PDE Methods for Two-Dimensional Neur al
Fields

Carlo R. Laing

Abstract We consider neural field models in both one and two spatiaédsions
and show how for some coupling functions they can be transfdrinto equivalent
partial differential equations (PDES). In one dimensionfind snaking families of
spatially-localised solutions, very similar to those fdun reversible fourth-order
ordinary differential equations. In two dimensions we gsalspatially-localised
bump and ring solutions and show how they can be unstablerasiect to pertur-
bations which break rotational symmetry, thus leading &ftrmation of complex
patterns. Finally, we consider spiral waves in a system puittely positive coupling
and a second slow variable. These waves are solutions of afPf© spatial di-
mensions, and by numerically following these solutions asameters are varied,
we can determine regions of parameter space in which stpivdd waves exist.

1 Introduction

Neural field models are generally considered to date backeol®70s [1, 41],
although several earlier papers consider similar equafidn25]. These types of
equations were originally formulated as models for the dyica of macroscopic
activity patterns in the cortex, on a much larger spatialesttzan that of a single
neuron. They have been used to model phenomena such aseshorhemory [36],
the head direction system [43], visual hallucinations [[4], and EEG rhythms [7].
Perhaps the simplest formulation of such a model in oneamhthension is

du(x,t)
ot

= —u(x )+ [ wix—y) f(unt)dy @)
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where

w is symmetric, i.ew(—x) = w(X),
liMmy_e W(X) = 0,

[ZW(X)dXx < oo,

w(X) is continuous,

andf is a non-decreasing function with lim_., f(u) = 0 and lim,_, f (u) =1 [36,
12]. The physical interpretation of this type of model istthét) is the average
voltage of a large group of neurons at positioa R and timet, and f (u(x,t)) is
their firing rate, normalised to have a maximum of 1. The fiomciv(x) describes
how neurons a distanceapart affect one another. Typical forms of this function
are purely positive [6], “Mexican hat” [19, 26] (positiverfemall x and negative
for largex) and decaying oscillatory [36, 18]. To find the influence ofirmms at
positiony on those at positior we evaluatef (u(y,t)) and weight it byw(x —y).
The influence of all neurons is thus the integral oyef w(x—y)f(u(y,t)). In the
absence of inputs from other parts of the netwarnttecays exponentially to a steady
state, which we define to be zero. Equation (1) is a nonlodggrdntial equation,
with the nonlocal term arising from the biological realityat we are modelling.
Typically, researchers are interested in either “bumpusohs of (1), for which
f(u(x)) > 0 only on a finite number of finite, disjoint intervals, or ftesolutions
which connect a region of high activity to one of zero acyi\it2]. Note that this
type of model is invariant with respect to spatial transiasi, which is reflected in
the fact thatw appears as a function of relative position only (ke-y), not the
actual values ok andy.

The functionf is normally thought of as a sigmoid (although other function
are sometimes considered [26]), and in the limit of infinteepness it becomes the
Heaviside step function [36, 12]. In this case stationafdytians are easily con-
structed since to evaluate the integral in (1) we just irgeyv(x —y) over the inter-
val(s) ofy wheref (u(y,t)) = 1. The stability of these solutions can be determined
by linearising (1) about them and using the fact that thevdévie of the Heaviside
function is the Dirac delta function [6, 40].

Whenf is not a Heaviside, constructing stationary solutions bezomore diffi-
cult and we generally have to do so numerically. A statiosatytion of (1) satisfies

W) = [ wix—y)f(uy)dy. @

In all but Section 4 of this chapter we consider only spaticalised solutions,
i.e. ones for whichu and all of its relevant spatial derivatives decay to zero as
|x| — 0. Generally speaking, integral equations such as (2) aretndied in as
much detail as differential equations. As a result more odsHor analysis — and
software packages — exist for the numerical solution ofedéhtial equations, as
opposed to integral equations. For these reasons we conswdgting (2) as a dif-
ferential equation for the functiom(x). The key to doing so is to recognise that the
integral in (2) is a convolution. This observation providgeseral equivalent ways
of converting (2) into a differential equation.
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The first method involves recalling that the Fourier transfof the convolu-
tion of two functions is the product of their Fourier transfs. Thus, denoting by
F[u](k) the Fourier transform ofi(x), wherek is the transform variable, Fourier
transforming (2) gives

Flu(k) = F[w](k) x F[f(u)](k) (3)

where “x” indicates normal multiplication. Suppose that the Foutrignsform ofw
was a rational function dé, i.e.

