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Abstract. Networks of periodically firing neurons can be modelled as networks of

coupled phase oscillators, each oscillator being described by a single angular variable.

Networks of two types of neural phase oscillators are analysed here: the theta neu-

ron and the Winfree oscillator. By taking the limit of an infinite number of neurons

and using the Ott/Antonsen ansatz, we derive and then numerically analyse “neu-

ral field” type differential equations which govern the evolution of macroscopic order

parameter-like quantities. The mathematical framework presented here allows one effi-

ciently simulate such networks, and to investigate the effects of changing the structure

of a network of neurons, or the parameters of such networks.

1. Introduction

It is well established that a single neuron can fire a periodic train of action potentials

when given a constant stimulus [3, 19, 21] and thus, under some circumstances, be

regarded as an oscillator. Neurons are coupled in networks, so in order to understand

neural systems (of which the largest is a complete brain) it is of interest to study coupled

networks of oscillators. Such oscillators are idealisations of single neurons, and their

connections only approximate the myriad of dynamic processes going on in an actual

neural network, but by studying simplified models we hope to gain some understanding

of real systems.

One simplification often made when studying networks of oscillators is to represent

the state of an oscillator by a single angular variable, its phase. The phase is a periodic

variable and increases by 2π during each period of oscillation. Such a simplification can

drastically reduce the number of variables needed to describe the state of oscillator (since

only one is now needed) and a principled reduction of a general network of oscillators to a

network of coupled phase oscillators can be performed in some circumstances [44, 19, 3].

In this chapter we consider networks of two types of neural phase oscillators, namely

the theta neuron and the Winfree oscillator. The theta neuron is perhaps better known,

as it is the canonical model for a Type I neuron [23], but the Winfree oscillator has a long

history [58]. Both types of phase oscillator are of a particular form which makes them

amenable to the use of the Ott/Antonsen ansatz [47, 46]. This ansatz can be used to

simplify the dynamics of an infinite number of coupled, heterogeneous phase oscillators.

Given the extremely large number of neurons in the brain (or in any significant part of

it), we expect the behaviour of infinite networks to closely match that of large but finite
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ones. The study of oscillations in neuroscience is a large topic [55, 56, 20, 10, 54] and

we point the interested reader to a recent comprehensive review [3].

We consider theta neurons in Sec. 2 and Winfree oscillators in Sec. 3. Some of the

analysis and results have been presented elsewhere (particularly in [37, 35, 49, 39]) but

some results are new, and the possible dynamics of the networks presented here are by

no means completely known.

2. Theta neurons

2.1. Model network. The theta neuron is the canonical model for a Type I neuron for

which the onset of firing is through a saddle-node on an invariant circle bifurcation [15,

18]. It can be derived by a nonlinear coordinate transformation from the quadratic

integrate-and-fire neuron model [37, 14]. A theta neuron receiving an input current I(t)

satisfies

(1)
dθ

dt
= 1− cos θ + (1 + cos θ)I(t)

where θ ∈ [0, 2π). If I(t) is constant and less than zero, (1) has two equilibria, θ± =

± cos−1 [(I + 1)/(1− I)], and θ− is stable and θ+ is unstable. If I is constant and greater

than zero, θ increases motonically with time. Treating θ as a periodic variable, as we

will do from now on, it then has period π/
√
I. When θ increases through π the neuron

is said to “fire”, i.e. produce an action potential.

If a theta neuron is part of a network, its current input I(t) will generally be time-

dependent, and result from the dynamics of the neurons which are connected to it. For

simplicity we start with a fully-connected network of N neurons, where each neuron is

synaptically connected to each other one with the same strength g. Thus the network

is described by

(2)
dθj
dt

= 1− cos θj + (1 + cos θj)(Ij + gs̄); j = 1, 2 . . .N

where

(3) s̄ =
1

N

N∑

k=1

sk

and each sk satisfies the equation

(4) τ
dsk
dt

= an(1− cos θk)
n − sk; n ∈ N

+

and an is chosen so that

(5)

