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Abstract

The position of a localized region of active neurons (a “bump”) has been proposed
to encode information for working memory, the head direction system, and feature
selectivity in the visual system. Stationary bumps are ordinarily stable, but includ-
ing spike frequency adaptation in the neural dynamics causes a stationary bump
to become unstable to a moving bump through a supercritical pitchfork bifurcation
in bump speed. Adding spatiotemporal noise to the network supporting the bump
can cause the average speed of the bump to decrease to almost zero, reversing the
effect of the adaptation and “restabilizing” the bump. This restabilizing occurs for
noise levels lower than those required to break up the bump. The restabilizing can
be understood by examining the effects of noise on the normal form of the pitchfork
bifurcation where the variable involved in the bifurcation is bump speed. This noisy
normal form can be further simplified to a persistent random walk in which the prob-
ability of changing direction is related to the noise level through an Arrhenius-type
rate. The probability density function of position for the continuous—time version of
this random walk satisfies the telegrapher’s equation, and the closed—form solution
of this PDE allows us to find expressions for the mean and variance of the average
speed of the particle (the bump) undergoing the random walk. This noise-induced
stabilization is a novel example in which moderate amounts of noise have a beneficial
effect on a system, specifically, stabilizing a spatiotemporal pattern.
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1 Introduction

There has been much recent interest in spatially localized patches of active neurons
(“bumps”) as models for feature selectivity in the visual system [3,4,14], the head di-
rection system [38], and working memory [5,12,22,44]. Both rate models [2,3,6,14,38],
in which the firing rates of cells are the variables of interest, and networks of spiking
neurons [4,5,12,22,39], in which the cells communicate by firing voltage “spikes”, have
been used in the study of such structures.

Spike frequency adaptation, in which the discharge frequency of a neuron slowly de-
creases under a constant stimulus, is ubiquitous in cortical neurons [26]. One previous
study of rate and spiking models capable of bump formation, [14], noted that the in-
clusion of adaptation caused previously neutrally stable stationary bumps to become
unstable, with bumps that travel at a constant speed being stable instead. This pre-
sumably has a deleterious effect on the systems mentioned above which are thought
to be capable of sustaining stationary bumps. The main purpose of our work is to
show that the addition of noise to such a system can counteract the destabilizing
influence of adaptation. This “restabilizing” occurs in both spiking and rate models,
and is an example, similar in spirit to stochastic resonance [9,45] and noise-enhanced
propagation [17,27], of a situation in which moderate amounts of noise are necessary
for a system to behave in an optimal fashion. In the neural context of interest here,
noise is associated with random synaptic firing, as well as conductance fluctuations,
both common in real neural systems [29].

To analyze the effect of the noise, we study a spatially-extended rate model that
can be reduced to a set of six ordinary differential equations, and then show that
this system of ODEs undergoes a supercritical pitchfork bifurcation [11] in bump
velocity as the strength of the adaptation is increased — this is the source of the
destabilization of a stationary bump as a result of including adaptation. We add noise
to the normal form of the associated supercritical pitchfork bifurcation, where the
variable undergoing the bifurcation is velocity, and investigate the effect of this noise
on the total distance traveled (the time integral of the velocity) after the bifurcation
has occurred, i.e. when the noise—free normal form has two stable non—zero velocity
values of opposite sign. We see that for low noise values the distance traveled is
proportional to time, but for larger noise values the instantaneous velocity will change
signs, leading to some cancellation in the integral, and resulting in a smaller net
distance traveled, as is observed in simulations of the spatially—extended networks.

We show that this switching in the noisy pitchfork bifurcation, where the velocity
is a continuous variable, can be further simplified to a persistent random walk [32]
in which a particle moves at a constant speed to either the right or the left on a
line, and the probability of changing direction is constant (and related to the noise
level through an Arrhenius-type rate). Both discrete and continuous-time versions of
this random walk are discussed. In the continuous—time version, the position of the



particle is the time integral of Markovian dichotomous noise [16,41]. The probability
density function satisfies the telegrapher’s equation [15,32,41], which has an explicit
solution, enabling us to find expressions for the mean and variance of the average
distance moved during a fixed time for different noise levels.

