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Abstract

In this paper we discuss the types of stable oscillation created via Hopf bifurcations for
a ring of identical nonlinear oscillators, each of which is diffusively and symmetrically
coupled to both its neighbours, and which, when uncoupled, undergo a supercritical
Hopf bifurcation creating a stable periodic orbit as a parameter, A, is increased.

We show that for small enough coupling, the only stable rotating waves produced
are either one or a conjugate pair, depending on the parity of the number of oscillators
in the ring and the sign of the coupling constant, and that the magnitude of the
phase difference between neighbouring oscillators for these rotating waves is either
zero (i.e. the oscillators are synchronised) or the maximum possible, depending on
the sign of the coupling constant. These branches of rotating waves are produced

supercritically.



1 Introduction

The behaviour of rings of identical oscillators has been studied by a number of au-
thors [1, 2, 3, 4, 7, 11]. Such rings are used in the biological world to model such
structures as the cross—section through a plant stem [9] or an intestine, the ring of
tissue from which the petals of a flower emanate [11], or a ring of neuronal oscillators,
each of which controls the motion of one leg of an animal during locomotion [3]. In
the world of physics, they have been used to model rings of semiconductor lasers [10].

Various approaches have been taken to try and understand the types of possible
behaviour in such rings. One approach, taken by Ashwin and Swift [2], is to assume
that the coupling between oscillators is weak relative to the attractiveness of the
periodic orbit that exists in the phase space of each oscillator. This assumption
allows a decoupling of the dynamics for the phases of each of the oscillators from
the dynamics of their amplitudes. Since each oscillator has only one phase variable
associated with it, this reduces the dynamical system from one in R¥" to one on TV,
where N is the number of oscillators in the ring, the phase space for each uncoupled
oscillator is R”, and TV is the N-torus. The symmetry group of N oscillators coupled
in a ring with no preferred direction around the ring is the dihedral group Dy, i.e. the
group of symmetries of a regular N-gon. The flow on T¥ inherits this symmetry, so
the problem of finding the possible dynamics for the ring of identical oscillators has
reduced to that of finding possible types of Dy-equivariant flows on T. (Under the
assumption that the differences in phase between oscillators vary on a slower time
scale than the oscillatory motion of each oscillator, the Dy—equivariant flow on TV
can be averaged, resulting in a Dy—equivariant flow on TN~1))

Grasman and Jansen [7] use a similar weak coupling assumption, but consider
perturbing away from a ring of relaxation oscillators that have an infinite rate of
relaxation.

The other approach that has had some success is assume that each oscillator is
parametrised in such a way that it undergoes a Hopf bifurcation as a parameter is

varied, and to use the theory of Hopf bifurcations, with or without symmetry, to



determine the types of oscillation produced. This was the approach used by Collins
and Stewart [3] in relation to the modelling of animal gaits. These authors used
results from the theory of Hopf bifurcation with either Dy or Zy symmetry [5, 6] to
determine the possible types of oscillation that could exist, purely as a result of the
symmetry of the network. As they mention, the question of the stability of any of
these types of oscillation depends on the exact form of the oscillators and coupling
used. In this paper we extend their results to show that for quite general oscillators,
one specific branch of oscillations is stable.

When the linearisation of the coupled system about a fixed point has a simple pair
of purely imaginary eigenvalues, the theory of simple Hopf bifurcation (see e.g. [8, 12])
can be used to determine the type of oscillation produced in that bifurcation, and by
appropriate centre manifold reduction calculations, the direction of branching and the
consequent stability of the orbit can be determined. This is the approach taken by
Alexander and Auchmuty [1], among others. However, for systems with Dy symme-
try, most of the eigenvalues are forced to appear as pairs, and simple Hopf bifurcation
theory can no longer be used. This problem can sometimes be resolved in particular
cases. For example, in Silber et al. [10], the equations governing the behaviour of a
ring of semiconductor lasers are such that periodic solutions can be found explicitly,
and these can be linearised about to give their stabilities. Ermentrout [4] studied the
case of weak coupling near a Hopf bifurcation and found families of rotating waves
and necessary conditions for their stabilities in the limit of large N. His results are a
special case of the results we derive.

