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Chimeras on a ring of oscillator populations

Chimeras are spatiotemporal patterns of varying synchrony which occur in networks of cou-
pled oscillators. We consider a network formed from N populations of oscillators, with non-
local coupling between the populations, whose strength depends on the distance between
them. The cases of N = 2,3 and N = - have been studied previously, and we bridge the gap
between these two extremes. We investigate the effects of varying both N and the level of fre-
quency heterogeneity within the populations. We find chaotic behaviour for sufficiently large
N, but this behaviour vanishes as N — oo. Also, for finite NV and sufficiently small frequency

heterogeneity, stationary chimeras are found to be unstable.

I. INTRODUCTION

Chimeras occur in networks of coupled oscillators and are characterised by coexisting groups

21,25

(or domains) of synchronous oscillators and asynchronous oscillators . One of the earliest

systems in which such a state was observed is a ring of nonlocally coupled phase oscillators>3:13.
Here, oscillators on part of the ring are synchronous while those on the remainder of the ring are
not. To analyse this behaviour, Abrams et al.! coarse-grained the domain into two equally-sized
populations of oscillators, with strong coupling within a population and weaker coupling between
populations. Here, in the limit of an infinite number of oscillators in each population, a chimera
appears as a state in which one population is perfectly synchronised while the other is partially
synchronous. These authors used the Ott/Antonsen ansatz>>?* to derive differential equations
governing the complex-valued order parameters describing the levels of synchrony within the two
populations. The only work which addresses the intermediate case of coarse-graining a ring to
more than two populations seems to be that of Martens!®, who considered three populations. He
found two types of chimeras, with either one or two populations being synchronous while the
other two (one) were partially synchronous. Martens also used the Ott/Antonsen ansatz to study
these chimeras, as many have done subsequently in different settings'>16:18:21:3135 " No coarse-
graining into more than three populations seems to have been done, and Martens raised a number
of questions about what would happen if this was undertaken. For example, would the number
of possible chimera states increase as the number of populations is increased, with every possible
combination of synchronous and asynchronous populations allowed?

f34

Another result of interest is that of”*, who showed that while for an infinite number of identical
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phase oscillators on a ring a chimera is a neutrally stable stationary pattern, numerical simulations
of finite networks show that chimeras move in an irregular way about the domain and eventually
collapse, with an average lifetime which increases exponentially with network size. The irregu-
lar motion was shown to be chaotic, and the collapse was to the completely synchronous state.
However, for networks formed of two populations each consisting of between two and an infinite
number of oscillators, Panaggio et al.>0 showed that chimeras are stable and not chaotic. This
raises the question of the origin of the chaotic behaviour observed in**, since it does not occur
for networks of either two populations, or an infinite number of them (each consisting of one
oscillator), but for a finite number of populations (each consisting of one oscillator).

In this paper we address some of the questions raised above by considering a ring of sinu-
soidally coupled phase oscillator populations, with each population being at one of a number of
equally-spaced points around the ring. We let the number of oscillators in each population be
infinite. The oscillators are chosen to be heterogeneous, so that the Ott/Antonsen manifold is at-
tracting rather than neutrally stable, and the level of heterogeneity is a key parameter which is
varied. For the cases of two or three populations, our results can be compared with previously
known ones. We obtain new results for the cases of 4,5,...,12 populations, and a numerically
based conjecture resulting from the behaviour of larger numbers of populations. We find macro-
scopic chaos when more than five populations are considered, but conjecture that this behaviour
vanishes as the number of populations is increased. The model is presented in Sec. II and we also
characterise the possible solutions of interest there. Results are given in Sec. III and we conclude

in Sec. IV.

II. MODEL

The model consists of N populations each consisting of M oscillators. The populations are
thought of as being at the vertices of a regular N-gon, which lie on a circle S with circumference
27. The strength of coupling between two oscillators depends only on which populations they
are in, and the (positive) strength of coupling between populations decays as the distance between

them (the shortest distance on S) increases.

The equations are

N M
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where 6 is the phase of the kth oscillator in population a. For all a € {1,2,...N} and all k €
{1,2,...M}, o is chosen from a Lorentzian with centre zero and half-width-at-half maximum
5. Such a model was presented in?’, although they considered identical oscillators within each
population, and possibly different values of @* for each population, and left the coupling between
populations to be general. Skardal and Restrepo®® considered a similar model with & = 0 and
a network for which coupling within a population was strong while that between oscillators in

1.39 considered a model of this form for

different populations was uniform and weak. Smirnov et a
which coupling was only between neighbouring populations. See also”.