The analysis of these random walks provides a good explanation for, and qualitative
agreement with, the behavior seen in the full spiking neuron model. Furthermore,
our analysis provides a novel example in which moderate amounts of noise have a
beneficial effect on a system, since for the models mentioned above, moving bumps
are undesirable.

While we have considered only neural systems, other model and experimental systems
show spatially localized “spots” which can be made to travel at arbitrarily low speeds
by changing a parameter [18,21,34,35,40], and similar restabilization by noise may be
possible in these systems.

In Section 2 we show that adaptation in a network of spiking neurons destabilizes a
stationary bump, as has been observed before [14], but Gaussian white noise resta-
bilizes it. In Section 3 we show the same phenomenon in a rate model, and show
that colored noise is even more effective than Gaussian white noise at stabilizing a
bump. In Section 4 we convert the rate model studied in the previous section to a
set, of six ODEs, and show that the bump velocity undergoes a pitchfork bifurcation
as adaptation strength is increased. Section 5 discusses the persistent random walk
as a model for bump motion and Section 6 provides a summary. Appendix A has a
derivation of the solution of the telegrapher’s equation.

A short summary of much of the work discussed here has been presented elsewhere [23].

2 Spiking Model

In this section we demonstrate the phenomenon of noise—induced stabilization of
“bumps” in a one-dimensional network of N integrate-and-fire neurons [4,22] with
adaptation. The coupling extends beyond nearest—neighbor and involves local excita-
tion and longer-range inhibition. The domain is a circle. (Similar networks have been
used to model head direction [38] and feature selectivity in the visual system [3,4,14],
and such a domain is natural in these models.) The equations governing the voltages,
V;, and adaptation currents, a;, are
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for s =1,..., N, where the subscript ¢ indexes the neurons, ¢7* is the mth firing time
of neuron j, defined to be the times at which V; crosses 1 from below, and §(-) is the
Dirac delta, used to reset the voltage to zero and increment a. The function «(t) is
a post-synaptic current, which we take to be Be™?! for ¢ > 0 and zero otherwise; I;
is the constant current applied to neuron . The connection strength between neuron
¢+ and neuron j is J;;. The sums over m and [ extend over the entire firing history of
the neurons in the network and the sum over j extends over the whole network. The
variable g; is incremented by an amount A/7, whenever V; reaches 1 from below, and
decays exponentially with time constant 7, otherwise.

For A = 0, the system (1) is known to support “bumps”, spatially localized patches of
active neurons [22]. Since the network is invariant with respect to spatial translation,
there is actually a continuum of bumps, parametrized by their spatial location [14,22].
For small A, this behavior persists, but as A is increased further, a stationary bump
loses stability to a traveling bump that can travel either leftwards or rightwards.
Figure B.1 shows the absolute value of the speed of a bump as a function of A
(adaptation strength), and an example of a traveling bump is shown in Figure B.2,
left. Parameters for Figures B.1, B.2 and B.3 are I; = 0.95, N =60, 7, =5, 8 = 0.5
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i.e. neurons excite nearby neighbors but inhibit distant ones. This form of coupling
is sometimes referred to as “Mexican—hat” [6], and is prevalent in many parts of the
nervous system. Note that J;; depends only on the difference |i — j|.

The reason that adaptation causes a bump to move is as follows: adaptation can be
thought of as a slow, activity—dependent subtractive current. Once a bump is moving,
this subtractive current will be greater in magnitude at the trailing edge of the bump
than at the leading edge, as the neurons at the trailing edge have been firing for longer.
Since bumps are “attracted” to injections of positive current [6,14] (and “repelled”
by negative current), the adaptation current will cause the bump to continue moving.
A small asymmetry in initial conditions is sufficient to start the bump moving.