(4)

whereP andQ are polynomials. Multiplying both sides of (3) Iy(k?) we obtain
Q(K?) x Flu](k) = P(K?) x F[f (u)](k) (5)

Recalling that if the Fourier transform afx) is F [u](K), then the Fourier transform
of u’(x) is —k?F[u](k), the Fourier transform of”’(x) is k*F[u](k) and so on,
where the primes indicate spatial derivatives, taking ttverise Fourier transform
of (5) gives

D1u(x) = Daf (u(x)) (6)

whereD; and D, are linear differential operators involving only even datives
associated witlQ andP respectively [32]. As an example, consider the decaying
oscillatory coupling function

w(x) = e "X (bsin|x| 4 cosx) (7)

whereb is a parameter (plotted in Fig. 1 (left) fbr= 0.5), which has the Fourier
transform

4b(b?+ 1) @®

k*+2(b%2 — 1)k + (b?+1)2°

For this exampl®; is just the constantlb? + 1) and
Dy = d 2(b? 1)d—2 + (b?+1)2 (9)

TTad T T Tde

and thus (for this choice of) eqn. (2) can be written

d*u > ndu S, )
W_Z(b _1)W+(b +1)“u=4b(b“+ 1) f (u(x)). (10)

Our decision to consider only spatially-localised solnsovaidates the use of
Fourier transforms and gives the boundary conditions fo},(Aamely

lim (u,u,u”,u”)=(0,0,0,0). (11)

X—+t00
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Fig. 1 Left: w(x) given by (7) wherb = 0.5. Right: f (u) given by (21) for =0.1,h=1.

The other method for converting (2) into a differential eiprais to recall that the
solution of an inhomogeneous linear differential equatian be formally written
as the convolution of the Green’s function of the linearefiéintial operator together
with the appropriate boundary conditions, and the functiorthe right hand side
(RHS) of the differential equation. Thusvifwas such a Green'’s function, we could
recognise (2) as being the solution of a linear differerglation withf (u) as its
RHS.

Using the example above one can show that the Green'’s functithe opera-
tor (9) with boundary conditions (11), i.e. the solution of
d’w

2(b% — Vet (b%+1)?w = 5(x) (12)

diw _
dx?
satisfying (11), wher@ is the Dirac delta function, is

e P (bsin|x| 4 cosx)
WX = 2+ 1) (13)

and thus the solution of (10)-(11) is (2). This second metlwbdecognising that

the coupling functiorw is the Green’s function of a linear differential operatsr, i
perhaps less easy to generalise, so we concentrate moghg first method in this

chapter. An important point to note is that the Fourier tfama method applies

equally well to (1), i.e. the full time-dependent problensity the function (7) and

keeping the time derivative one can convert (1) to

4 2
% —2(b?— 1)% + (b + 1)2} (u(x,t) + %ﬁ’t)) = 4b(b?+ 1) f (u(x,t))
(14)

Clearly stationary solutions of (14) satisfy (10), but kiegpthe time dependence
in (14) enables us to determine the stability of these statipsolutions via lineari-
sation about them.
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Note that the Fourier transform @¢f./2)e ¥ is 1/(1+ k?), and thus for this
coupling function (2) is equivalent to

(1 jzz)u—f() (15)

Also, the Fourier transform of the “wizard hati{x) = (1/4)(1— |x|)e X isk?/(1+
k?)?, giving the differential equation [12]

(l—a—z)zu:—a—zf(u) (16)

ox? ox?

and thus a variety of commonly used connectivity functioresamenable to this
type of transformation. (See also [26] for another example.

The model (1) assumes that information about activity attipmsy propagates
instantaneously to positiox but a more realistic model could include a distance-
dependent delay:

0u{(9>t(t L) +/ Wx—y)f < <y’t_M>)dy (17)

wherev > 0 is the velocity of propagation of information. EquatiorvXan be
written

0u(xt)
S = U0t + glx ) (18)

where o o
t,U(x,t)E/700/700K(x—y,t—s)f(u(y,s))dy ds (29)

andK(x,t) = w(x)d(t —|x|/v) [12, 33]. Recognising that both integrals in (19) are
convolutions, and making the choiegx) = (1/2)e X, one can take Fourier trans-
forms in both space and time and convert (19) to

(5o +2g v —v o uixt = (Vv ) fuxe) @)

This equation was first derived by [30], and these authors wedlyhave been the
first to use Fourier transforms to convert neural field motteBDEs. We will not
consider delays here, but see [15] for a recent approachoiispatial dimensions.