Cis an N x N coupling matrix which is circulant, i.e. fully determined once a row is specified.
To calculate C, let g(x) = (14 Bcosx)/(2m) where B is a parameter and x is a position on S. Let
Ax =271 /N be the arclength on S between populations, and x; = (i — 1)Ax be the locations of the
populations, for i = 1,2,...N. The entries of C are formed by integrating g(x) over intervals of

length Ax, centred at the x;. Specifically, entries in the first row of C are

Xit+Ax/2 1 sin (x; +Ax/2) —sin (x; — Ax/2) 1 sin (Ax/2) cos (x;)
Cr:— di——+B —_ 4B 2
1i a g(x) dx N + o N + po ()
and thus
1 Bsin(Ax/2
Cop = N + % cos (X, — xp) 3)

Entries in Cy; for N = 2,3,4,20 and B = 0.35 are shown in Fig. 1. We see that C; ; is always
the largest, i.e. coupling within a population is stronger than between populations. The coupling
strength between populations decreases as the distance between them (measured along the shortest
path on S connecting them) increases, reaching a minimum for populations most distant from one

another. We fix B = 0.35 for the rest of the paper.

A. M = o equations

Letting the number of oscillators in a population, M, go to infinity, and using the Ott/Antonsen

ansatz we find that the dynamics of the populations are given by

dz, _ . —ip iBp 2
= 074+ (i/2) [e R,+e Raza] “4)

where B = 7/2 — @, overline indicates the complex conjugate, and

N
Ri=Y Cupi (5)
b=1
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FIG. 1. Entries in the first row of the coupling matrix, C;; for N = 2,3,4,20 ((a),(b),(c) and (d), respec-

tively). In each panel the horizontal index is i. Parameter: B = 0.35.

(A derivation of similar equations is given in*'%.) The complex-valued order parameter z, is
the average over k of ¢'% for oscillators in population a. Its magnitude describes the level of
synchrony within population a while the negative of its argument gives the mean of the phases
within population a'-13. Specifically, if z, = r,e”'% then the phase distribution for oscillators in

population a is

Fu(6) = L=, 6
al )_27r[1—2racos(6—¢a)—|—r§]’ ©)

a unimodal function with its maximum at 6 = ¢,.

Note that if we considered identical oscillators (i.e. 6 = 0) each population would be described
by a complex-valued equation similar to (4) and another real-valued differential equation, and a
number of constants would have to be specified for each population®’; this is the case for either

finite or infinite M — see the Watanabe/Strogatz ansatz?®32. Note also that as N — oo, Cap —
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(1+Bcos(x, —xp))/N = g(x4 — xp)Ax, so in this limit we have

2r
Rexn) = [ glx=y)z(01) dy )
and the dynamics are given by
P ey +(6/2) [P RO + P RGx0) 2 ) ®

a system studied in>>1522,

Note that (4) is invariant under the rotation z, — z4€'? for all @ and any constant ¥, so to remove

this degeneracy we first write z, = r,¢'% and thus have the dynamics

o .
Fa=—0rq+ a2 ZCa,brb51n(¢b_¢a_ﬁ) ©)
b=1
and .
. 1+r
Oq = 3 2 Ca,brbcos(¢b_¢a_ﬁ) (10)
Ta p2

The degeneracy means that only phase differences appear in these equations (as in (1)), and thus to
remove it we define phase difference variables relative to ¢y: Y, = ¢, — ¢y fora=1,2...N —1.

Thus we have the 2N — 1 equations

1”2—1 N
Fu=—0r; +-*2 Caybrbsin(wb—l//a—ﬁ) (11)
=1
fora=1,2...N and
1_|_r2 N 1+7’2 N
Yo = 2 aZCmb”bCOS(Wb_Wa_ﬁ)_ 2 NZCvarbCOS<Wb_ﬁ> (12)
Fa p= N =

fora=1,2...N —1, where yy is set to zero.