∫ 2π

0

an(1− cos θ)ndθ = 2π

i.e. an = 2n(n!)2/(2n)!. The function an(1− cos θ)n mimics the action potential created

as θ passes through π; it is plotted for n = 2 and 10 in Fig. 1. This function then drives

sk on the synaptic timescale of τ , contributing to the input current s̄ which is the mean

of the sk. Ij is the constant input current to neuron j in the absence of any other input
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Figure 1. The function an(1− cos θ)n for n = 2 (solid) and n = 10 (dashed).

and is randomly chosen from a distribution h(I) to be specified below. Note that if g > 0

the synaptic connections are excitatory, whereas if g < 0 they are inhibitory. The case of

τ = 0 was studied by [39]. They found that for some parameter regimes, the system can

exhibit bistability between two “macroscopic” steady states (where the average activity

of the network is approximately constant) and also between a macroscopic steady state

and macroscopic oscillations, in which the average activity varies periodically.

Rather than investigate the network (2), (4) directly we pass to the continuum limit,

letting N → ∞, in the expectation that analysis of this case will provide insights into

the dynamics of large but finite networks. The system is then described by a probability

density function F (I, θ, t) which satisfies [45, 53, 1]

(6)
∂F

∂t
+

∂

∂θ
(Fv) = 0

where

(7) v(I, θ, t) ≡ 1− cos θ + (1 + cos θ)(I + gS(t)),

where S(t) satisfies

(8) τ
dS

dt
=

∫
∞

−∞

∫ 2π

0

F (I, θ, t)an(1− cos θ)n dθ dI − S.

(Note that S is real.) The form of (7) means that (6) is amenable to the use of the

Ott/Antonsen ansatz [47, 46], and thus we write

(9) F (I, θ, t) =
h(I)

2π

{
1 +

∞∑

j=1

[α(I, t)]jejiθ + c.c.

}

for some function α, where “c.c.” means the complex conjugate of the previous term.

In (9) we have expanded the θ dependence of F in a Fourier series, but of a particular

form: one in which the jth coefficient is not arbitrary, but is some function, α, to the jth

power. Ott and Antonsen [47, 46] showed that solutions of (6), where v is of a particular

form, exponentially decay to a state described by (9) provided the oscillators are not
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identical. Thus we can determine the asymptotic dynamics of (6) by assuming that F

is given by (9). It is helpful to introduce the complex order parameter, as considered by

Kuramoto in the context of coupled phase oscillators [30, 53]

(10) z(t) ≡
∫

∞

−∞

∫ 2π

0

F (I, θ, t)eiθ dθ dI.

The quantity z can be thought of as the expected value of eiθ. Substituting the ansatz (9)

into (10) and integrating over θ we have

(11) z(t) =

∫
∞

−∞

h(I)ᾱ(I, t) dI

where overbar indicates complex conjugate. If h(I) is the Lorentzian centered at I = I0,

with width ∆, i.e.

(12) h(I) =
∆/π

(I − I0)2 +∆2

then contour integration can be used to evaluate the integral in (11) to obtain z(t) =

ᾱ(I0 + i∆, t) [46]. The parameter ∆ gives the level of heterogeneity of the neurons, and

if I0 < 0 most neurons are quiescent with no input whereas if I0 > 0 most neurons

periodically fire in the absence of input. Substituting (9) into (8) and performing both

integrals we find [52, 35] that S satisfies

(13) τ
dS

dt
= H(z(t);n)− S

where

(14) H(z;n) = an

[
C0 +

n∑

j=1

Cj(z
j + z̄j)

]

and

(15) Cj =

n∑

k=0

k∑

m=0

n!(−1)kδk−2m,j

2k(n− k)!m!(k −m)!

