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Abstract. We study networks in the form of a lattice of nodes with a large number of
phase oscillators and an auxiliary variable at each node. The only interactions between
nodes are nearest-neighbour. The Ott/Antonsen ansatz is used to derive equations for
the order parameters of the phase oscillators at each node, resulting in a set of coupled
ordinary differential equations. Chimeras are steady states of these equations and we
follow them as parameters are varied, determining their stability and bifurcations. In
two-dimensional domains, we find that spiral wave chimeras and rotating waves have
significantly different properties than those in networks with nonlocal coupling.

Chimeras are unusual spatiotemporal patterns in networks of oscillators
characterised by having some oscillators synchronised while the remainder
are incoherent. Many studies of chimeras involve networks with nonlocal
coupling, while a few consider only local coupling. Most of the studies of
locally coupled networks show just the results of numerical simulations. We
consider networks of phase oscillators with local interactions through an aux-
iliary field. Using the Ott/Antonsen ansatz we derive and study equations
for the dynamics of such networks, determining the stability and bifurcations
of chimera states. In several cases we find fundamental differences between
solutions in locally coupled and nonlocally coupled networks.

1. Introduction

Chimeras are spatiotemporal patterns in networks of oscillators for which some os-
cillators synchronise while the others are incoherent, even though the oscillators are
identical or statistically identical [1, 2]. Such patterns have less symmetry than the
network which supports them. Chimeras have been studied intensively for more than
a decade and observed in a number of physical systems [3, 4]. One of the most signif-
icant advances in the study of chimeras was the use of the Ott/Antonsen ansatz [5, 6]
which gave an exact dimension reduction for infinite networks of sinusoidally coupled
phase oscillators, such as the Kuramoto model [7, 8]. For example, this ansatz allows
one to describe the eventual dynamics of two coupled (infinite) networks by a pair of
complex-valued ordinary differential equations [9, 10].

Chimeras were first reported in systems with nonlocal coupling [11, 12, 13] and for
some time it was thought that such coupling was necessary in order that such states
could be observed [14]. However, in 2015 Laing [15] showed numerically that chimeras
could exist in systems with purely local coupling, considering three systems which could
be thought of as approaching nonlocally coupled systems in a particular limit.

Since this first report of chimeras in systems with purely local coupling [15], many
other authors have reported chimeras in systems with only local coupling [16, 17, 18,
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19]. Some have studied systems where each node in isolation has complex dynamics
(e.g. bursting [20]) or is bistable [21, 22, 23]. Others have considered reaction-diffusion
type systems [24, 25, 26] similar to those whose analysis gave rise to early observations
of chimeras [11, 13]. However, all of these previous papers have shown just the results of
numerically integrating the equations describing a dynamical system, for a finite amount
of time. While the accuracy of numerical integration can be controlled, there is the pos-
sibility that some of the observed chimeras may actually be long-lived transients [27].
Any exploration of parameter space has resulted in a fairly coarse partitioning of that
space based on the stable patterns observed (often with no or limited exploration of de-
pendence on initial conditions), and no analysis of the bifurcations creating or destroying
chimeras has been undertaken.

To overcome these issues, here we revisit several of the models in [15] and show that
they can be analysed using the Ott/Antonsen ansatz, which can be used to determine
the stability of the chimeras found there, not just their existence. Such solutions can
be followed as parameters are varied, and bifurcations of them characterised. We also
consider a two-dimensional network with only local coupling which supports spiral wave
chimeras, and an annular domain which supports rotating waves, which have similarities
to spiral wave chimeras.

All of the models studied here have a common form: the network is formed from
a lattice of nodes, and at each node there is a large number of phase oscillators and
a single auxiliary variable, which may be real or complex. The phase oscillators at a
node are influenced by the value of the auxiliary variable, which in turn is driven by
some form of average over the states of the phase oscillators. The only interactions
between nodes is nearest-neighbour, involving only the auxiliary variables. A number
of other authors have considered networks of oscillators interacting diffusively through
a medium [28, 29, 30, 31] and we discuss some of them further below.