The tools we use are centre manifold and normal form theory. For a general cou-
pled system (1) we determine which Hopf bifurcation may produce a stable periodic
orbit, perform a centre manifold reduction at this bifurcation point, and then do the
normal form calculations necessary to determine the sub— or supercriticality of the
branches produced here and their stabilities. For more details on centre manifold and

normal form theory, see [8, 12].



2 Presentation of system

We assume that our system of N coupled oscillators in a ring is governed by equations

of the form
. dzj : _ _ :
G =8 = (i) + Falz5, %) + B2, ) + (6 +i6)(22 — 2301 — 2j-1)
(1)
where z; € C; A\, Q, ¢,,¢; € R, 12 = —1, the subscripts (which label the oscillators) are
taken mod N, and F; and F3 contain the second and third order terms, respectively,

in the Taylor series expansion of the vector field of an uncoupled oscillator. To be

more explicit, we write
Fy(zj,2) = alzf- + azziz; + agéf
and
Fi(zj,2;) = Bz} + Pazizj + PazZ; + PaZ;

where the a’s and ’s are complex constants. We take A as our bifurcation parameter,
which we assume to be close to zero. The a’s and 3’s will typically depend on A, but
because we are only concerned with the case |A\| < 1, we fix them at the value they
have when A = 0.

We assume that each uncoupled oscillator undergoes a supercritical Hopf bifurca-
tion as A increases through zero. This means that the normal form coefficient, a, for

each oscillator is negative. For a system

x 0 —w x x,
- L @) ey € R
J w 0 y 9(z,y)
with f(0,0) = ¢(0,0) =0 and Df(0,0) = Dg(0,0) = 0 at a simple Hopf bifurcation,

the expression for a is [8]

1 1
“= E[fzzz + foyy + Gooy + Gyyy| + Hi—w[fzy(fm + foy) = 9oy(Goa + 9yy) — focGor + [y 9]

where subscripts indicate partial differentiation with respect to that variable. It is

straight—forward to calculate this quantity in terms of the a’s and 3’s in (1):

Im{ar} Re{ay} 4+ Re{oq JIm{as} ,
aQ = Re{B.} —

Im{ajay}

Q

a = Re{’BQ} —



Note that this expression is linear in coefficients of cubic terms in the Taylor series

and quadratic in coefficients of second order terms — this fact will be used later.

The Jacobian of (1) evaluated at the origin is circulant, so we can easily find its

eigenvalues and eigenvectors. We use the eigenvectors to diagonalise the linear part

of the system, defining a new coordinate system w by w = Az, where

wy 1 f(N—l)(N—l) 52(N—1) fN_l 2
Wo 22
w= A=|1 e S (3)
WN-1 1 ¢t ' 9 ZN-1
WN 1 1 1 1 ZN

and ¢ = ?mi/N

e Ay = EWN=DWN=k+1) - After this transformation the linear part

of the w equation is diagonal with entries of A 4+ iQ + 2(¢, + i¢;) [1 — Cos (2%)] for
7 =0,...,N—1 with the j = 0 entry at bottom right and the j = N — 1 entry at top
left. From the form of these diagonal terms we see that there is a Hopf bifurcation
(which may be simple or double) from the origin when A + 2, [1 — cos (2%)] = ( for
some () <3 <N —1.

For A < —4|e,| all of the eigenvalues of the Jacobian at the origin have negative
real parts and the origin is stable, so we look for the first Hopf bifurcation to occur as
A is increased, which we hope will produce a stable branch of oscillations. Once this
Hopf bifurcation has occurred the origin is unstable, and all of the orbits subsequently
created from it in Hopf bifurcations will necessarily be unstable. First we take the

case €, < 0; the analysis of the case ¢, > 0 depends on whether N is even or odd, and

we deal with these cases in subsequent sections.