It can be shown that for impulsive coupling, i.e. n→ ∞, H(z;∞) = (1−|z|2)/(1+z+z̄+
|z|2). We will set n = 2 in all following calculations, giving a2 = 2/3, C0 = 3/2, C1 = −1

and C2 = 1/4. Substituting (9) into (6) we find that α satisfies

∂α

∂t
= −i

[
I + gS − 1

2
+ (1 + I + gS)α+

(
I + gS − 1

2

)
α2

]
(16)

and evaluating this at I = I0 + i∆ we obtain

(17)
dz

dt
=

(iI0 −∆)(1 + z)2 − i(1− z)2

2
+
ig(1 + z)2S

2

The first term in (17) describes the dynamics of the uncoupled network, and the second,

the influence of synaptic coupling. Equations (17) and (13) form a complete description



PHASE OSCILLATOR NETWORK MODELS OF BRAIN DYNAMICS 5

of the infinite network. This pair of equations was studied with τ = 0, i.e. instanta-

neous synapses, by [39]. For a physical interpretation of z ∈ C, write z(t) = r(t)eiψ(t).

Integrating (9) over I we obtain the probability density function

(18) p(θ, t) =
1− r2(t)

2π{1− 2r(t) cos [θ − ψ(t)] + r2(t)}

which is a unimodal function of θ with maximum at θ = ψ, and whose sharpness is

governed by the value of r [35, 34]. Alternatively, we follow [42] and define

(19) w ≡ 1− z̄

1 + z̄
=

1 + 2ir sinψ − r2

1 + 2r cosψ + r2
.

In the continuum limit, the firing rate of (2), f , is equal to the flux through θ = π, i.e.

(20) f = v(I, π, t)p(π, t) =
Re(w)

π
.

Writing (17) in terms of w we obtain

(21)
dw

dt
= iI0 +∆− iw2 + igS

where S can be determined as a function of w by writing z = (1− w̄)/(1 + w̄).

2.2. Results. We now show some of the types of behavior exhibited by the system (17)

and (13) and its generalisations.

2.2.1. Oscillations with inhibitory coupling. Suppose we set I0 = 1 (i.e. most neurons

fire when uncoupled) and decrease g from zero, i.e. increase the strength of inhibitory

coupling. Doing so we obtain Fig. 2. For g close to zero only one steady state exists,

which is stable. As g is decreased this becomes unstable through a Hopf bifurcation

which appears to be supercritical. Decreasing g further the periodic orbit created in the

Hopf bifurcation is destroyed in a saddle-node-on-an-invariant-circle bifurcation, and a

pair of fixed points (one stable and one unstable) are created. As a verification of the

results of the continuum analysis, Fig. 3 shows behaviour of the original network of

theta neurons (2)-(4) at three different values of g. S was measured for each of these

simulations and the corresponding values are plotted in Fig. 2 (stars).

2.2.2. Two populations. Suppose now that we have two populations, one excitatory and

one inhibitory, projecting to one another but with no within-population connections.

(Slightly different but similar networks were proposed and studied by [40, 42].) Suppose

that the intrinsic currents are randomly chosen from Lorentzian distributions each with

width ∆, but means Ii (inhibitory population) and Ie (excitatory population). Taking

the limit as the number of neurons in each population becomes infinite, as above, we
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Figure 2. S at steady state of (17) and (13) (solid lines, stable; dashed

lines: unstable). Dots show maximum and minimum values of S over

one period of oscillation when no steady states are stable. Stars show

values measured from the simulations in Fig. 3. Parameters: I0 = 1,∆ =

0.05, τ = 1.

obtain

dze
dt

=
(iIe −∆)(1 + ze)

2 − i(1− ze)
2

2
− igi(1 + ze)

2Si
2

(22)

τe
dSe
dt

= H(ze;n)− Se(23)

dzi
dt

=
(iIi −∆)(1 + zi)

2 − i(1− zi)
2

2
+
ige(1 + zi)

2Se
2

(24)

τi
dSi
dt

= H(zi;n)− Si(25)

where ze/i is the order parameter for the excitatory/inhibitory population and ge, gi ≥ 0.