We add noise to the system by adding/subtracting (with equal probability, so the
mean current is unchanged) current pulses of the form oe=*" (¢ > 0) to/from each
I;. The arrival times of these pulses are chosen from a Poisson distribution with mean
rate 0.075 Hz, and there is no correlation between arrival times for different neurons
(i.e. the noise is zero-mean shot noise [36]). 77 has the value 0.4. Adding noise in this
form can significantly decrease the effective speed of the bump. An example is shown
in Figure B.2 (right panel). Here, the speed is no longer constant, but we can easily
measure the average speed during a simulation of fixed duration — it is the ratio of
the distance moved by the center of the bump during the simulation to the duration of
the simulation. Note that increasing the noise intensity far enough will break up the
bump (not shown), as the noise will then dominate the coupling that keeps the bump
together. Thus, stabilization occurs before break—up as noise intensity is increased.



The absolute value of this average speed during simulations of fixed duration as a
function of noise level, o, is shown in Figure B.3. The standard deviation of the
absolute value of the average speed is also shown. For this Figure, and other similar
ones, the absolute value of the average speed is (|z(t)|)/t, where z(t) is the distance
traveled during time ¢ and the angled brackets indicate averages over realizations, and
the standard deviation of this quantity is calculated using \/(\x(t) 12) — (|=(t)])?/t. We
see that there are two regimes, with a rapid transition between them. For low noise,
o < 0.03, the bump travels at a constant, large velocity, to either the right or the
left, but without switches in direction, an example being Figure B.2, left. For strong
noise, 0.1 < o, the bump’s average speed is low, as the noise seems to disrupt the
mechanism (adaptation) that is responsible for the destabilization of the stationary
bump. An example is Figure B.2, right. In the transition regime, 0.03 < o < 0.1,
the bump travels at a nearly constant speed, but makes one or more abrupt switches
in direction during the simulation (not shown), leading to a smaller average velocity.
It is this effective “slowing down” of the bump (in the sense that the average speed
during a fixed amount of time is reduced, rather than the instantaneous speed) that
we are concerned with in this paper.

The fact that noise stabilizes a bump before breaking it up in the system (1)-(2) is
in contrast with the behavior seen in e.g. a network of diffusively coupled Fitzhugh—
Nagumo excitable elements:

du; 3 Uip1 — 2U; + Uiy
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where £(t) is a Gaussian white noise term with (£(¢)) = 0 and (£(¢)&(s) = 200(t — s).
A traveling wave for this network is shown in Figure B.4, and noise with two different
intensities is added after some time. Small noise intensities (Figure B.4, left) cause
fluctuations in the wave’s profile but do not significantly affect its speed, whereas
larger intensities (Figure B.4, right) cause the wave to break up rather than slow
down.

3 Rate Model

In this section we study a rate model that includes adaptation. Rate models differ
from spiking models in that the quantity of interest is the rate of spiking. Using this
description of a network often allows the use of analytical methods [6]. The rate model
we use is
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Here, we have let N — oo, so that space () is a continuous variable; €2 is the domain.
u(z,t) is the synaptic input to neurons at position z, and a(z,t) is the adaptation
current at position z. Flw]| is a transfer function that converts the current flowing
into a neuron, w, to the activity of that neuron. Equation (6), with a = 0, has been
discussed by a number of authors [2,6,22] with respect to the formation of stationary
patterns of activity (bumps). Laing and Chow [22] showed that an equation of the
form (6) could be derived from a network of integrate-and—fire neurons under the
assumptions that the post-synaptic current, «(t), was a Dirac delta function, and
that the neurons were firing asynchronously. The function F[-] was the “f-I curve”,
or the function giving the frequency of firing for a constant input current, I, for an
isolated integrate—and—fire neuron.

Adaptation was included in (1)-(2) as a subtractive current, and we keep that form
in (6)-(7). We want a(x, t) to increase when the neurons at z are active and decay back
to zero otherwise, on a time—scale given by 7,. Thus it would be more appropriate to
use F[I +u(x,t) — a(z,t)] instead of u(x,t) as the “drive” for a in (7). However, our
choice of using u(z,t) considerably simplifies the later analysis, and the effect that
we are investigating (stabilization by noise of bumps that have been destabilized by
adaptation) is observed in (6)-(7), as well as in these equations with u(z,t) in (7)
replaced by F[I + u(x,t) — a(z,t)] (not shown).

Equations (6)-(7) are similar to those studied in Ref. [14]. These authors also saw
destabilization of a stationary bump to a moving bump as the strength of adaptation
was increased, and the velocity of the moving bump increased monotonically with
adaptation strength.