3 ¢6<0

When €, < 0 the first Hopf bifurcation to occur as A is increased is the simple one
with j = 0 at A = 0, irrespective of the value of N. At this bifurcation the centre
manifold in the w coordinate system is in the wy direction and since the Jacobian is

diagonal and all of its other eigenvalues have negative real part, the dynamics for all



the other components of w are dominated by exponential contraction onto the centre

manifold. We know from (3) that
N
WN = Z %5y
=1

so using this and (1) we have

|
™=
Qe

wy =
7=1
N
= D AN+ i)z + Fo(2,2) + Falz, 7)) + (& +16)(22 — 2j-1 — zj1) }
7=1
N
= (A +iQuwn + D {Fa(z;, 7)) + Fs(25, %)} (4)
7=1
. Fy(wn, wn) Fs(wy, wn)
= ()\—I—ZQ)wN—I—T—I—[...Q...] N7 +[...3...]
where [...2...] represents second order terms in wy, wq, ... ,wy_1,wy_7and [...3...]
represents all cubic terms that include at least one of wy,wq,... ,wy_1,wn_1. The

second and fourth terms in the last line of (4) were obtained by using the inverse of

A

?

so that

=2 A =52 U, (5)

and substituting into the expressions for Fy(z;,z;) and Fs(z;, ;).

There is a subtle point here regarding the difference between [...2...]and [...3...].
We might expect there to be second order terms in (4) of the form wywy, wywg, Wywy
or wywy, for some k # N, and when we then perform a centre manifold reduction (in
which we write wy and wy, as a sum of second—order terms in wy and wy) these terms
will be third order in wy, wy. However, it is possible to calculate the coefficients of
the second order terms in wywyg, wyWE, Wywy and wywy for any k& # N, and they are
all zero. Hence, when we perform the centre manifold reduction all terms in [...2...]

are fourth order in wy,wy and will therefore be ignored. For a similar reason, all



terms in [...3...] will be of order at least 4 (possibly up to 6) and will similarly be

ignored. Thus, after performing the centre manifold reduction we can write (4) as

Fy(wy,wy)  Fs(wy,on)

- N 1 O(funl?) (6)

Ii)N = ()\ + iﬂ)w]\f +

Comparing this with (1) at (e, ¢;) = (0,0) we see that to third order they are identical
except that the coefficients of the second order terms in (6) have been divided by N
and the third order ones by N?. Going back to the expression for a (equation (2)),
we see that the value of a for (6) is equal to that for an uncoupled oscillator divided
by N2. Since only the sign of a is important, we see that in the dynamics restricted
to the centre manifold, (6), there is a supercritical Hopf bifurcation as A increases
through 0 when ¢, < 0. To see how this manifests itself in the oscillators, we use the
inverse of A, (5). Since wy is small at the onset of oscillation and the wy, for k # N
are second order in wy, we can ignore their contribution to the z;. From (5) we see
that z; ~ wy for all 7, i.e. this branch of orbits manifests itself as the completely

synchronised state, z; = zj for all j, k. The next case we do is ¢, > 0, N even.

4 ¢ >0, N even

In this case the first Hopf bifurcation to occur as A is increased is the simple one for
J = N/2 at A = —4e,. The centre manifold is in the wyy, direction and as above, the
dynamics in the other directions of w are dominated by exponential contraction onto