B. Steady states via self-consistency

The steady states we are interested in are stationary solutions of (4) in a rotating coordinate

2

frame?!, i.e. they satisfy

0= (i0— 8)z+(i/2) [e PRy +ePR,22| (13)

fora=1,2,...N where o is the rate at which the coordinate frame is rotating. Solving this for z,

we obtain

8 —i— /(i —8)2+|R,|?

=5 14
ielBR, (14)

2a = f(Ra) =
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where we take the negative square root to ensure |z,| < 1 and we can insert this into (5) to obtain

a set of equations that the R, must satisfy:

R, — an’b <5 i0—/(io—8)2+|Ry| ) (15)
b=1

ieiﬁRb

Using the form of C, ;, we have

N in N N
Ra:;vzf(Rwa[
b=1

cos (x4) Y cos (xp) f(Rp) +sin (x,) ) sin (xb)f(Rb)] (16)
b=1 b=1
i.e. each R, has the form

R, =D+ Ecos(x,)+ Fsin(x,) (17)

for some constants D, E and F. (These are independent of index a.) We can use the invariance
under rotation to assume that D is real and positive, but E and F are generically complex.

The network has the symmetry of a regular N-gon, so given a steady state, we can obtain another
one by rotating it through a multiple of 27 /N around the circle S, i.e. increasing (or decreasing)
all population indices by the same amount. For odd N the only steady states found below were
invariant under reflection in a line passing through one population and the centre of S. These can

be described by (17) with F' = 0. Thus summing (17) over a and using (15) we obtain

L§ oy 0 —iw—/(io—38)>+|D+Ecos(xp)|?
D= N Z Z Ca,b \/(zﬁ )_ | ( b)| ‘ (18)
a=1b=1 ie'lP (D+Ecos(xp))
Multiplying (17) by cos (x,) and then summing over a we obtain
2 %y §—iw— /(i —8)2+|D+ Ecos (xp)|?
FN ¢ ' ) . 19
N[;l[;] a,b ( ielﬁ(D+ECOS (xb)) COS (_xa) ( )

Taking real and imaginary parts of (18)-(19) gives four real equations for the four unknowns:
D,®,Re(E),Im(E).

For even N we saw two types of steady states: those invariant under reflection in a line passing
through one population and the centre of S (and thus the population on the opposite side), and
those invariant under reflection in a line through the centre of § which evenly divides the network
into two groups of N/2 populations. The former type can be found as above. The latter have the

form R, = D+ E cos (x; + Ax/2). Summing this expression over a we obtain

(20)

D:]lviica’b 6—i(0—/(;w—5)_2+]D+Ecos(xb+Ax/2)\2
a=1b=1 ie' (D + E cos (x, +Ax/2))
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and by using similar reasoning to that above we obtain

N N i Sl —8)2 2
E:%ZZCa,b 0—iw \/(;a) 8)_—|—|D—|—Ecos(xb+Ax/2)|
a=1b=1 ie' (D + E cos (x, + Ax/2))

> cos (x, +Ax/2). (21)

Taking real and imaginary parts of (20)-(21) enables us to find D, ®,Re(E),Im(E) for these types
of solution. Similar self-consistency equations have been derived previously>!4,

In summary, all of the steady states of interest can be found by solving four simultaneous
nonlinear equations for D, ®,Re(E),Im(E), substituting these into the appropriate expression for
R, which then gives the z, from (14). These can then be uniformly rotated if necessary to make zy
real, and thus we have values of the variables needed for (11)-(12). We see that there are spatially
uniform states with £ = 0, and states with E # 0 for which both the real and imaginary parts of the
vector R (with components R,) vary sinusoidally as we move around the circle S. Thus for the type

of coupling used here, one cannot obtain stationary chimeras with arbitrary levels of synchrony in

different populations, only those described here.

III. RESULTS

We now show the results of numerically analysing (11)-(12) for 2 < N < 12 and for fixed
parameter values B = 0.35 and 8 = 0.03.