2 Resultsin one spatial dimension

We now present some results of the analysis of (14), sinoléndse in [36]. From
now on we make the specific choice of the firing rate function
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f(u) =e /UM’ u—h) (1)

wherek > 0 andh € R are parameters, artdl is the Heaviside step function. The
function (21) for typical parameter values is shown in Fidright). Note that if
h > 0thenf(0) =0.

We start with a few comments regarding the equation (10)-#itstly, equa-
tion (10) is reversible under the involutigo, u’,u”, u”") — (u,—u’,u”, —u") [18].
Secondly, spatially-localised solutions of (10) can beardgd as homoclinic orbits
to the origin, i.e. orbits for whicli and all of its derivatives tend to zeroxas+ +oo.
Linearising (10) about the origin one finds that it has eigdumesb+i and—b =i,
i.e. the fixed point at the origin is a bifocus [34], and thus ttomoclinic orbits
spiral into and out of the origin. Thirdly, eqn. (10) is Hatoitian, and homoclinic
orbits to the origin satisfy the first integral

1o (u”)z

u'u — (B —1)(U)?+ (b®+1)%Q(u) =0 (22)
where " abi
Q(u) E/O (s— 2 f?) ds (23)

This Hamiltonian nature can be exploited to understand dfigtiens of (10)-(11)
and the bifurcations they undergo as parameters are vatid $ee for exam-
ple [11] for more details on homoclinic orbits in reversibiestems.

We are interested in stationary spatially-localised $ohg of (14), and how they
vary as parameters are varied. Figure 2 shows the resull@fvfog such solutions
as the parametér(firing threshold) is varied. As was found in [35, 18] the fanaf
solutions forms a “snake” with successively more large b oscillations added
to the solution as one moves from one branch of the snake teettién the direction
of increasing magu). (Note thatb, noth, was varied in [35, 18].) Similar snakes
of homoclinic orbits have been found in other reversiblegeys of fourth-order
differential equations [10, 42], and Faye et al. [21] vergamrtly analysed snaking
behaviour in a model of the form (1).

Figure 3 shows three solutions from the family shown in FigalRath = 0.5.
Solutions at A and C are stable, and are referred to as “1-bangh“3-bump” so-
lutions, respectively, since they have 1 and 3, respegtivegions for whichu > h.
The solution at B is an unstable 3-bump solution. Stabilftgautions was deter-
mined by linearising (14) about them. The curve in Fig. 2 shiWoump solutions
which are symmetric about the origin, whé\@s odd. A similar curve exists fax
even (not shown) and asymmetric solutions also exist [Tirfummary, spatially-
localised solutions of (10) are generic and form familiesolkare connected in a
snake-like fashion which can be uncovered as parametexages. For more de-
tails on (10)-(11) the reader is referred to [36]. We nextsider the generalisation
of neural field models to two spatial dimensions and agaiestigate spatially-
localised solutions.
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Fig. 2 Spatially-localised 3

steady states of (14) as a

function of h. The vertical

axis is the maximum over 2.5 |

the domain ofu(x). Solid

curves indicate stable while 2r 1

dashed indicate unstable. The =

solutions at points A,B and X 1.5 1

C are shown in Fig. 3. Other g ,

parameters arg = 0.25 Kk =

0.1. 1 )
0.5r Lot 1

u(x)

Fig. 3 Spatially-localised steady states of (14) at the threetpaimarked A,B and C in Fig. 2.
Other parameters ake= 0.25,k =0.1.

3 Two dimensional bumps and rings

Neural field equations are easily generalised to two spditimnsions, and the sim-
plest are of the form

du(x,t)

o = e+ [ w(x—yD)f(u(y.t)dy (24)

wherex € R? andw andf have their previous meanings. Note thés a function of
the scalar distance between poixtndy. Spatially-localised solutions of equations
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of the form (24) have only recently been analysed in any dig8h35, 24, 9, 23,
16, 22, 29]. The study of such solutions is harder than in pa¢ia dimension for
the following reasons:

e Their analytical construction involves integrals over seils of the plane rather
than over intervals.

e The determination of the stability of, say, a circular sta#iry solution is more
difficult because perturbations which break the rotatisgaimetry must be con-
sidered.

e Numerical studies require vastly more mesh points in a eisation of the do-
main.