the centre manifold. From (3) we have

N N
wnp =Y (Ax;) 7= Y (-D)N
7=1 7=1



so using (1) we obtain

N
Wy = Z YNt
N
= Z N ]+1{ A+1iQ)z; + Fa(zj, 2;) + Fs(zj, 25) + (& + i€:)(22; — 2j41 — 2zj-1)}
N .
= i+ 4l +ie)wn + D (1) Fa(zg, 25) + Fa(z), %)}
7=1
= A4+ +4(e + iq)]wN/z
1
+ N {QCYle/sz + az(wnyjwn + Wy pwN) + 26!37«7)N/27~71N]
Fs(wnyz, wny2)
o204 3]
where [...2...] now represents second order terms in wy, wy, . .. ,wy, wy that have no
factors of wpy/; or w2, and [...3...] represents cubic terms not composed exclusively
of wy/y and wyyy. After performing the centre manifold reduction, termsin [...2...]
and [...3...] will be of order at least 4 in wy/, and wyy/2, and will therefore be ignored

from now on. The last step is to actually perform (part of) the centre manifold
reduction in order to write wy (and hence wy) as a function of wyy, and Wy, so
that we can substitute these expressions into (7) and obtain an equation for motion
on the centre manifold.

We start by writing

WN = g(wN/Za wN/2> = Ulw]2\[/2 + O-QwN/ZwN/Z + U3w]2V/2 (8)

as an approximation to the centre manifold, where o125 € C are (as yet) unknown.
We find them by equating two equivalent expressions for wy:

dg dg

WN/2 / LTI

Wy = (A +1Q)g(wny, Wny2) + fo(wnyz, Wnyo)
(9)
where f3(wn/2, Wny2) are the terms in the [...2...] of (4) involving only wy/; and

wyye. It is straight—forward to show that fi(wn/e, wny2) is in fact Fy(wn/q, waye)/N.



Thus (9) becomes

[QUlem + UQ@N/Q] X [A+1Q 4+ 4(e, + iﬁi)]wN/Q
+  [oownye + 203w ) X [A — 12 + 4(e, — i€;)]wn2

= (A 4:0Q) x [glw]z\,ﬂ + o2WN/2WNY2 + JgLD]QV/Q] + FQ(wN/27 ITJN/Q)/N

We equate coefficients of second order terms in wpy/, and wyy, in this expression to

get

aq Qs Qa3

N+ +8(6 +ie)] 727 N —i+36] 7° 7 NN —3iQ2 + 8(e, — ier)]

g1 =

Now that we have found o1, 03 and o3, we can substitute the expression for wy, (8),

into (7) to obtain the equation for motion on the centre manifold. It is
w2 = [A+1Q+ 4(e + i€)]wnys + Cwljpongz + [ . ddi . . ]

where
B2 2009y, _ 20303

O:m N —I_W(UZ—I_JI)—I_ N

and [...22¢...] represents all terms of order 3 or more in the Taylor series excluding
the term in wJQV/QwN/Q. If the real part of C' is negative at the bifurcation value
(A = —4¢,), we will have a supercritical Hopf bifurcation in the wy/, direction as A

increases through —4e,.

For small ¢,, ¢; we can expand C' at A = —4e, in powers of ¢, and ¢; as
1 NosKe%) .0/26/2 .20(36(3
R
el R A (T
€y B Saszax €; . 162cv3cx
+ N2 [12a1a2 + dagag + S 3] -|-N2Q [8@a1a2 + 93 3] + O(le,, 6i|2)
and thus
1 € B S8azas €
Re{C} = vz [a + o (1236{a1a2} + dagag + ) o (8]m{oz10z2})]
+ O(|67’76i|2)

where a is as given in (2). Thus for small enough ¢, and ¢;, Re{C} will be negative,

and we will have a supercritical Hopf bifurcation in the wy/, direction. As before, we

10



use (5) to see how this branch of oscillations appears in the oscillators. We find that
zj ~ (=1)7""wyyz, i.e. zj41 = —z; for all j and thus neighbouring oscillators are half
a period out of phase with one another. We call this the exact antiphase state. The
last case to do is ¢, > 0, N odd.