A. Dynamics for small N
1. N=2

This case has been studied by a number of authors?’. The entries of the first row of the coupling
matrix are

Ci1=1/2+4035/x  and Cia=1/2—-035/x (22)

A parameter A is used in!!1%141626 to quantify the difference between coupling within a popu-
lation and coupling between populations, and we see that the values above correspond to A =
Ci,1—C12=0.7/m~0.2228. The ref.126 considered the case of § = 0, i.e. identical oscillators,

12,1416 considered & > 0 and performed some bifurcation analysis as 8 was varied. The pa-

while
pers!26 show that for (A, ) = (0.2228,0.03) and § = 0 the system supports a stable stationary

chimera, i.e. a solution for which |z;| = 1 and |z;| < 1 (or vice versa). For other values of A and f3,
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09r el i

06 1 I I 1

0 0.002 0.004 0.006 0.008 0.01

FIG. 2. N =2. Blue: stable steady state; red: unstable steady state. The stable chimeras which exists at
0 = 0 are destroyed in a pitchfork bifurcation as 6 is increased. The equally-synchronous state for which

|z1| = |z2] is stable for 0 < & < 0.000123 (barely visible) and for 0.005155 < &.

refs.12.14.16

show that increasing & causes the values of |z;| and |z3| to approach one another until
they meet in a pitchfork bifurcation, destroying the chimeras, beyond which only solutions with
|z1| = |z2| are stable. The results of calculations for (B,3) = (0.35,0.03) are shown in Fig. 2 and
we see that the same scenario occurs here. |z| at steady states is shown for both populations and
we see the stable chimera destroyed in a pitchfork bifurcation as 6 is increased. The completely
synchronous state for which |z; = |z2| = 1 is stable for § = 0 and persists as 0 is increased, (and

the |z,| decrease) but loses stability at § =~ 0.000123 before regaining stability at § ~ 0.005155.

2. N=3

The N = 3 case was considered by Martens'® who used a coupling matrix of the form

1 1-A1-A
I-A 1 1-A (23)
I-A1-A 1
For our system
1 035V3 1 035V3
= ~0.42 = =-——=0.2851 24
Ci1 3+ o 0.4298 and Cip=0Ci3 3 i 0.285 24)
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Martens considered the case of identical oscillators, so to compare our system with his we can set

0 = 0 and rescale time so that Cy ; = 1. This gives a value of

1 _ 0353
_1_3 47 ~
A=1 L0353 n 03573 0.3367. (25)
3 21

For N = 3 and identical oscillators we expect two types of stationary chimeras: either two
populations are synchronised and one is not, or one is synchronised while two are not; see
Sec. II B. Martens referred to these as SDS and DSD respectively (S for synchrony and D for
drift/desynchrony). Since we will consider chimeras in networks of more than three populations
we introduce the terminology of type 1 (T1) and type 2 (T2) solutions for which either one or two,
respectively, populations are most synchronous. Thus a DSD solution is T1 and a SDS solution
is T2. For odd N, a T1 solution will have two populations with the least amount of synchrony
(measured by the magnitude of the z;) on the opposite side of the ring from the most synchronous
population, while a T2 solution will have only one least synchronous population. For even N a T1
solution will have one population with the least amount of synchrony, and a T2 solution will have
two. See Fig. 5 for examples of these types of solution for N = 4. As N increases the distinction
between the two types of solution becomes less relevant.

Martens analysed the T1 and T2 solutions by assuming that the synchronised population(s) had
|zx] = 1 and that the populations in the same state had identical dynamics, thus reducing the dy-
namics of the whole network to those of two variables: the magnitude of z for the desynchronised
population(s) and the phase difference between a synchronous population and a desynchronous
one. This analysis showed that both a T1 and T2 solution were stable for the parameters above,
under the assumptions above. We now show the results of analysing the full equations (11)-(12),
varying 0.

Fig. 3(a) shows the results for a T1 solution. For § = 107 this stationary solution is stable and
two different values of |z| are seen, but as 6 is decreased the solution loses stability in a supercriti-
cal Hopf bifurcation, creating a periodic solution. The maximum and minimum over one period of
|z| for one of the desynchronised populations is shown with crosses in Fig. 3(a). (|z| for the nearly-
synchronous population also varies periodically, but this is not shown, for clarity). On this periodic
solution the levels of synchrony in the two desynchronised populations alternate, being half a pe-
riod out of phase with one another. Decreasing & even further, the periodic solution undergoes
a Neimark—Sacker bifurcation, creating a stable quasiperiodic solution (not shown in Fig. 3(a)).