The structure of the paper is as follows. Sec. 2 considers a one-dimensional network
of Kuramoto phase oscillators, as studied in [15]. In Sec. 2.1 we consider asymmetric
local coupling in this model, which results in the chimera moving at a constant speed. In
Sec. 3 we consider Winfree oscillators on a one-dimensional domain, as studied in [15].
In Secs. 4 and 5 we consider Kuramoto oscillators on two-dimensional domains in the
shapes of a square and an annulus, respectively.

2. Kuramoto oscillators in 1D

The first model we consider consists of N communities of oscillators equally-spaced
on a domain of length L with periodic boundary conditions, similar to that in [32]. Each
community consists of M phase oscillators and also has a complex variable z associated
with it. The governing equations are

dθkj
dt

= ωk
j − Re

(
zje

−iθkj

)
(1)

ϵ
dzj
dt

=
Aeiβ

M

M∑
k=1

eiθ
k
j − zj +

zj+1 − 2zj + zj−1

(∆x)2
(2)

for j = 1, 2 . . . N and k = 1, 2, . . .M , where θkj is the phase of the kth oscillator in

community j, ∆x = L/N , and A, β and ϵ are all constants. For each j and k, ωk
j

is randomly chosen from a Lorentzian distribution with half-width-at-half-maximum σ



CHIMERAS IN PHASE OSCILLATOR NETWORKS LOCALLY COUPLED THROUGH AN AUXILIARY FIELD: STABILITY AND BIFURCATIONS3

centred at ω0, namely

(3) g(ω) =
σ/π

(ω − ω0)2 + σ2

Thus each phase oscillator in population j is influenced by the value of zj, and zj is driven

by the mean over k of the eiθ
k
j , the classical Kuramoto order parameter. Note that the

only coupling is nearest-neighbour between communities, through the variable z. The
last term in (2) is clearly a finite-difference approximation to ∂2z/∂x2.

An example of a chimera solution of (1)-(2) is shown in Fig. 1. For simplicity the phase
of only one phase oscillator in each community is shown. The phases θ1j have clearly
separated into a largely synchronous group and an asynchronous group, characteristic
of a chimera, while the zj vary relatively smoothly in space over the whole domain. The
time-averaged frequencies of the oscillators also vary smoothly in space, as required for
a chimera (not shown).

Letting M → ∞ we can use the Ott/Antonsen ansatz [5, 6] to describe the dynamics
of the phase oscillator density in each community. Defining

(4) aj = lim
M→∞

1

M

M∑
k=1

eiθ
k
j

then using standard calculations [1] we have

(5)
daj
dt

= −(σ − iω0)aj − (i/2)
(
zj + z̄ja

2
j

)
and (2) becomes

(6) ϵ
dzj
dt

= Aeiβaj − zj +
zj+1 − 2zj + zj−1

(∆x)2

As explained in [15], the motivation for studying (1)-(2) comes from considering the case
ϵ = 0. If aj is the jth entry of the vector a and similarly for zj, setting ϵ = 0 in (6)
allows us to solve for z in terms of a:

(7) z = Aeiβ(I −D)−1a

where I is the N ×N identity matrix and D is the classical second difference operator
on N points with periodic boundary conditions. The matrix (I − D)−1 can be found
explicitly and has no non-zero entries, and inserting (7) into (5) we obtain an equation
for the aj with nonlocal coupling.

Eqns. (1)-(2) are invariant under a shift of all θkj by a constant and rotation of all
zj in the complex plane by the same amount, and thus we go to a uniformly rotating
coordinate frame in which the solutions of (5)-(6) of interest (chimeras) are stationary.
Letting bj = aje

−iΩt and yj = zje
−iΩt, where Ω is the (unknown) speed of rotation, we

obtain

dbj
dt

= −(σ − i(ω0 − Ω))bj − (i/2)
(
yj + ȳjb

2
j

)
(8)

ϵ
dyj
dt

= Aeiβbj − yj +
yj+1 − 2yj + yj−1

(∆x)2
− iϵΩyj(9)