In a similar way to the system (1)-(2), (6)-(7) also supports stationary bumps when A
is small, which become unstable to traveling bumps as A is increased. (See Figure B.8
for a plot of speed versus A.) The parameter values used are I = —0.1, A = 0.2 and
T, = b, with J(z) = 0.05+ 0.24 cosz and F[u] = 0.5[1 + tanh (10u)]. The domain, €,
is the line, [0,27), with periodic boundary conditions. The system is integrated by
spatially discretizing it to 100 points, giving a system of 200 coupled ODEs. Explicitly,
they are

du; o 100
= —u; + — ans .
dt U + 100 J_Zl J] [ J + u] a]] (8)
da;
Tad—(z =Au; — q; 9)

for i =1,...,100, where J;; = J(27|i — j|/100) and I; = —0.1 for all j.



3.1 Gaussian white noise

First we consider adding independent Gaussian white noise terms, &;(¢), to each of
the differential equations for the a;s, i.e. we replace (9) with

Ta—r = Au; — a; + &(1) (10)

where (&(t)) =0, (&(t)€;(s)) = 2Dv;0(t — s), and v;; =0if ¢ # j, and 1if i = j. As
with the spiking model, the average speed of these traveling bumps can be markedly
reduced by adding noise to the system, as shown in Figure B.5, even though in this
case the noise has a continuous state space, rather than being shot noise as in the
spiking neuron model of Section 2.

Figure B.5 is qualitatively similar to Figure B.3, but there is a difference with regard
to the variability of bump speed at low noise levels. For low noise levels a traveling
bump in the rate model has a well-defined velocity, but in the full spiking model a
traveling bump is the result of the collective behavior of a number of units, each of
which has its own spiking dynamics. Even if no noise is added to the system, these
dynamics contribute to fluctuations in any quantity associated with the network as a
whole, and lead to the relatively large fluctuations in the speed of the bump at low
noise levels in Figure B.3. These fluctuations do not appear in Figure B.5 because
the rate model is derived from a network with an infinite number of asynchronous
neurons whose fluctuations average out. The deterministic fluctuations in bump size
and shape seen in Figure B.2, left, may actually act in the same way as the noise does
in Figure B.2, right, stabilizing the bump to some extent, although obviously not to
the same extent as the external noise.

3.2 Colored Noise

In this section we investigate the effect of temporal correlations in the noise process.
We do this by adding independent colored noise terms, 7;(t), to each of the differential
equations for the g;’s, i.e. we replace (9) with

Ta%:Aui—ai—i-m(t) (11)
dt
where (n;(t)) = 0, {(n:(t)n;(s))} = evije”=51/7 1;; is as in Section 3.1, and {---}
indicates averaging over the initial distribution of 7(0) values, taken from a Gaussian
with mean zero and variance € [7]. This type of noise, known as Ornstein-Uhlenbeck
noise, also has a continuous state space.

Figure B.6, top, shows a plot of the absolute value of the average speed as a function
of noise power, ¢, for different correlation times, 7, as well as for frozen (i.e. time



independent) noise taken from the same distribution from which the 7(0) values are
chosen. Figure B.6, bottom, shows the standard deviation of the absolute value of the
average speed, plotted separately for clarity. Note the rise and then fall of the standard
deviation as noise strength is increased — this behavior is explained qualitatively in
Section 5.2. The qualitative behavior (slowing down of the bump) does not depend
on the noise correlation time, but it is clear that when the noise level is high enough
to significantly slow the bump, a larger value of 7 leads to a smaller average velocity.
This can be understood in terms of the limiting case, frozen noise, where the noise
can “pin” the bump so that it has zero velocity for all time, with the spatial disorder
overcoming the adaptation-induced tendency to move. (See [14,22] for examples of
the pinning of a bump with spatial disorder in networks of spiking neurons. A similar
phenomenon is the failure of a calcium wave to propagate due to inhomogeneities [43].)
When the noise is correlated over a significant amount of time, 7, it is possible for the
bump to be pinned for an amount of time comparable to this before moving again
when the noise has significantly changed. These “pinning episodes” contribute to the
lower average velocity. Thus, externally imposed (and slowly varying) disorder may
be more effective in slowing the bump than fast intrinsic noise.