5 € >0, N odd

In this case the first Hopf bifurcation to occur as A increases is double, corresponding
to both j = (N +1)/2 and j = (N —1)/2, at A = —2¢,[1 + cos (§;)]. For notational
convenience, we define p = (N—1)/2 and ¢ = (N+1)/2. At this bifurcation the centre
manifold is four-dimensional, in the directions of w, and w,, and there are generically
three branches of periodic orbits (labelled Zn, Z,(k) and Zy(k,7) by Golubitsky et
al. [6]) that emanate from the double Hopf bifurcation. The sub— or supercriticality
of these branches and their stability or otherwise depends on the coefficients of the
cubic terms in the normal form of the equations on the centre manifold. We derive
these coefficients below for (1) in terms of the equation for an uncoupled oscillator.
Once we have these coefficients, we can compare them with those in the normal
form of the Dy symmetric double Hopf bifurcation (see §3, Ch. XVIII of [6]) which

we choose to write as follows:

ul = Huq + B|U1|2U1 + O|U2|2U1 + O(|u17 u2|5) (10)

g 4 Blug*ug 4+ Clug[*ug 4+ O(Jur, ug]?)

Uz

where all parameters and variables (except time) are complex and Re{x} is the bifur-
cation parameter. The difference between this presentation of the normal form and
that in [6] is that we have collected all terms of order 5 or more in the “O(|uy, uq|*)”
term. We have done this because, although higher order terms are necessary to de-
termine the stability of the Zy(x) and Z3(k, ) branches, we show below that for |e, |
and |¢;| small enough there is a bifurcation to a stable Zy branch, the direction of bi-
furcation and stability of this branch being completely determined by the coefficients

of the cubic terms, B and C'; thus the exact form of the higher order terms is not

11



relevant.

The normal form has three types of nontrivial solution:
1. uy = uy, which we associate with the Zy(x) orbit,
2. u; = —ug, which we associate with the Zy(x, ) orbit, and

3. either (uy,uz) = (uq,0) or (uy,uz) = (0,uz), both of which we associate with

ZN orbits.

The bifurcation set for the normal form (10) is shown in Figure 1, which is reparametrised
version of Figure 3.1 in Ch. XVIII of [6] showing how the bifurcation diagrams for (10)
depend on the real parts of B and C. See [6] for more details.

Defining £ = éNV-1/2 and ¢, = €N+D/2 where ¢ = ¢?™/N | we have, using (3)

N
= Efy_kﬂzk and w, = ZfN R,
k=1
Differentiating the first of these with respect to time and using (1) we have

N
wy = Y ENTHH(N i)z 4 Falzy, 25) + Falz;, 2) + (6 +1€6)(22) — 2541 — 2j41) )
k=1

{A+iQ + 2(e, + €)1 + cos (7 /N)] }w, + Z fT_Hl{FQ(Zk, zr) + Fs(zk, 2x) }

= {A+1Q+2(e +1¢)[1 + cos (7 /N)]}w, - (11)
+  [Rajwgwn + ag(wywn + wews) 4 203w, 0N 1] /N
+ [2oqwpw; + az(wywn_1 + Wywn) + 2azwywy] /N + [ .0i .. ]
+ f; [wiiw, + 2wywyw,] + [...dii...]
where [...7i...] represents second order terms with no factors of w,, w,,w, or w,,

and [...717 .. .] represents cubic terms excluding those of the form w;

W, and w,w,w,.
When the centre manifold reduction is performed terms in [...7¢...] and [...e0...]
will be of order at least 4 in |w,| and |w,]|, or if not, can be removed with normal
form transformations, and will thus be ignored from now on. We obtain an expression

analogous to (11) for w,, with w, and w, exchanged, as expected from the symmetry

of the problem.