We are interested in steady states of these equations. An example is shown in Fig. 2 for
the same parameters as used in Fig. 1. bj and yj are smooth functions of the spatial index
j. Recall the interpretation of |bj|: it is equal to |aj| (4), and |bj| = 1 corresponds to
synchronous oscillators (the distribution of phases is a Dirac delta function) while |bj| = 0
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Figure 1. Chimera solution of the system (1)-(2). (a): sin θ1j ; (b):
sin (arg (zj)); (c): |zj|. Parameters: ω0 = 1, σ = 0.01, ϵ = 0.2, A =
1.5, L = 2π,N = 200,M = 20, β = 0.1.

corresponds to a uniform angular distribution of phases, i.e. complete asynchrony. Due
to the frequency heterogeneity in the network, i.e. the nonzero value of σ, |bj| never
reaches 1, but the plateau centred at j = 100 in Fig. 2 corresponds to the largely
synchronous group seen for values of j centred at j ≈ 30 in Fig. 1(a).

We could find the steady state of (8)-(9) by setting the right hand side of (8) to zero
and solving the resulting quadratic in bj (choosing the solution for which |bj| ≤ 1), then
setting the right hand side of (9) to zero and inserting the value of bj just found. This
gives an equation equivalent to equation (15) in [15]. However, that is an equation just
characterising a steady state, if it exists, and gives no information about the stability of
this solution. In contrast, here we linearise (8)-(9) about such a steady state in order to
determine its stability.
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Figure 2. Steady state of (8)-(9) with Ω = −0.049437. Parameters as in Fig. 1.

We explore the effects of varying both ϵ and β. Increasing either ϵ or β from the
values used in Fig. 1 we find the stable chimera is destroyed in a saddle-node bifurcation.
Following this bifurcation as both ϵ and β are varied we obtain the blue solid curve in
Fig. 3. The stable chimera also undergoes a Hopf bifurcation which, from numerical
simulations of (8)-(9), seems to be subcritical. The curve of Hopf bifurcations is shown
dashed red in Fig. 3. Moving away from the nonlocally coupled case (i.e. increasing ϵ)
the range of β values for which a chimera exists decreases.

In recent work [29], Bolotov et al. studied equations equivalent to (5)-(6), although
they considered identical oscillators so that σ = 0 and also took the limit N → ∞.
They were interested in chimera solutions which are spatially-inhomogeneous steady
states of (8)-(9) and showed that such states satisfy several spatial ordinary differential
equations (once the limit N → ∞ has been taken). However, finding the stability
of such states by linearising (8)-(9) about them was difficult due to the large number
of eigenvalues near the imaginary axis resulting from their consideration of identical
oscillators. Instead, stability was inferred from the results of long simulations of the
equivalent of (1)-(2).

Smirnov et al. [30] also considered equations equivalent to (5)-(6), also with σ = 0
and in the limit N → ∞. They showed that stable chimera solitons exist on an infinite
domain, and these are described by homoclinic orbits in the spatial dynamics. They
also considered a spatially-discrete model equivalent to (1)-(2) with M = 1 and all ωk

j

equal and found that the spatial discreteness caused the chimera solitons to move in an
unusual “swaying” motion.

In earlier work [33], Smirnov et al. considered equations equivalent to (5)-(6) but
with ϵ = 0 which, as explained above, corresponds to nonlocal coupling of the aj. They
studied solitary synchronisation waves for which the local synchronisation level is higher
than in the surrounding background.