Typical periodic behaviour of such a coupled system is shown in Fig. 4 where we show

the instantaneous firing rate as calculated using (19), (20). This rhythm is referred

to as the “PING rhythm” [4, 5]. Note that for the parameters chosen, the inhibitory

population only fires a volley of action potentials (i.e. a “spike” in frequency) as a result

of input from the excitatory population. The authors [4, 5] describe a number of ways
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Figure 3. Simulations of (2)-(4) at three different values of g. The sk
are shown colour-coded. g = −3 (top); g = −2 (middle) and g = −0.2

(bottom). S was measured for each simulation and average values over

the simulation (or maximum and minimum over one oscillation in the case

of g = −2) are show in Fig. 2. Parameters: N = 500, I0 = 1,∆ = 0.05, τ =

1.
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Figure 4. PING rhythm generated by (22)-(25). Parameters: Ii =

0, Ie = 0.1, ge = 0.4, gi = 0.4,∆ = 0.01, τe = 0.2, τi = 1, n = 2.

in which the PING rhythm can be destroyed and we now demonstrate several of them

and show that these scenarios can be understood in terms of generic bifurcations of the

differential equations (22)-(25).

• In the first scenario the excitatory to inhibitory synapses become too weak, i.e. ge
is decreased. The corresponding bifurcation diagram is shown in Fig. 5. We see

that the periodic behaviour is destroyed in a supercritical Hopf bifurcation as ge
is decreased.

• In the second scenario the inhibitory to excitatory synapses become too weak,

i.e. gi is decreased. The corresponding bifurcation diagram is shown in Fig. 6

where we show just the excitatory population for simplicity. The periodic be-

haviour is destroyed in a saddle-node bifurcation of periodic orbits as gi is de-

creased, but there is also a supercritical Hopf bifurcation and a second saddle-

node bifurcation of periodic orbits which destroys the periodic orbit created in

the Hopf bifurcation. Note that there is a small range of parameters over which

there is bistability between the PING rhythm and a steady state (as observed

by [5]) to the left of the Hopf bifurcation, and an even smaller window over which

there is bistability between two PING rhythms (just to the right of the Hopf bi-

furcation). This type of fine detail, found using numerical continuation [36], is

unlikely to be found using purely numerical simulations of (22)-(25).

• In the third scenario there is too much drive to i cells, i.e. Ii is increased. The

corresponding bifurcation diagram is shown in Fig. 7 where we see a supercritical
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Figure 5. Behaviour of (22)-(25) as ge is varied. Solid lines, stable;

dashed lines: unstable. Circles show maximum and minimum values of f

over one period of oscillation when no steady states are stable. Parameters:

Ii = 0, Ie = 0.1, gi = 0.4,∆ = 0.01, τe = 0.2, τi = 1, n = 2.

Hopf bifurcation occurring as Ii is increased, leading to the cessation of the PING

rhythm.

2.2.3. Spatially extended networks. Of course, realistic networks of neurons are not all-

to-all coupled, as above, but rather have some spatial extent. Suppose we have N

neurons equally-spaced on a one-dimensional domain of length L. Then we replace (2)

by

(26)
dθj
dt

= 1− cos θj + (1 + cos θj)(Ij + gsj); j = 1, 2 . . .N

and each sj satisfies the equation

(27) τ
dsj
dt

=
anL

N

N∑

k=1

wjk(1− cos θk)
n − sj ; n ∈ N

+

and wjk is the strength of synapse from neuron k to neuron j. (Here we assume that all

synapses have the same dynamics.) We will assume that wjk = w(|j − k|∆x) for some

coupling function w, where ∆x = L/N , i.e. the strength of connection between neurons
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Figure 6. Behaviour of (22)-(25) as gi is varied. Solid lines, stable;

dashed lines: unstable. Circles (crosses) show maximum and minimum

values of f over one period of stable (unstable) oscillation for the excitatory

population. The right panel is a zoom of the left one. Parameters: Ii =

0, Ie = 0.1, ge = 0.4,∆ = 0.01, τe = 0.2, τi = 1, n = 2.

