) < 0 and
u′′(0) > 0, i.e. which have a “hole” in the centre. Following these solutions ash is
varied we obtain Fig. 8. As in Fig. 5 we see a snake of solutions, with successive
branches having one more large amplitude oscillation. We will consider the stability
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Fig. 8 Solutions of (30)-(31)
with u(0) < 0 andu′′(0) > 0
as a function ofh. Other pa-
rameter values:κ = 0.05,M =
1,A = 0.4,B= 0.1. The so-
lutions u(r) at the points A
and B are shown in Fig. 9
(left) and Fig. 11 (left), re-
spectively.
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Fig. 9 Left: the solid curve showsu(r) at the point indicated by the point A in Fig. 8. The dashed
curve shows the eigenfunctionµ(r) corresponding toλ (3). Right: λ (m) for the solution shown
solid in the left panel. The integer with largestλ is N = 3.

of two solutions on the curve in Fig. 8; first, the solution at point A, shown in the
left panel of Fig. 9. This solution corresponds to one with just a single ring of active
neurons. Calculatingλ (m) for this solution we obtain the curve in Fig. 9 (right),
and we see that a circularly-symmetric solution of (28) withradial profile given by
thisu(r) will be most unstable with respect to perturbations withD3 symmetry. The
eigenfunctionµ(r) corresponding toN = 3 is shown dashed in Fig. 9 (left), and it
is localised at the first maximum ofu(r).

Figure 10 shows the result of simulating (28) with an initialcondition formed by
rotating the radial profile in Fig. 9 (left) through a full circle in the angular direction,
and then adding a small random perturbation tou at each grid point. The initial
condition is shown in the left panel and the final state (whichis stable) is shown in
the right panel. We see the formation of three bumps at the first ring, as expected.
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Fig. 10 A simulation of (28) with initial condition corresponding to u(r) in Fig. 9. Left: initial
condition. Right: stable final state.u(r,θ ) is plotted vertically.
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Fig. 11 Left: the solid curve showsu(r) at the point indicated by the point B in Fig. 8. The dashed
curve shows the eigenfunctionµ(r) corresponding toλ (9). Right: λ (m) for the solution shown
solid in the left panel.

Now consider the solution at point B in Fig. 8. This solution,shown in Fig. 11
(left) corresponds to one with two active rings. An analysisof its stability is shown
in Fig. 11 (right) and we see that it is most unstable with respect to perturbations
with D9 symmetry, and that these should appear at the outer ring. Figure 12 shows
the result of simulating (28) with an initial condition formed by rotating the radial
profile in Fig. 11 (left) through a full circle in the angular direction, and then adding
a small random perturbation tou at each grid point. The initial condition is shown
in the left panel and the final state (which is stable) is shownin the right panel. We
see the formation of nine bumps at the second ring, as expected.

In summary we have shown how to analyse the stability of rotationally-symmetric
solutions of the neural field equation (24), wherew is given by (29), via transforma-
tion to a PDE. Notice that for all functionsu shown in the left panels of Figs. 6, 9
and 11,λ (0) < 0, i.e. these arestablesolutions of (30). However, they areunsta-
ble with respect to some perturbations which break their rotational invariance. The
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Fig. 12 A simulation of (28) with initial condition corresponding to u(r) in Fig. 11. Left: initial
condition. Right: stable final state.u(r,θ ) is plotted vertically.

stable states for all three examples considered consist of asmall number of spatially-
localised active regions.

Similar results to those presented in this section were obtained subsequently
by [38] using a Heaviside firing rate function, which allowedfor the construction
of an Evans function to determine stability of localised patterns. These authors also
showed that the presence of a second, slow variable could cause arotational instabil-
ity of a pattern like that in Fig. 10 (right), resulting in it rotating at a constant speed.
Very recently, instabilities of rotationally-symmetric solutions were addressed by
considering the dynamics of the interface dividing regionsof high activity from
those with low activity, again using the Heaviside firing rate function [14] (and
Coombes chapter). Several other authors have also recentlyinvestigated symmetry
breaking bifurcations of spatially-localised bumps [9, 16]. We now consider solu-
tions of two-dimensional neural field equations which are not spatially-localised,
specifically, spiral waves.

4 Spiral waves

The functionw used in the previous section was of the decaying oscillatorytype
(Fig. 4). Another form of coupling of interest is purely positive, i.e. excitatory.
However, without some form of negative feedback, activity in a neural system
with purely excitatory coupling will typically spread overthe whole domain. With
the inclusion of some form of slow negative feedback such as spike frequency
adaptation [13] or synaptic depression [31], travelling pulses of activity are pos-
sible [12, 1, 19]. In two spatial dimensions the analogue of atravelling pulse is a
spiral wave [2, 3], which we now study. Let us consider the system
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∂u(x, t)
∂ t

= −u(x, t)+B
∫

Ω
w(|x− y|)F(u(y, t))dy−a(x, t) (34)

τ
∂a(x, t)