2.1. Asymmetric coupling. The model (1)-(2) has symmetric local coupling, since
the dynamics of zj depend equally on both zj+1 and zj−1. However, one could also
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Figure 3. Bifurcations of chimera steady states of (8)-(9). The chimera
is stable within the region bounded by the two curves. Parameters: ω0 =
1, σ = 0.01, A = 1.5, L = 2π,N = 200.

consider asymmetric local coupling. As an example we replace (2) by

(10) ϵ
dzj
dt

=
Aeiβ

M

M∑
k=1

eiθ
k
j − zj +

zj+1 − 2zj + zj−1

(∆x)2
+ v

zj − zj−1

∆x

where v is a constant. Clearly this new term is a finite-difference approximation to
∂z/∂x. Setting v ̸= 0 causes chimeras to move. Letting both M and N tend to infinity
we obtain the equations

∂a

∂t
=− (σ − iω0)a− (i/2)

(
z + z̄a2

)
(11)

ϵ
∂z

∂t
=Aeiβa− z +

∂2z

∂x2
+ v

∂z

∂x
(12)

where a and z are now functions of x and t.
The solutions of interest are chimeras which move at a constant speed in x. We can

freeze these moving solutions by going to a coordinate frame which is simultaneously
translating at the speed of the chimeras and rotating at the same speed at each value
of x [34, 35]. If c is the speed at which a chimera is moving and s is the speed of the
rotating coordinate frame, then in this new coordinate frame (11)-(12) become

∂a

∂t
=− (σ − i(ω0 − s))a− (i/2)

(
z + z̄a2

)
− c

∂a

∂x
(13)

ϵ
∂z

∂t
=Aeiβa− z +

∂2z

∂x2
+ (v − ϵc)

∂z

∂x
− iϵsz(14)
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We are interested in steady states of these equations. To solve them we need to add
several “pinning” conditions to remove the invariance of solutions under both spatial
translations and rotations of a and z in the complex plane [34]. We can find the stability
of these steady states by linearising (13)-(14) about them.

Following a chimera steady state of (13)-(14) as v is varied we obtain the plot shown
in Fig. 4(a). For small v the speed of the moving chimera initially increases as v does,
but for larger values the plot of c versus v becomes multivalued. This phenomenon
was first observed in [35]. (See also [36, 37, 38].) Moving chimeras are stable for small
v but become unstable through a Hopf bifurcation at v ≈ 0.3. This is in contrast to
the moving chimeras in the nonlocally coupled system studied in [35], which lose and
regain stability repeatedly as the branch of solutions is followed. Panels (b) and (c)
of Fig. 4 show examples of profiles of |a(x, t)| for a stable and unstable, respectively,
moving chimeras. As in [37, 35], the magnitude of a (i.e. the local level of synchrony of
the phase oscillators) oscillates as one moves around the domain.

The travelling chimeras have an integer “twist” associated with them, since as the
domain is traversed once, the argument of a must vary through an integer multiple of
2π. The twist of solutions on the curve shown in Fig. 4(a) starts at zero for small v and
increases to 1 and 2 as v is increased (not shown).

In recent work [31], Smirnov and Pikovsky considered a model equivalent to (1)
and (10) but with identical oscillators, M = 1, and N → ∞. They set ϵ = 0 which
then creates asymmetric nonlocal coupling among the phase oscillators, similar to that
in [37, 35]. They found travelling waves with varying twists and determined their sta-
bility, and also patterns described as travelling chimeras.

3. Winfree oscillators in 1D

As a second example we consider a network of Winfree oscillators [39, 40, 41]. The
equations are

dθkj
dt

= ωk
j + κQ(θkj )uj(15)

ϵ
duj

dt
=

1

M

M∑
k=1

Pn(θ
k
j )− uj +

uj+1 − 2uj + uj−1

(∆x)2
(16)

for j = 1, 2 . . . N and k = 1, 2, . . .M , where θkj is the phase of the kth oscillator in
community j, and κ and ϵ are parameters. Note that each uj is real. The functions Q
and Pn are given by Q(θ) = sin β − sin (θ + β) where β is a parameter, and Pn(θ) =
an(1 + cos θ)n where an = 2n(n!)2/(2n)!, and ∆x = L/N where L is the length of the
domain. Periodic boundary conditions in space are used. Q(θ) is the phase response
curve of the oscillator and can be measured experimentally for a neuron, for example [42].
As above, the ωk

j are randomly chosen from the distribution (3).
An example of a chimera is shown in Fig. 5 where for simplicity we show the phase

of only one oscillator at each lattice point. The incoherent group of oscillators is in the
centre of the domain. A chimera in such a system was shown in [15], but no analysis of
it was performed.