12



The next step is to perform the centre manifold reduction in order to get expres-
sions for wy,wy and wy_; in terms of w,, w,, w, and w, so that we can substitute

them into (11). We write

wy = f(wy, Wy, wy,wy) = 717“”; + 2wy, + Y3Wpw, + Yawyw, + 75@;
+ VoW, + Y7,y + YsW, + Yow, W, + V10w,

wy = g(wy, Wy, Wy, W,) = Qlw; + Oyw,w, 4+ Osw,w, + O4w,w, + 95711; (12)
+  Oevyw, + 070,10, + Ogw? + Ogw,w, + O19w]

_ - N 2 - - 2
WN—_1 = h(wy, Wy, Wy, Ww,) = V1w, + VawWpW, + V3Wyw, + Vawyw, + V5w,

- [ 2 - —2
+ vew,w, + vrw,wy + vgw, + vow,w, + VoW,

where ~q,...,v19 € C are unknown coefficients. We find them in the usual way
— writing equivalent expressions for each of wy, wy and wy_; and then equating
coefficients of like powers of w,, w,, w, and w,. By substituting the expressions (12)
into (11), we can see that after the centre manifold reduction has been performed the

coefficient of the term in ijq in (11) will be

- ﬁ 4 20109 + 042(1% + 78) + 23010

= 1
= R (13)
while that of the term in w,w,w, will be

O = % n 20105 + azfy + 20176 + as(vg +63) + 20307 (14)

N2 N
(We have made the correspondence u; = w, and us = w, for comparison between (11)

and (10).) Actually doing the centre manifold reduction, i.e. finding 71, ... , 10, we

13



see that at the double Hopf bifurcation (i.e. when A = —2¢,[1 + cos (7 /N)])

_ lea 2a 12
b = o2, [QQN(HCOS(W/N))]+0(|er,ez|)
_ _tea [
BE TN T laen

+ [220‘1 (1 4 2cos (x/N) + cos (QW/N))] +0(jer &)
NQ?
B 1003 203
Vg = SQN+ , [992N(cos(7r/N)—|—c0s(27r/N))]

(cos(w/N) + cos (QW/N))]

N [;;VO;;’Z (cos (27 /N) — 2 cos (= /N) — 3)] +0(ler, i)
0 = o b e [ i1 4 cos (n/ V)] + Ofler, i)
Jo = ot [ aan(cos (1/N) + cos (2/N)]
b (eos (2n/N) = ] 4 Ol &)
o= ot g[S (cos (x/N) + cos (25/N))
o [t (cos (2n/N) = ] + Ofler, )
0 = st e [ (14 cos (1/V))] e[S (1 4 cos (/W) 4 Ol )
2% g 4ovs —8tag

(1 + cos (W/N))] Fe [ 229301 4 cos (F/N))] +0(jer, &)

br = oyt [9Q2N INQ2

for small |¢,|, |¢;]. Substituting these expansions into the expressions for B and C' (13-

14) we obtain

Infore) -

Q
N292 [2]%6{&1@2} <2 + 3 cos (%) +cos (%))
+  2]ay)? (1 + cos (%)) + % (COS <%) cos (%))]

s [prmtmant (14205 (1) 4 cos (57))] + Ollersil)

Re(B} = = [Re%} _

14



and

Re(C) = o e} -

T 27
+ N2Q2 [4Re{alozg} <2 + 3 cos (ﬁ) + cos <N))
+ 2|as)? <1 + 2 cos <1) + cos (21)) + les[* <1 + cos (1))]
N N 9 N

2
_ N2Q2 [Um{oqaz} (1 + 2 cos <]7\r7> + cos (Wﬂ))] + O(le,, 62'|2)
Looking at these expressions when ¢, = ¢; = 0, we see that for ¢,, ¢; small enough, we

are in the region Re{C'} < Re{B} < 0 of Figure 1 (as

Re{f} — 7””{310‘2}

and thus there is a supercritical Hopf bifurcation to the Zy oscillation as A increases