Thus for infinite populations with weak (or zero) heterogeneity, the stationary T1 solution is not
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FIG. 3. N = 3. Blue: stable; red: unstable. Solid and dashed lines are for a fixed point, crosses show the
maximum and minimum over one period of a periodic orbit, for one population. (a): T1 solution. (b): T2

solution. See text for further explanation.

actually stable. Martens!® did report the existence of a T1 chimera in the original model (1) us-
ing identical oscillators for parameter values close to those used here, using populations of size
M = 40.

We now consider the T2 solution, whose behaviour is shown in Fig. 3(b), where we plot |z|
for the two most synchronous solutions. The T2 solution is stable only for small 0, where it
coexists with two unstable chimeras for which the levels of synchrony in the two most synchronous
solutions are slightly different. The symmetric T2 solution loses stability in a subcritical pitchfork

bifurcation as 0 is increased.

3. N=4

The results for N = 4 are shown in Fig. 4, with panel (a) showing the T1 solution and panel (b)
the T2. Fig. 5 shows the phase distributions for both types of solution at § = 103, for which both
are stable stationary solutions. As 0 is decreased the T1 solution undergoes a supercritical Hopf
bifurcation, and the stable periodic orbit created in this bifurcation then loses stability through a

Neimark—Sacker bifurcation as 0 is decreased further. This is the same scenario as for the T1

11
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FIG. 4. N = 4. Blue: stable; red: unstable. Solid and dashed lines are for a fixed point, crosses show the
maximum and minimum over one period of a periodic orbit for one population. (a): T1 solution. (b): T2

solution. See text for further explanation.

chimera with N = 3. To show the periodic orbit the maximum and minimum over one period of |z
for only one of the moderately synchronous populations is shown. The T2 solution also undergoes
a supercritical Hopf bifurcation as 0 is decreased, and the periodic orbit created is stable down
to § = 0. The maximum and minimum over one period of |z| for one of the desynchronised

populations is shown in Fig. 4(b).

Fig. 6 shows time series of the |z,| for both of the solutions shown in Fig. 4 for (different)
values of & for which a periodic chimera is stable. For the T1 solution, we see from Fig. 6A that
the levels of synchrony within the two moderately synchronous populations ((a) and (c)) alternate,
while those in the other two populations oscillate at twice this frequency. Such a solution has
a spatio-temporal symmetry and is mapped to itself under a time shift of half a period followed
by the interchange of populations (a) and (c). For the T2 solution, we see from Fig. 6B that the
levels of synchrony within the two moderately synchronous populations ((g) and (h)) alternate, as
do those in the two almost synchronous populations (although to a much lesser extent). Such a
solution has a spatio-temporal symmetry and is mapped to itself under a time shift of half a period

followed by exchanging populations (e) and (h) with (f) and (g), respectively.

Thus for N = 4, for the parameter values chosen, there are no stable stationary chimeras for

12
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FIG. 5. Snapshots of phase densities calculated from (6) for the two types of stationary chimeras shown in
Fig. 4 for 6 = 103. Each panel has 6 on the horizontal axis and F,(0) on the vertical. Panels (a),(b),(c)
and (d) are for the T1 solution, and the order around the ring of populations is (a),(b),(c),(d). Population (b)
is most synchronous while population (d) is least. Panels (e),(f),(g) and (h) are for the T2 solution, and the

order around the ring of populations is (e),(f),(g),(h). Populations (e) and (f) are equally-synchronous, as
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are populations (g) and (h). The colours distinguish the two types of solution.

small levels of heterogeneity.
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FIG. 6. N = 4. Time series of the |z,| (giving the instantaneous level of synchrony within a population)
for a T1 solution at § = 0.4 x 1073 (panel (A)) and for a T2 solution at § = 0.1 x 1073 (panel (B)). The

labelling of the populations corresponds to those in Fig. 5.

4. N=5

The T1 solution is stable for § = 3 x 1073 but loses stability at § ~ 2.7 x 1073 in what seems
to be a subcritical pitchfork bifurcation. We concentrate on solutions which are stable for 0 < o <
1073, so do not consider this solution further. The behaviour of the T2 solution is shown in Fig. 7.
This solution also becomes unstable through a supercritical Hopf bifurcation as & is decreased,

creating a periodic orbit which then loses stability through a Neimark-Sacker bifurcation.