∂ t
= Au(x, t)−a(x, t) (35)

whereΩ ⊂R
2 which, in practice, we choose to be a disk, and the firing rate function

is

F(u) =
1

1+e−β (u−h)
. (36)

whereh andβ are parameters. This system is very similar to that in [24] and is the
two-dimensional version of that considered in [22, 39]. If we choose the coupling
function to be

w(r) =
∫ ∞

0

sJ0(rs)
s4+ s2+1

ds (37)

then, using the same ideas as above (and ignoring the fact that we are not dealing
with spatially-localised solutions) (34) is equivalent to

[

∇4−∇2+1
]

(

∂u(x, t)
∂ t

+u(x, t)+a(x, t)
)

= BF(u(x, t)) (38)

We choose boundary conditions

u(R,θ , t) =
∂ 2u(r,θ , t)

∂ r2

∣

∣

∣

∣

r=R
= 0 (39)

for all θ andt, whereR is radius of the circular domain and we have writtenu in
polar coordinates. The two differences between the system considered here and that
in [32] are that here we use the firing rate functionF (eqn. (36)), which is non-
zero everywhere (the functionf (eqn. (21)) was used in [32]), and the boundary
conditions given in (39) are different from those in [32].

The functionw(r) defined by (37) is shown in Fig. 13 and we see that it is positive
and decays monotonically asr → ∞. For a variety of parameters, the system (34)-
(35) supports a rigidly-rotating spiral wave on a circular domain. To find and study
such a wave we recognise that rigidly-rotating patterns on acircular domain can
be “frozen” by moving to a coordinate frame rotating at the same speed as the pat-
tern [3, 2, 5]. These rigidly rotating patterns satisfy the time-independent equations

[

∇4−∇2+1
]

(

−ω
∂u
∂θ

+u+a

)

= BF(u) (40)

−ωτ
∂a
∂θ

= Au−a (41)

whereω is the rotation speed of the pattern andθ is the angular variable in polar
coordinates. Rigidly rotating spiral waves are then solutions of (40)-(41), together
with a scalar “pinning” equation [2, 32] which allows us to determineω as well as
u anda. In practice, one solves (41) to obtaina as a function ofu and substitutes
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Fig. 13 The functionw(r)
defined by (37).
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into (40), giving the single equation foru

[

∇4−∇2+1
]

(

1−ω
∂

∂θ
+A

[

1−ωτ
∂

∂θ

]−1
)

u= BF(u) (42)

Having found a solutionu of (42) its stability can be determined by linearising (34)-
(35) about(u,a), where

(

1−ωτ
∂

∂θ

)

a= Au (43)

As we have done in previous sections, we can numerically follow solutions of (42)
as parameters are varied, determining their stability.

In Fig. 14 we showω as a function ofA and also indicate the stability of solu-
tions. Interestingly, there is a region of bistability for moderate values ofA. Typical
solutions (of bothu anda) at three different points on the curve are shown in Fig. 15.
In agreement with the results in [32] we see that asA (the strength of the negative
feedback) is decreased, more of the domain becomes active, and asA is increased,
less of the domain is active. The results of varyingh (the threshold of the firing rate
function) are shown in Fig. 16. We obtain results quite similar to those in Fig. 14
— ash is decreased, more of the domain becomes active, and vice versa, and we
also have a region of bistability. Figure 17 shows the resultof varyingτ: for large
τ the spiral is unstable. The bifurcations seen in Figs. 14, 16and 17 are all generic
saddle-node bifurcations. In principle they could be followed as two parameters are
varied, thus mapping out regions of parameter space in whichstable spiral waves
exist.

We conclude this section by noting that spiral waves have been observed in
simulations which include synaptic depression rather thanspike frequency adap-
tation [31, 8], and also seen experimentally in brain slice preparations [27, 28].
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Fig. 14 ω as a function of
A for spiral wave solutions
of (40)-(41). Solid curves are
stable, dashed unstable. The
spiral wave at points marked
“a”, “b” and “c” are shown in
Fig. 15. Other parameters are
h = 0.6,β = 20,τ = 3,B =
3.5. The domain has radius
35.
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Fig. 15 Solutions of (40)-(41) at the three points marked in Fig. 14.The left column showsu and
the right column showsa. The top, middle and bottom rows correspond to points “a”, “b” and “c”,
respectively.

5 Conclusion

This chapter has summarised some of the results from [35, 36,32], in which neural
field equations in one and two spatial dimensions were studied by being converted
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Fig. 16 ω as a function of
h for spiral wave solutions
of (40)-(41). Solid curves
are stable, dashed unstable.
Other parameters areA =
2,β = 20,τ = 3,B= 3.5. The
domain has radius 35.
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Fig. 17 ω as a function ofτ for spiral wave solutions of (40)-(41). Solid curves are stable, dashed
unstable. The right panel is an enlargement of the left. Other parameters areA = 2,β = 20,B =
3.5,h= 0.6. The domain has radius 35.

into PDEs via a Fourier transform in space. In two spatial dimensions we showed
how to investigate the instabilities of spatially-localised “bumps” and rings of ac-
tivity, and also how to study spiral waves. An important technique used was the
numerical continuation of solutions of large systems of coupled, nonlinear, alge-
braic equations defined by the discretisation of PDEs. Sincethe work summarised
here was first published a number of other authors have used some of the techniques
presented here to further investigate neural field models [31, 9, 15, 33, 26, 21].
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