]m{SIQZ}]

a <0)

through —2¢,[1+ cos (x/N)]. The Zx branch corresponds to two types of oscillation,
depending on whether solutions of (11) and its symmetric counterpart are of the form
(wy,w,) = (w,,0) or (w,,w,) = (0,w,). Using (5) we see that if w, = 0 then z; ~
f];_lwq, i.e. zj11 = (£-)z;, so the phase difference between neighbouring oscillators is
(1 + %) m. Similarly, if w, = 0, then z; ~ fi_lwp, ie. zj41 = (£4)zj, so the phase
difference between neighbouring oscillators is (1 — %) 7. Thus we have shown that
as A increases through —2¢, [1 + cos (7 /N)] we have a supercritical bifurcation to two
conjugate stable rotating waves, one rotating in each direction, both of which have the

maximum possible magnitude of phase difference between neighbouring oscillators.

6 An aside

Looking at (15-16) we see that for €,,¢; small we have Re{C'} ~ 2Re{B}, and
these are either both positive or both negative, depending on whether a is positive or
negative, respectively. Looking at Figure 1, we see that the case a > 0 (corresponding
to a subcritical Hopf bifurcation in an uncoupled oscillator) is uninteresting, in that
the D y—symmetric Hopf bifurcation will not create any stable orbits. The only sector

of interest in this respect is the one where

Re{B} < Re{C} < —Re{B}, for Re{B} <0

15



because here we have the creation of either a stable Zy(x) orbit or a stable Zy(x, 7)

orbit in the double Hopf bifurcation. A simple rearrangement of the above expressions

for Re{B} (15) and Re{C} (16) gives

Re{C'} = 2Re{B} (17)
o i et (o () 1)+ 388 1 () ot

so by choosing various parameters correctly, it may be possible to push the normal

form for the oscillators from the line Re{C} = 2Re{B} < 0 that we know we are
on for ¢, = ¢; = 0 across the boundary Re{C} = Re{B} < 0 by increasing ¢,, as
shown schematically in Figure 2 (compare with Figure 1, which shows the bifurcation
diagrams in each sector). (Note that as N increases, the coefficient of the term in
€ in (17) decreases, all other things being equal.) We demonstrate this transition
below in an example for N = 3, the smallest number of oscillators to have the three
different types of orbit created in a double Hopf bifurcation.

We are in the region ¢, > 0, and we want to increase Re{C}, so we set ay = 0.

For simplicity we also set €;, 31, 35 and 34 to be zero. The example we use is
Zi = (A4 L5e)z; — 0.72]2 + 22? — |zj|22j +€(22; — zj41 — 2j-1) (18)

for j = 1,2,3 and the subscripts are taken mod 3, which corresponds to equation (1)

with Q@ = 1.5,a7 = 0.7, a3 = 2,3, = —1 and ¢, = €. For this system,

heiB} = _é 3 x61.52 [4 X922 (COS (g) oos (%))] +0(e) = _é +0()

so using (17), to first order in € we should get a transition from Hopf bifurcation to

a stable 23 orbit to Hopf bifurcation to a stable Zj orbit of some kind when
Re{C} —2Re{B} = —Re{B}

1.e.

5 ()] s [ (e ()] -
N2 | 9 CCAN)| Tox1m2| 9 “C\3 ~ 9

ie. € =27/64 ~ 0.42. That this transition does occur is demonstrated in Figure 3,

where we show the type of orbit that is stable near the double Hopf bifurcation for (18)

16



as a function of e. This clearly shows that for € <~ 0.45, there is a Hopf bifurcation
to a stable Zs orbit, while for € >~ 0.45, the bifurcation is to a stable Zy(&, 7) orbit,

in good agreement with the predicted behaviour.