depends only on the distance between them. Taking the limit N → ∞ as above and

performing similar manipulations (or see [37, 35]), one obtains a spatially-dependent

order parameter z(x, t) which satisfies

(28)
∂z

∂t
=

(iI0 −∆)(1 + z)2 − i(1− z)2

2
+
ig(1 + z)2S

2

where

(29) τ
∂S(x, t)

∂t
=

∫ L

0

w(x− y)H(z(y, t);n) dy − S(x, t)

Equations (28), (29) are a “neural field” model — integro-differential equations govern-

ing the dynamics of several macroscopic variables. Unlike classical neural field mod-

els [6, 22], however, (28), (29) are derived directly from a network of spiking model

neurons [35]. If w(x) is of “Mexican-hat” shape, i.e. positive for small x and negative

for large x, (28), (29) is known to support “bump” solutions, for which the region of

active neurons is spatially localised [35]. Such solutions have been studied in the past

due to their presumed role in working memory [38, 22, 6, 13], and an example is shown

in Fig. 8, where periodic boundary conditions in space are used.

For these parameter values, the all-off state, in which there is no spatial structure and

the firing rate is very low, is also stable. The system is thus bistable, with one attractor
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Figure 7. Behaviour of (22)-(25) as Ii is varied. Solid lines, stable;

dashed lines: unstable. Circles show maximum and minimum values of f

over one period of oscillation when no steady states are stable. Parameters:

Ie = 0.1, ge = 0.4, gi = 0.4,∆ = 0.01, τe = 0.2, τi = 1, n = 2.

being a bump state which, due to the translationally invariant nature of the system,

can be centred anywhere in the domain. In a network of spiking neurons Gutkin et

al. [24] showed that the network could be switched from a bump state to the all-off state

using a transient excitatory pulse which causes most neurons to fire simultaneously.

(A transient inhibitory pulse will also be effective, but that is less surprising.) Even

though the description (28), (29) no longer contains information about individual action

potentials, the instantaneous firing rate can be calculated using (19), (20). The result

of applying a transient excitatory stimulus to the bump in Fig. 8 is shown in Fig. 9.

The stimulus causes most neurons to fire simultaneously (twice, in this case) as shown

by the rapid increase in instantaneous frequency, which disrupts the bump, causing the

network to move to the all-off state.

One could also study the two-dimensional version of (28), (29) which may support

more interesting patterns such as spiral waves [32, 26] or bumps and rings which undergo

instabilities in the angular direction [48, 28, 7].
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Figure 8. Stable stationary bump solution of (28), (29). (a): |z|; (b):
arg(z); (c): S; (d): frequency profile of bump, calculated using (19), (20).

Coupling function is w(x) = 0.1 + 0.3 cosx. Parameters: L = 2π, I0 =

−0.5, g = 2,∆ = 0.02, τ = 0.5, n = 2.

2.2.4. Gap junctions. Here we have modelled only synaptic connections between neu-

rons, governed by the variables sk. However, the other major form of connection between

neurons is through gap junctions [11]. These are typically modelled by stating that if

two neurons are connected by a gap junction, a current proportional to the difference be-

tween their voltages flows between the two neurons, from high voltage to low. Using the

fact that a theta neuron is equivalent to a quadratic integrate-and-fire neuron, Laing [37]

showed how to generalise the analysis in Sec. 2.1 to include gap junction coupling. The

net effect, for an all-to-all coupled network, is to replace (2) by

(30)
dθj
dt

= 1−cos θj−κ sin θj+(1+cos θj)

(
Ij +

κ

N

N∑

k=1

q(θk) + gs̄

)
; j = 1, 2 . . .N

where κ is the gap junction coupling strength and

(31) q(θ) =
sin θ

1 + cos θ + ǫ
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Figure 9. I0 = −0.5 except for 30 ≤ t ≤ 33, when it is equal to 1.5. Top:

instantaneous frequency (the maximum is truncated); bottom: S. Cou-

pling function is w(x) = 0.1 + 0.3 cosx and periodic boundary conditions

are used. Parameters as in Fig. 8.