However, the use of the techniques presented in Sec. 1 hasftgtul for the
construction and analysis of such solutions. One impogairtt to note is that the
techniques cannot be applied directly when the funotide one of the commonly
used ones mentioned above. For example(¥) = e * — Me ™ (of Mexican-hat
type when < M < 1 and 0< m< 1) then its Fourier transform is

1 _ Mm
(1+k[2)%/2  (m?+[k[2)¥/2

Fw|(lk[) = (25)

wherek € R? is the transform variable. Rearranging and then taking nlierse
Fourier transform one faces the question as to what a diffaleequation containing
an operator likg1 — 0%)%/2 actually means [15]. One way around this is to expand
aterm like(1+ |k|%)¥2 aroundk| = 0 as 1+ (3/2) |k|> 4+ O(|k|*) and keep only the
first few terms, thus (after inverse transforming) givinge@aPDE. This is known
as the long wavelength approximation [37]; see [15] for &ulsion.

A more fruitful approachis to realise that neural field madek qualitative only,
and we can gain insight from models in which the functisr@df are qualitatively
correct. Thus we have some freedom in our choice of theséifunsc The approach
of Laing and co-workers [35, 36, 32] was to use this freedochimose notv, but
its Fourier transform. If the Fourier transform wfis chosen so that the Fourier
transform of (24) can be rearranged and then inverse tramsfibto give a simple
differential equation, and the resulting functianis qualitatively correct (i.e. has
the same general properties as connectivity functionstefest) then one can make
much progress.

As an example, consider the case when

F(K) = 5 ree e (26)

whereA B andM are parameters [35]. Taking the Fourier transform of (24), u
ing (26), and rearranging, one obtains

{|k[*~2M|k|?+B+M?}F {u+ %} (k) = AF[f(u)](k) (27)

and upon taking the inverse Fourier transform one obtamsliffierential equation
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Fig. 4 The functionw(x) 2
defined by (29) for parameter

valuesM = 1,A=04B=

0.1. 1.5f

[0%+2MO% + B+ M?| (u+%) = Af(u) (28)

The functionw is then defined as the inverse Fourier transform of its Fotnaas-
form, i.e.
B ®  sh(x9)
WX =A ) Br@—m)e

whereJy is the Bessel function of the first kind of order zero [3%§(X) is the Han-
kel transform of order O df [w].) Figure 4 shows a plot af(x) for parameter values
M =1 A=0.4,B=0.1. We see that it is of a physiologically-plausible form, lifjua
tatively similar to that shown in Fig. 1 (left). We have thosrhally transformed (24)
into the PDE (28).

As a start we consider spatially-localised and rotatigneivariant solutions
of (28), which satisfy

4 3 2 2
[a L2000 19 —l—%i—i-ZM (a—+1£)+(B+M2)} (u+@)

ds (29)

ard " rard r2ar2 T r39r ar2 " ror ot
= Af(u) (30)
with
du d3u du d0%u d%u
o |~ 33| an r$@<u, m,arz,arg) (0,0,0,0) (31

whereu is now a function of radius and timet only. We can numerically find and
then follow stationary solutions of (30)-(31) as paramesee varied. For example,
Fig. 5 shows the effects of varyirtgfor solutions withu(0) > 0 andu”(0) < 0. We
see a snaking curve similar to that in Fig. 2, and as we moveeipriake, on each
successive branch the solution gains one more large amldscillation.

For any particular solutiory(r) on the curve in Fig. 5 one can find its stability
by linearising (28) about it. To do this we write
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Fig. 5 Solutions of (30)-(31) 5
with u(0) > 0 andu”(0) < 0
as a function oh. Other pa-
rameter valuex = 0.05M = A 1
1,A=04,B=0.1. The solu-
tionu(r) at the point indicated
by the circle is shown in Fig. 6 ,537 1
(left). %
@
€5l |
1, 4
—8.2 0.6
u(r,8,t) =1(r) + ev(t,r)cos(mo) (32)

where 0< € < 1 andm > 0 is an integer, the azimuthal index. We choose this form
of perturbation in order to find solutions which break thegiar symmetry of the
system. Substituting (32) into (28) and keeping only firstesiterms ire we obtain

{04 2 08 (2Mr2—2mz—1)0_2+(2mz+1+2Mr2> 0

PR o v
B 2yp4 2
Lot 4mZ+(B+r2/I r 2Mm2r](v+‘2—‘:)=Af/(U)V (33)

Since this equation is linear n we expect solutions of the form(r,t) ~ u(r)eM
ast — o, whereA is the most positive eigenvalue associated with the stalofit
(which we assume to be real) apdr) is the corresponding eigenfunction.