As above we can let M → ∞ and use the Ott/Antonsen ansatz to derive equations
describing the phase oscillator density in each community. Defining aj as in (4) we
find [43]

(17)
daj
dt

= κuje
−iβ/2 + (iω0 − δ + iκ sin (β)uj)aj − κeiβuja

2
j/2
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Figure 4. (a): Speed, c, of the travelling chimera solution of (11)-(12)
as a function of the magnitude of the asymmetric coupling, v. Blue solid:
stable; red dash-dotted: unstable. (b) and (c): snapshots of |a(x, t)| at
the points indicated by the black circles (left and right respectively) in
panel (a). Both chimeras are moving to the left. Parameters: ω0 = 1, β =
0.1, ϵ = 0.2, σ = 0.01, A = 1.5, L = 2π. The domain was discretised with
400 points.

Setting n = 4 we find that [44]

lim
M→∞

1

M

M∑
k=1

Pn(θ
k
j ) = 1 +

4(aj + āj)

5
+

2(a2j + ā2j)

5
+

4(a3j + ā3j)

35
+

a4j + ā4j
70

≡ f(aj, āj)

and thus the system is described by (17) and

(18) ϵ
duj

dt
= f(aj, āj)− uj +

uj+1 − 2uj + uj−1

(∆x)2

Unlike the system studied in Sec. 2, equations (15)-(16) are not invariant under a uniform
rotation of phases and thus the chimera shown in Fig. 5 corresponds to a periodic solution
of (17) and (18) and must be studied as such.
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Figure 5. Chimera state in (15)-(16). (a): sin θ1j ; (b): uj. Parameters:
ω0 = 0.3, β = π/2 − 0.2, κ = 0.4, ϵ = 0.1, σ = 0.001, n = 4,M = 20, N =
100, L = 4.

One of the important parameters in a network of Winfree oscillators is the level of
heterogeneity in natural frequencies, given here by δ. Varying δ and following both
fixed points and periodic solutions of (17) and (18) we obtain Fig. 6. As in an all-to-all
coupled network, for small κ and large δ the system has a stable spatially-uniform fixed
point, indicated by the solid blue curve. As δ is decreased this state loses stability in a
supercritical Hopf bifurcation, leading to a stable periodic solution, again with no spatial
structure (shown with blue circles). As δ is decreased further this state loses stability
to a solution which is periodic in time and which has some spatial structure: this is the
chimera state corresponding to the type of solution shown in Fig. 5.

To represent the chimera we define a chimera index

(19) χ ≡ 1

T

∫ T

0

max
x

(u(x, t))−min
x

(u(x, t)) dt

where T is the period of the oscillation. For a spatially-uniform periodic state χ will be
zero. In the inset of Fig. 6 we plot χ as a function of δ. We see that χ varies from 0
(at δ ≈ 0.0075) when the spatially-uniform period state loses stability to a maximum at
δ = 0, i.e. the chimera bifurcates in a supercritical way. The chimera is stable over the
range of δ for which it exists.

Increasing κ with δ = 0.005 and all other parameters the same as above, we see the
same scenario (not shown).
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Figure 6. Fixed points and periodic solutions of (17) and (18). Lines
show the value of u at a spatially-uniform fixed point (solid blue: stable;
dashed red: unstable). Circles show the maximum and minimum of u over
one period of a spatially-uniform periodic solution (blue: stable; red: un-
stable). The inset shows the chimera index χ defined in the text. Parame-
ters: ω0 = 0.3, β = π/2− 0.2, κ = 0.4, ϵ = 0.1, n = 4,M = 1, N = 100, L = 4.