5. N=6

A T1 solution was found using the self-consistency approach in Sec. II B but this solution was
found to be unstable for all values of § for which it existed. The dynamics of the T2 solution are
shown in Fig. 8. As above, the solution goes unstable in a supercritical Hopf bifurcation. However,
the stable periodic orbit created there now becomes unstable in a period-doubling bifurcation as &
is decreased. The maximum and minimum over one period of |z| for one of the least synchronised

populations is shown in Fig. 8.
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FIG. 7. N =5. T2 solution. Blue: stable; red: unstable. Solid and dashed lines are for a fixed point, crosses
show the maximum and minimum over one period of a periodic orbit for one population. See text for further

explanation.

Fig. 9 shows the period-doubling in more detail. Here we plot maximum and minimum values
of |z| during a time period after which transients have decayed, for one of the least synchronised
populations, as § is varied. For § = 3 x 10~ a stationary chimera is stable, hence all of the values
shown are the same. The Hopf bifurcation shown in Fig. 8 is seen at § ~ 2.7 x 10~* and period-
doubling at § ~ 2.4 x 10~*. There seems to be a bifurcation to a quasiperiodic solution which

finally becomes chaotic at § ~ 1.8 x 10™%.

The chaotic nature is shown by the largest Lyapunov exponent being positive: see Fig. 10(a). A
typical chaotic solution is shown in Fig. 10(b), where the |z;| are plotted in colour. A value close
to 1 indicates a synchronous population while a value significantly less than 1 indicates a partially
synchronous population. The position of the synchronous population(s) moves in a seemingly
random fashion, and such a solution was observed to persist for 10° time units, not collapsing
to the equally-synchronous state even though is stable for this value of 6. This behaviour is in

contrast to chimeras observed in®4, which had a finite lifetime scaling as e*N for some constant x.
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FIG. 8. N = 6. T2 solution. Blue: stable; red: unstable. Solid and dashed lines are for a fixed point, crosses
show the maximum and minimum over one period of a periodic orbit for one of the least synchronised

populations. See text for further explanation.

However, the two cases cannot be compared directly, since here we consider infinite populations
of heterogeneous oscillators while>* effectively considered the case of populations consisting of

one identical oscillator.

6. N=7Tto12

A summary of the dynamics for N = 7 to 12 is as follows:

N =7: A T1 solution was found using the self-consistency approach in Sec. II B but this solution
was found to be unstable for all values of 0 for which it existed. The T2 solution under-
goes the same bifurcations as that for N = 6 (see Fig. 8) and also becomes chaotic as 0 is

decreased.

N =38 : as with N = 6, a T1 solution was found using the self-consistency approach but it was

always unstable. The T2 solution undergoes the same bifurcations as that for N = 6 (see
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3
x10™

FIG. 9. N = 6. T2 solution. Points show the maximum and minimum of |z| for one of the least synchronised

populations. Compare with Fig. 8.

Fig. 8) and also becomes chaotic as 6 is decreased.

N =9 : aTl solution is stable only for 0.00031 < 6 < 0.00097. The T2 solution undergoes the

same bifurcations as that for N = 6 (see Fig. 8) and also becomes chaotic as 0 is decreased.

N =10 : The T2 solution is not stable for § < 1073. The T1 solution undergoes the same bifurca-

tions as that for T2 solution for N = 6 (see Fig. 8) and becomes chaotic as 0 is decreased.
N =11 : same as for N = 10.
N =12 : same as for N = 10.

In all cases apart from N = 9, only one solution is stable for § < 1072 and a stable fixed point loses
stability through a supercritical Hopf bifurcation as 0 is decreased, and the resulting periodic orbit
then becomes chaotic after period-doubling. The N = 9 case seems to be the transition between

the T2 solution being stable for § = 10~ and then destabilising as & is decreased (N < 9), and
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FIG. 10. N = 6. (a): largest Lyapunov exponent (LLE) as a function of 6. (b): a typical solution for

8 =107*. |¢| is plotted in colour.

the T1 solution undergoing these transitions (N > 9). The reason for this transition at N =9 is

unknown.

While we cannot explore all of phase space, we found that for 5 < N < 8, for which a T1
solution was unstable for 0 < § < 1073, an initial condition near such a state was attracted to a
T2 solution. Similarly, for 10 < N < 12, for which a T2 solution was unstable, an initial condition

near such a state was attracted to a T1 solution.