where 0 ≤ ǫ ≪ 1. Performing similar manipulations as in Sec. 2.1 one obtains, instead

of (17),

(32)
dz

dt
=

(iI0 −∆)(1 + z)2 − i(1− z)2

2
+
i(1 + z)2(gS + κQ) + κ(1− z2)

2
where

(33) Q =
∞∑

m=1

bmz
m + c.c.

and

(34) bm =
i(ρm+1 − ρm−1)

2
√
2ǫ+ ǫ2

where ρ ≡
√
2ǫ+ ǫ2 − 1 − ǫ. We still obtain a single differential equation for z, (32),

but the addition of the terms describing the gap junction coupling was shown to in-

duce a variety of different behaviours [37]. For example, in both spatially-structured

and unstructured networks, including gap junctions was found to induce macroscopic

oscillations in z via Hopf bifurcations. Also, in a spatially extended network with purely
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excitatory synaptic coupling, the addition of gap junction coupling of sufficient strength

allowed travelling waves to exist.

3. Winfree oscillators

3.1. Model Network. We consider a modification of the Winfree model [58] of N

all-to-all coupled oscillators with dynamic synapses. The model is written

dθi
dt

= ωi + ǫ
Q(θi)

N

N∑

j=1

Rj(35)

τ
dRi

dt
= P (θi)− Ri(36)

for i = 1, 2 . . .N where ωi is the intrinsic frequency of oscillator i, chosen from the dis-

tribution h(ω), ǫ is the coupling strength, Q is the phase response curve of an oscillator,

which can be measured experimentally or determined from a model neuron [51] and P (θ)

is the pulsatile signal sent by a neuron whose state is θ. When τ = 0 we recover the

usual Winfree model [2, 49]. We will analyse the continuum limit of (35)-(36) in similar

way to that of [49].

We choose

(37) Q(θ) =
sin β − sin (θ + β)√
π(2− cos (2β))

which satisfies Q(0) = 0 and which has an L2 norm of 1 [17]. Varying β from 0 to π/2

changes Q from that corresponding to a Hopf bifurcation to that corresponding to a

saddle-node-on-a-circle bifurcation, respectively [15, 8]. For this model a neuron is said

to fire when θ increases through zero, and thus we choose

(38) P (θ) = an(1 + cos θ)n

where, as in Sec. 2.1, an = 2n(n!)2/(2n)! so that the integral of P is independent of n.

We move to the continuum limit and analyse the network (35)-(36) in a similar way to

that done in Sec. 2.1. The system is described by a probability density function F (ω, θ, t)

which satisfies the continuity equation (6) where now

(39) v(ω, θ, t) ≡ ω + ǫQ(θ)R(t),

where R(t) satisfies

(40) τ
dR

dt
=

∫
∞

−∞

∫ 2π

0

F (ω, θ, t)an(1 + cos θ)n dθ dω − R.

As above, we write

(41) F (ω, θ, t) =
h(ω)

2π

{
1 +

∞∑

j=1

[α(ω, t)]jejiθ + c.c.

}
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and have

(42) z(t) ≡
∫

∞

−∞

∫ 2π

0

F (ω, θ, t)eiθ dθ dω.

Substituting (41) into (42) we have

(43) z(t) =

∫
∞

−∞

h(ω)ᾱ(ω, t) dω

If h(ω) is the Lorentzian centered at ω = ω0 with width ∆, then we obtain z(t) =

ᾱ(ω0 + i∆, t) [46]. Substituting (41) into (40) we find that R satisfies

(44) τ
dR

dt
= Ĥ(z(t);n)−R

where

(45) Ĥ(z;n) = an

[
Ĉ0 +

n∑

j=1

Ĉj(z
j + z̄j)

]

and

(46) Ĉj =

n∑

k=0

k∑

m=0

n!δk−2m,j

2k(n− k)!m!(k −m)!