4. 2D square domain

The next system we consider is a two-dimensional square domain. Spiral wave chimeras
have been observed in a number of two-dimensional networks with nonlocal coupling [45,
46, 47]. Our system is

dθkj
dt

= ωk
j − Im

[
ei(θ

k
j +α)zj

]
= ωk

j + (i/2)
[
ei(θ

k
j +α)zj − e−i(θkj +α)z̄j

]
(20)

ϵ
dzj
dt

=
100

M

M∑
k=1

e−iθkj +∇2zj − zj(21)

where as above θkj is the phase of the kth oscillator in community j and j is the index
of a point in a 2D lattice. We use a five-point stencil to approximate the Laplacian
on a regular N ×N square grid and use zero-derivative Neumann boundary conditions.
An example of a spiral wave chimera solution of (20)-(21) is shown in Fig. 7 where for
simplicity we set M = 1. In the image of sin θ1j the incoherent core is clearly visible.

There is slight “speckling” in panel (a) due to the randomly chosen values of ω1
j . z is

clearly a smooth function of space with a phase singularity where |z| = 0 at the centre
of the spiral.

Taking the limit M → ∞ and defining aj to be the complex conjugate of the term on
the right of (4) we have

ϵ
dzj
dt

= 100aj +∇2zj − zj
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Figure 7. Snapshot of a spiral wave chimera solution of (20)-(21). (a):
sin θ1j ; (b): |zj|; (c): sin (arg(zj)). Parameters: ω0 = 0, α = 0.7π, σ =
0.001, ϵ = 20,M = 1, N = 100, L = 3.

and
daj
dt

= zje
iα/2− (σ + iω0)aj − z̄je

−iαa2j/2

The solutions of interest are stationary in a rotating coordinate frame, i.e. we are inter-
ested in fixed points of

daj
dt

= zje
iα/2− (σ + iω0)aj − z̄je

−iαa2j/2− iΩaj(22)

ϵ
dzj
dt

= 100aj +∇2zj − zj − ϵiΩzj(23)

where Ω is the speed of the rotating coordinate frame.
Following such a fixed point as α is varied we obtain the results in Fig. 8. One

interesting result is that unlike other systems, the spiral persists for α greater than π/2.
Another interesting result is shown in panel (b) where the radius of the incoherent core
is plotted. In other systems this increased linearly with α, at least for small α. Here,
the core does not really develop until α ≈ 1.3. (The incoherent core was defined as grid
points for which |aj| < 0.95. Since N is odd there is always at least one lattice point, in
the centre of the spiral, for which |aj| < 0.95, and thus this radius is never zero.)

5. Annulus

One type of domain on which chimeras have recently been studied is the annulus [48].
Laing previously investigated both multi-headed chimeras and rotating waves in net-
works of nonlocally coupled phase oscillators on an annulus [48]. (Also see [49].)

The model we consider is

dθkj
dt

= ωk
j − Im

[
ei(θ

k
j +α)zj

]
= ωk

j + (i/2)
[
ei(θ

k
j +α)zj − e−i(θkj +α)z̄j

]
(24)

ϵ
dzj
dt

=
50

M

M∑
k=1

e−iθkj +∇2zj − zj(25)

where as above θkj is the phase of the kth oscillator in community j and j is the index of
a point on the annulus with inner radius a and outer radius b. The domain is discretised
with Nr points in the radial direction and Nϕ in the angular direction. Second derivatives
in the angular and radial directions were implemented as in (2) and the first derivative
in the radial direction was implemented using a centred finite difference. Importantly,
Dirichlet boundary conditions are used for z, where z = 0 on both the inner and outer
boundaries.
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Figure 8. Continuation in α of a spiral wave chimera steady state of (22)-
(23). (a): Ω versus α. (b): radius of incoherent core, divided by domain
side length L, versus α. Blue solid: stable; red dash-dotted: unstable.
Parameters: ω0 = 0, σ = 0.03, ϵ = 20, N = 81, L = 3.

An example of a rotating wave solution of (24)-(25) is shown in Fig. 9. In the plot
of sin θ1j we see incoherent regions near the inner and outer boundaries of the domain,

while θ1j increases through 4π as we move in the angular direction around the domain,

away from the boundaries. The phase θ1j will vary through a multiple of 2π as we move
around the domain, and in this case that multiple is n = 2, referred to as the winding
number. We see that z is continuous in space.