Thus to determine the stability of a circularly-symmetridusion with radial
profilet(r), we solve (33) for integem > 0 and determina (m). If N is the integer
for which A (N) is largest, andh (N) > 0, then this circularly-symmetric solution
will be unstable with respect to perturbations witlyy symmetry, and the radial
location of the growing perturbation will be given fpyr).

For example, consider the solution shown solid in the lefigb@f Fig. 6. This
solution exists ah = 0.42, so in terms of active regions (whare- h) this solution
corresponds to a central circular bump with a ring surrongdi Calculatingh (m)
for this solution we obtain the curve in Fig. 6 (right). (Wemlat need to be restricted
to integerm for the calculation.) We see that for this solutiNn= 6, and thus we
expect a circularly-symmetric solution of (28) with radpabfile given byt(r) to be
unstable at these parameter values, and most unstableesfibat to perturbations
with Dg symmetry. The eigenfunction(r) corresponding ta (6) is shown dashed
in Fig. 6 (left). It is spatially-localised around the ringrar: 7, so we expect the
instability to appear here.
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Fig. 6 Left: the solid curve shows(r) at the point indicated by the circle in Fig. 5. The dashed
curve shows the eigenfunctiqm(r) corresponding ta\ (6). Right: A (m) for the solution shown
solid in the left panel. The integer with largesis N = 6.

Fig. 7 A simulation of (28) with initial condition corresponding ti(r) in Fig. 6. Left: initial
condition. Right: stable final stata(r, 0) is plotted vertically.

Figure 7 shows the result of simulating (28) with an initiahdition formed by
rotating the radial profile in Fig. 6 (left) through a full cle in the angular direction,
and then adding a small random perturbatiorutat each grid point. The initial
condition is shown in the left panel and the final state (wh&hktable) is shown
in the right panel. We see the formation of six bumps at thatloo of the first
ring, as expected. This analysis has thus successfullygbeeldthe appearance of
a stable “7-bump” solution from the initial condition shownFig. 7 (left). (We
used a regular grid in polar coordinates, with domain ra@iysusing 200 points
in the radial direction and 140 in the angular. The spatiaivd&ves in (28) were
approximated using second-order accurate finite differenc

We can also consider stationary solutions of (30)-(31) faiclwu(0) < 0 and
u’(0) > 0, i.e. which have a “hole” in the centre. Following thesaiiohs ash is
varied we obtain Fig. 8. As in Fig. 5 we see a snake of solutiafith successive
branches having one more large amplitude oscillation. Wecamsider the stability
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Fig. 8 Solutions of (30)-(31)
with u(0) < 0 andu”(0) > 0
as a function oh. Other pa-
rameter valuex = 0.05M =
1,A=0.4,B=0.1. The so-
lutionsu(r) at the points A
and B are shown in Fig. 9
(left) and Fig. 11 (left), re-
spectively.

0.2

0.1

A(m)

-0.1
0 10 20 30 o 1 2 3 4 5

r m

Fig. 9 Left: the solid curve show&(r) at the point indicated by the point A in Fig. 8. The dashed
curve shows the eigenfunctiqm(r) corresponding ta\ (3). Right: A (m) for the solution shown
solid in the left panel. The integer with largesis N = 3.

of two solutions on the curve in Fig. 8; first, the solution atrpt A, shown in the
left panel of Fig. 9. This solution corresponds to one witst pusingle ring of active
neurons. Calculating (m) for this solution we obtain the curve in Fig. 9 (right),
and we see that a circularly-symmetric solution of (28) wétial profile given by
thist(r) will be most unstable with respect to perturbations vilighsymmetry. The
eigenfunctionu(r) corresponding ttN = 3 is shown dashed in Fig. 9 (left), and it
is localised at the first maximum afr).