The results above for N =2,3..., 12 were verified in finite populations with M = 50. For N > 5

the chaotic wandering of the chimera around the domain was observed for sufficiently small 6.
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FIG. 11. Value of & at which a stationary chimera loses stability through a Hopf bifurcation. (For N = 4
the T1 solution was followed.) The chimera is stable above the curve. The dashed line indicates the scaling

S§~NL

B. Varying N and 6

For selected values of N in the interval [3,450] we integrated (11)-(12) to a steady state at
8 = 1073 and then followed this state using pseudo-arclength continuation as § was decreased! 1”7,
We recorded the value of § at which the state became unstable through a Hopf bifurcation and
these values are shown on a log-log scale in Fig. 11. While there are some fluctuations for small
N, it seems that for larger N this value of & scales as N~! (dashed line in Fig. 11), implying that

instability is a finite-population effect which does not occur for the continuum case (7)-(8).

We also calculated the largest Lyapunov exponent, quasistatically decreasing 9, for values of N
ranging from 3 to 30 inclusive. The results are shown in Fig. 12. We see that N = 6 is the smallest
network for which chaotic behaviour occurs, and the value of 6 below which the system is chaotic
decreases with N for large N. The results in Fig. 11 imply that this chaotic behaviour is also a

finite-population effect.

19



Chimeras on a ring of oscillator populations

0.05

%107
3

0.04

10.03

10.02

0.01

5 10 15 20 25
N

FIG. 12. Largest Lyapunov exponent (colour) as both N and § are varied.

C. Stability of the equally-synchronous state

One characteristic of chimeras is that they are often stable for parameter values for which
the fully synchronous state is also stable, although this is not always the case, particularly for
heterogeneous networks'>!#. The equally-synchronous state is a fixed point of (11)-(12) for which
re=p fork=1,2,...N and all y; =0. p = 01s always a fixed point, corresponding to complete

incoherence, but there is a non-zero solution of this form for which

26
sin 3
for 0 < § < sin(B)/2 ~ 0.014998 for B = 0.03. Following this state for various N we find it

p=4/1- (26)

is stable for 6 = 0 (corresponding to perfect synchrony) but becomes unstable as 9 is increased,
before stabilising again at § ~ 4 x 1073; see Fig. 13. Thus there are regions of parameter space for
which it seems that a chimera is the only attractor. This is consistent with our observations above
that when starting near an unstable T1 (T2) chimera, the system was attracted to a stable T2 (T1)

chimera, rather than to the synchronous state.
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%1073

FIG. 13. The equally-synchronous state is unstable in the coloured region.

IV. DISCUSSION

We studied a network formed from N infinite populations of oscillators equally spaced around
a ring, with nonlocal coupling between populations. We obtained the same results as previous
authors for N = 2, and for N = 3 showed that one of the types of chimera observed by Martens'?
is not actually stable, at least for infinite populations. For each N € {4,...12} we found that at most
two types of stable chimeras exist for small levels of frequency heterogeneity, and they all have the
form of a coarse-grained version of that which occurs in the spatially continuous system?>>13-22,
All of the stable solutions of this form become unstable through a supercritical Hopf bifurcation
as O is decreased, and the resulting periodic solution then becomes unstable through either a
Neimark-Sacker bifurcation (N = 4,5) or period-doubling leading to chaotic behaviour (6 < N <

12). This phenomenon of chaotic behaviour requiring sufficiently many populations was observed

in'?, who studied Kuramoto oscillators with inertia. Chaotic behaviour was also observed by Bick
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et al.% in a network of two populations, but with different phase lag parameters (our o) for coupling
within a population and between populations. “Turbulence” was also observed in the continuum
limit (N — oo) equations for some values of the phase lag’-33.

We found that the value of § at which a stable stationary chimera loses stability in a Hopf
bifurcation decreases as ~ N~! as N increases, suggesting that the observed oscillatory behaviour
for finite N vanishes as N — oo, along with the observed chaotic behaviour. Our results help
bridge the gap between the well-studied N = 2 case!12141626 and the N = oo case >>1>22. We
observed similar results holding B = 0.35 and choosing 8 = 0.05 (rather than 8 = 0.03), and also

for B=0.25 and 8 = 0.03, suggesting that our results are generic, at least for small 3.
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