The reason for the oscillators near the boundaries being incoherent is easy to see:
oscillators at point j feel the field zj and if |zj| is small, the oscillators will not lock to
it. Since z is continuous in space and equal to zero at the boundaries, there must be
some incoherent oscillators near the boundaries.

As in Sec. 4, in the limit M → ∞, the solutions of interest are fixed points of

daj
dt

= zje
iα/2− (σ + iω0)aj − z̄je

−iαa2j/2− iΩaj(26)

ϵ
dzj
dt

= 50aj +∇2zj − zj − iϵΩzj(27)
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Figure 9. Snapshot of a rotating wave solution of (24)-(25) with n = 2.
(a): sin θ1j ; (b): |zj|; (c): sin (arg(zj)). Parameters: ω0 = 0, α = 2.7, σ =
0.001, ϵ = 100,M = 1, a = 1, b = 3. Nr = 100, Nϕ = 180.

where Ω is the speed of the rotating coordinate frame.
We followed rotating waves with n = 0, 1, 2, 3 as α was varied, and the results are

shown in Fig. 10. Only the n = 0, 1 curves persist down to α = 0, others have saddle-
node bifurcations. The n = 0 curve is always stable, and the other curves are only stable
for ∼ 1.5 < α <∼ 2.5. These results are fundamentally different in several ways from
those for nonlocally coupled oscillators found in [48]: here

• the curves do not all persist down to α = 0,
• the curves persist past α = π/2,
• curves for different n are not simply related by scaling Ω (and here the value of
Ω increases with n whereas in [48] it decreases).

6. Summary

We studied a number of networks of phase oscillators where at each node there are
many phase oscillators and one auxiliary variable, which may be real or complex. The
only coupling between nodes is nearest-neighbour coupling of the auxiliary variables.
These networks are capable of supporting stable chimera states, for which oscillators in
part of the domain are largely synchronous, while those in the rest are more asynchro-
nous. All of these systems can be studied using the Ott/Antonsen ansatz applied to
the phase oscillator populations, and we obtain a set of coupled equations for both the
Kuramoto order parameter and the value of the auxiliary variable at each node. Steady
states of these equations correspond to chimeras, and their stability and bifurcations
can thus be determined straight-forwardly.

We first examined several one-dimensional networks previously studied in [48], but
now we can properly determine the stability of chimeras found in those networks. For
the Kuramoto oscillators (Sec. 2) adding local asymmetric coupling caused the chimera
to move around the domain. Interestingly, the chimera’s speed is not a monotonic
function of the asymmetric coupling strength, a phenomenon seen previously only in
systems with nonlocal coupling [35, 36, 37, 38]. For the Winfree oscillators (Sec. 3) we
showed how the chimera arises as the result of several bifurcations as the heterogeneity
of the uncoupled oscillators’ frequencies decreased. We then considered a spiral wave
chimera in a square domain (Sec. 4). In contrast with many other spiral wave chimeras
found in nonlocally coupled systems [50, 46, 47, 51, 52], the spiral wave chimera found



14 CARLO R. LAING

Figure 10. Rotation speed Ω as a function of α for rotating waves with
winding numbers n = 0, 1, 2, 3. Solid curves: stable; dashed: unstable.
Parameters: ω0 = 0, σ = 0.001, ϵ = 100,M = 1, a = 1, b = 3. Nr =
60, Nϕ = 100.

here (i) exists for α significantly past α = π/2 and (ii) does not have a core whose size
grows linearly with α (for small α). The last system considered was an annular domain,
for which we studied rotating waves. While these patterns do have some coherent and
some incoherent oscillators, they should not be considered chimeras, as the incoherent
oscillators are near the boundaries of the domain, where the auxiliary variable must have
a small magnitude due to the boundary conditions.

For both two-dimensional domains (Secs. 4 and 5) we found that solutions of interest
are fundamentally different in several ways from those for which coupling is nonlocal.
These results add to our knowledge of the types of dynamics seen in networks, and invite
further investigations into the similarities and differences in the dynamics of networks
with local and nonlocal coupling [53].
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