Figure 10 shows the result of simulating (28) with an initahdition formed by
rotating the radial profile in Fig. 9 (left) through a full cle in the angular direction,
and then adding a small random perturbatiorutat each grid point. The initial
condition is shown in the left panel and the final state (wlécstable) is shown in
the right panel. We see the formation of three bumps at thefifirg, as expected.
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Fig. 10 A simulation of (28) with initial condition corresponding ti(r) in Fig. 9. Left: initial
condition. Right: stable final stata(r, 0) is plotted vertically.

0.6
E 0.4
< 0.2
0
-0.2
0 10 20 30 0O 2 4 6 8 10 12
r m

Fig. 11 Left: the solid curve shows(r) at the point indicated by the point B in Fig. 8. The dashed
curve shows the eigenfunctiqm(r) corresponding ta\ (9). Right: A (m) for the solution shown
solid in the left panel.

Now consider the solution at point B in Fig. 8. This solutishpwn in Fig. 11
(left) corresponds to one with two active rings. An analysigs stability is shown
in Fig. 11 (right) and we see that it is most unstable with eespo perturbations
with Dg symmetry, and that these should appear at the outer ringrd-it shows
the result of simulating (28) with an initial condition foad by rotating the radial
profile in Fig. 11 (left) through a full circle in the angularekction, and then adding
a small random perturbation toat each grid point. The initial condition is shown
in the left panel and the final state (which is stable) is showthe right panel. We
see the formation of nine bumps at the second ring, as expecte

In summary we have shown how to analyse the stability ofiartatly-symmetric
solutions of the neural field equation (24), wheres given by (29), via transforma-
tion to a PDE. Notice that for all functiortisshown in the left panels of Figs. 6, 9
and 11,A(0) < 0, i.e. these arstablesolutions of (30). However, they armsta-
ble with respect to some perturbations which break their roteti invariance. The
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Fig. 12 A simulation of (28) with initial condition corresponding ti(r) in Fig. 11. Left: initial
condition. Right: stable final state(r, 0) is plotted vertically.

stable states for all three examples considered consistrodf number of spatially-
localised active regions.

Similar results to those presented in this section wereiddasubsequently
by [38] using a Heaviside firing rate function, which allowid the construction
of an Evans function to determine stability of localised@ats. These authors also
showed that the presence of a second, slow variable couse @eatationalinstabil-
ity of a pattern like that in Fig. 10 (right), resulting in tating at a constant speed.
Very recently, instabilities of rotationally-symmetriolstions were addressed by
considering the dynamics of the interface dividing regiofidiigh activity from
those with low activity, again using the Heaviside firingerdtinction [14] (and
Coombes chapter). Several other authors have also receveistigated symmetry
breaking bifurcations of spatially-localised bumps [9].Mde now consider solu-
tions of two-dimensional neural field equations which aré spatially-localised,
specifically, spiral waves.

4 Spiral waves

The functionw used in the previous section was of the decaying oscillatgrg
(Fig. 4). Another form of coupling of interest is purely psg, i.e. excitatory.
However, without some form of negative feedback, activityai neural system
with purely excitatory coupling will typically spread ovére whole domain. With
the inclusion of some form of slow negative feedback suchpésesfrequency
adaptation [13] or synaptic depression [31], travellindgspa of activity are pos-
sible [12, 1, 19]. In two spatial dimensions the analogue trheelling pulse is a
spiral wave [2, 3], which we now study. Let us consider theeys
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MY — —ux ) +8 [ wiix-yDF(uy.0)dy-aixt)  (34)
ot Q
Taa((;;,t) — AU(X,t) —a(x.t) (35)

whereQ ¢ R? which, in practice, we choose to be a disk, and the firing tatetion

is
1

P = Tresm-

whereh andf3 are parameters. This system is very similar to that in [24] iarthe
two-dimensional version of that considered in [22, 39]. & ehoose the coupling
function to be

® sd(rs)

wir) = 0 s+ +1
then, using the same ideas as above (and ignoring the faavéhare not dealing
with spatially-localised solutions) (34) is equivalent to

(36)

ds (37)

(04— 02+ 1] (a”éx’t) Fulxt) + a(x,t)) — BF(u(x,t)) (38)
We choose boundary conditions
%u(ret)|
u(R,6,t) = oz N 0 (39)

for all 8 andt, whereR is radius of the circular domain and we have writtem
polar coordinates. The two differences between the systesidered here and that
in [32] are that here we use the firing rate functier(egn. (36)), which is non-
zero everywhere (the functioh (eqn. (21)) was used in [32]), and the boundary
conditions given in (39) are different from those in [32].