7 Conclusion and further work

We have shown that if we take NV identical oscillators, each of which undergoes a
supercritical Hopf bifurcation as a parameter say, A, increases, and couple them dif-
fusively in a ring geometry with complex coupling constant €, + i¢;, then (for small
enough |¢,| and |¢;|) the system as a whole undergoes a supercritical Hopf bifurcation
to a stable rotating wave state as A is increased, and that the magnitude of the phase
difference between neighbouring oscillators is a maximum for ¢, > 0 (i.e. # for N
even and (1 £ 1/N)x for N odd) and a minimum (i.e. zero, corresponding to the
synchronised state) for €, < 0.
Further extensions could include coupling that is not restricted to nearest—neighbour,

while still preserving the Dy symmetry of the system, or using nonlinear coupling,
although we would need the coupling to have some linear component in order to split

the eigenvalues of the Jacobian into single and double pairs.
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List of Figures

Generic bifurcation set for the normal form of the Dy symmetric Hopf
bifurcation (10) for N > 3, N # 4, after Figure 3.1, Ch. XVIII of [6].
Within each sector of the (Re{C'}, Re{B}) plane is a schematic bi-
furcation diagram with Re{u} horizontally and some measure of the
orbit vertically. Solid lines refer to stable solutions and dotted to un-
stable. Note that for any branch to be stable all must be supercritical,
and then at most one branch is stable. Fifth—-order termsin the normal
form may interchange the Z»(x) and Zz(k, 7) orbits. We have assumed
that the origin is stable for Re{p} < 0. (We use “supercritical” and
“subcritical” to refer to the direction in which a branch of orbits is

created as Re{u} is increased: supercritical branches are created as

Re{p} is increased, while subcritical are created as Re{y} is decreased.) 21

Schematic diagram showing how it might be possible to move from the
line Re{C'} = 2Re{B} < 0, which we know we are on at ¢, = ¢, = 0,
across the line Re{B} = Re{C'} < 0 by increasing ¢,. Compare with
Figure 1, which shows bifurcation diagrams for the relevant sectors.

Transition from Hopf bifurcation to a stable Zs orbit to Hopf bifur-
cation to a stable Zy(k,7) orbit as € is varied in equation (18). In
region F the Zs orbit is stable, and in region G, the Zy(k, ) orbit is
stable. There is non—periodic behaviour in the wedge H. The vertical

coordinate is the distance in A from the Hopf bifurcation. . . . . . . .
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Re{B} = Re{C} Re{B+C} =0

Figure 1: Generic bifurcation set for the normal form of the Dy symmetric Hopf
bifurcation (10) for N > 3, N # 4, after Figure 3.1, Ch. XVIII of [6]. Within
each sector of the (Re{C}, Re{B}) plane is a schematic bifurcation diagram with
Re{p} horizontally and some measure of the orbit vertically. Solid lines refer to
stable solutions and dotted to unstable. Note that for any branch to be stable all
must be supercritical, and then at most one branch is stable. Fifth-order terms in
the normal form may interchange the Zz(x) and Za(k,x) orbits. We have assumed
that the origin is stable for Re{u} < 0. (We use “supercritical” and “subcritical” to
refer to the direction in which a branch of orbits is created as Re{u} is increased:
supercritical branches are created as Re{yu} is increased, while subcritical are created

as Re{p} is decreased.)
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Re(B} Re{ B} =Re{ C}

_.- Re{B}=Re{C}/2

- Re{C}

Figure 2: Schematic diagram showing how it might be possible to move from the
line Re{C} = 2Re{B} < 0, which we know we are on at ¢, = ¢ = 0, across the
line Re{B} = Re{C} < 0 by increasing ¢,. Compare with Figure 1, which shows

bifurcation diagrams for the relevant sectors.
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Figure 3: Transition from Hopf bifurcation to a stable Z orbit to Hopf bifurcation
to a stable Zy(k,7) orbit as € is varied in equation (18). In region F the Z orbit is
stable, and in region G, the Zy(k, ) orbit is stable. There is non—periodic behaviour

in the wedge H. The vertical coordinate is the distance in A from the Hopf bifurcation.
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