We will set n = 2 in all following calculations and thus a2 = 2/3, Ĉ0 = 3/2, Ĉ1 = 1, Ĉ2 =

1/4. Substituting (41) into (6) and using (39) we find [41] that α satisfies

∂α

∂t
= −i

[
−ǫReiβ

2i
√
π(2− cos (2β))

+

(
ω +

ǫR sin β√
π(2− cos (2β))

)
α

+

(
ǫRe−iβ

2i
√
π(2− cos (2β))

)
α2

]
(47)

and evaluating this at ω = ω0 + i∆ we obtain

(48)
dz

dt
=
ǫRe−iβ

2γ
+

(iω0 −∆)γ + iǫR sin β

γ
z − ǫReiβ

2γ
z2

where γ ≡
√
π(2− cos (2β)). Equations (48) and (44) (a pair of ODEs, one real and one

complex) form a complete description of the infinite network. Setting τ = 0 we recover

essentially the same equation as studied by [49]. The case of τ 6= 0 remains unstudied.

3.2. Results for a spatially-extended network. As in Sec. 2.2.3, we will consider

here a spatially extended network of Winfree oscillators on a domain of length L with

periodic boundary conditions, coupled with connectivity function w. The governing
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equations are then

∂z(x, t)

∂t
=
ǫR(x, t)e−iβ

2γ
+

(iω0 −∆)γ + iǫR(x, t) sin β

γ
z(x, t)− ǫR(x, t)eiβ

2γ
z2(x, t)(49)

τ
∂R(x, t)

∂t
=

∫ L

0

w(x− y)Ĥ(z(y, t);n) dy − R(x, t)

(50)

As an example of the sorts of solutions supported by this model, the results of simulations

for a variety of different values of ǫ are shown in Fig. 10. For ǫ = 1.8 there is a uniformly

propagating travelling wave, which seems to undergo a Hopf bifurcation as ǫ is increased,

leading to a periodically-modulated travelling wave (ǫ = 1.89). For ǫ = 2.03 the pattern

appears chaotic, while for ǫ = 2.07 the systems supports a stable “bump”.

4. Conclusion and Discussion

In this chapter we have discussed two types of model neurons described by phase

oscillators: the theta neuron and the Winfree oscillator. When coupled in a plausible

fashion, infinite heterogeneous networks of both types of oscillators are amenable to

analysis using the Ott/Antonsen ansatz, which allows one to derive evolution equations

for a macroscopic order parameter. All-to-all coupled networks are thus described by

several ordinary differential equations, while spatially-extended networks are described

by partial differential equations with as many spatial variables as the network. Differen-

tial equations of these forms can be thought of as “building blocks” with which to form

more realistic “networks of networks” models of the brain [40].

We have only considered modelling individual neurons as oscillators, but networks of

neurons can synchronise and thus a synchronous network can be regarded as a single

oscillator. Recent work using this idea includes [25, 29]. As shown in Sec. 2.2.2, and

has been known for many years [57, 27], several interacting populations of neurons can

produce macroscopic oscillations. The theory of coupled oscillators can then be applied

if several of these interacting populations themselves interact.

We have only considered simple oscillators whose state can be described by a single

angular variable. However, many neurons undergo “bursting,” firing a number of action

potentials and then moving to a quiescent state before repeating the process [50, 12, 9,

19]. The mathematical analysis of coupled bursters remains a challenge. Another area of

interest involves the effects of noise on the dynamics of networks of neurons, as noise is

ubiquitous in such systems [33]. For the types of models studied here the Ott/Antonsen

ansatz no longer applies once noise is added to the dynamics, and instead one typically

has a Fokker-Planck equation to analyse [16, 19] (although see [31, 43] for applications

of the Ott/Antonsen ansatz to networks of phase oscillators with common noise).

Acknowledgements: I thank Steve Coombes for helpful comments on this work.
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Figure 10. Typical solutions of (49)-(50) for different values of ǫ. R

is shown colour-coded, and in each panel the vertical axis is x while t

increases from left to right. Coupling function is w(x) = 0.1 + 0.3 cosx

and periodic boundary conditions are used. Parameters: β = 0, L =

2π, g = 2,∆ = 0.1, ω0 = 1, τ = 1.5, n = 2.
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