The functionw(r) defined by (37) is shown in Fig. 13 and we see thatitis positive
and decays monotonically as— . For a variety of parameters, the system (34)-
(35) supports a rigidly-rotating spiral wave on a circulanthin. To find and study
such a wave we recognise that rigidly-rotating patterns @ir@ilar domain can
be “frozen” by moving to a coordinate frame rotating at theeapeed as the pat-
tern [3, 2, 5]. These rigidly rotating patterns satisfy timee-independent equations

[0%—D2+1] (—wg—;+u+a) = BF(u) (40)
_w'[% = Au—a (41)

wherew is the rotation speed of the pattern afds the angular variable in polar
coordinates. Rigidly rotating spiral waves are then sohsiof (40)-(41), together
with a scalar “pinning” equation [2, 32] which allows us ta@eninew as well as

u anda. In practice, one solves (41) to obtaras a function ol and substitutes
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Fig. 13 The functionw(r) 0.8
defined by (37).

w(r)

4
r
into (40), giving the single equation faor
[0 D% +1] 1—wi+A 1—wri o u=BF(u) (42)
00 00

Having found a solutiom of (42) its stability can be determined by linearising (34)-
(35) about(u,a), where
7}
(1 wrae)a—Au (43)
As we have done in previous sections, we can numericallgwosiolutions of (42)
as parameters are varied, determining their stability.

In Fig. 14 we showw as a function oA and also indicate the stability of solu-
tions. Interestingly, there is a region of bistability fooderate values o4. Typical
solutions (of bothu anda) at three different points on the curve are shown in Fig. 15.
In agreement with the results in [32] we see thafgshe strength of the negative
feedback) is decreased, more of the domain becomes acdtid@sa is increased,
less of the domain is active. The results of varyinghe threshold of the firing rate
function) are shown in Fig. 16. We obtain results quite samib those in Fig. 14
— ash is decreased, more of the domain becomes active, and visa,\and we
also have a region of bistability. Figure 17 shows the resiliarying t: for large
T the spiral is unstable. The bifurcations seen in Figs. 14rib17 are all generic
saddle-node bifurcations. In principle they could be foka as two parameters are
varied, thus mapping out regions of parameter space in wdtadble spiral waves
exist.

We conclude this section by noting that spiral waves haven mdeserved in
simulations which include synaptic depression rather s@ike frequency adap-
tation [31, 8], and also seen experimentally in brain sli@pprations [27, 28].
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Fig. 14 w as a function of

A for spiral wave solutions

of (40)-(41). Solid curves are
stable, dashed unstable. The
spiral wave at points marked
“a”, “b” and “c” are shown in
Fig. 15. Other parameters are
h=06,=20T1=3B=

3.5. The domain has radius
35.
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Fig. 15 Solutions of (40)-(41) at the three points marked in Fig.TiHe left column shows and
the right column showa. The top, middle and bottom rows correspond to points “a” dihd “c”,
respectively.

5 Conclusion

This chapter has summarised some of the results from [38236in which neural
field equations in one and two spatial dimensions were stiuolyebeing converted
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Fig. 16 w as a function of

h for spiral wave solutions
of (40)-(41). Solid curves
are stable, dashed unstable.
Other parameters ark =
2,=201=3,B=35.The
domain has radius 35.
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Fig. 17 w as a function off for spiral wave solutions of (40)-(41). Solid curves arébitadashed
unstable. The right panel is an enlargement of the left. Qtheameters ard =2, = 20.B =

3.5,h = 0.6. The domain has radius 35.

into PDEs via a Fourier transform in space. In two spatialefisions we showed
how to investigate the instabilities of spatially-localis“bumps” and rings of ac-
tivity, and also how to study spiral waves. An important teiciue used was the
numerical continuation of solutions of large systems ofpied, nonlinear, alge-
braic equations defined by the discretisation of PDEs. Sineavork summarised
here was first published a number of other authors have usee gbthe techniques
presented here to further investigate neural field moddlsg315, 33, 26, 21].
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