This behavior is further illustrated in Figure B.7, where we show the absolute value
of the average speed (top) and average of the absolute value of the instantaneous
speed (bottom) as functions of correlation time, 7, for a noise intensity sufficient to
significantly slow the bump. It is clear that for both measures of speed, bump speed
decreases as the noise correlation time increases. The absolute value of the average
speed is a measure of how far the bump is from its starting position after a fixed
amount of time, and is perhaps the most relevant quantity in a model of working
memory (where bump position encodes some feature of the memory), but measuring
the average of the absolute value of the instantaneous speed gives a better indication
of the fraction of time that a bump is “pinned” during a particular simulation.

Adding spatial correlations to the noise, as in e.g. [37], may change the effect of noise
on the bump, but we do not investigate that here.

4 Reduction to ODEs

Having satisfied ourselves that the rate model in Section 3 behaves qualitatively the
same as the full spiking model in Section 2, both with and without noise, we will now
show that the bifurcation from stationary to traveling bumps in (6)-(7) is a pitchfork
bifurcation [11]. By an appropriate choice of the function J in (6), we can reduce the
system (6)-(7) to a set of six ordinary differential equations. Consider the system (6)-
(7), where 2 = [0,27) with periodic boundary conditions and J(v) = B + C coswv,
so that J(z —y) = B+ Ccoszcosy + Csinzsiny. (If C is positive, this choice of J
can be thought of as the first two terms in a Fourier series expansion of a “Mexican—
hat” type J [3,14].) We can expand u and a as Fourier series in z, but by doing so



and then substituting into (6)-(7), one can see that coefficients of terms of the form
cos (nx) and sin (nz) for n > 1 will decay exponentially to zero, so we do not include
terms of this form in the expansion. We write u(x,t) = a(t) + R(t) cos (x — 0(t))
and a(z,t) = v(t) + k(t) cos (x — 0(t) — (t)), where R and k are positive. u has a
maximum at x = f, and @ has a maximum at x = 6 4 1), so ¥ measures the “phase
lag” between the maxima of u and a. Substituting these expressions for u(z,t) and

a(z,t) into (6)-(7) we obtain

do dR . de
E-FCOS(J?—@)E-FRSIH(Z‘—Q)%——[04+RCOS(1‘—9)]
27
+B/ F[I+a+Rcos(y—0)—~v—rcos(y—0—1)|dy
0
27
+Ccosx/ FlI+a+Rcos(y—0)—v—rcos(y—0—1)|cosydy
0

27
+C’sinx/ FI+a+ Rcos(y—60)—~vy—kcos(y — 60— )]sinydy
0

and

Tlcjl—z+cos(x—0—w)%+nsin(x—0—1/)) (2—34—%)]

=Ala+ Rcos(x — 6)] — [y + kcos (x — 0 — ¥)]

Fourier transforming these equations we obtain the 6 ODEs:

d_a:_a—i_Bf(a_’%Rv’{:vdj)
dt
CZ—?:—R—FC[Q((X—7,R,9,n,1/))cos9+h(a—fy,R,O,/f,@b)sinH]
dg C .
%:E[h(a—fy’R’g,,i,q/;)cosﬁ—g(a—fy,R,H,/ﬁﬂﬁ)Slna]
dy
2T A —
T a—ry
%—ARcosw—m
Tdt
dy _ ARsiny  db
dt TK dt

where

f(a—v,R,/i,i/J):/OZWF[I—f—a—v-l—Rcosy—/{cos(y—w)]dy

(12)

(13)

(20)



g(a_’YaRaaa H,¢)
27

:/ FI+a—~y+Rcos(y—0)—rkcos(y— 60— )] cosydy (21)
0

h(OZ -7 R7 07 K, d))
27

:/ F[I+a—~+Rcos(y—0) —kcos(y—0—)]sinydy (22)
0

Note that f, being proportional to the spatial average of the bump’s activity, does
not depend on #, the position of the center of the bump. We assume that R and
k are never zero, as such a solution would not correspond to a bump. Apart from
transients, equations (14)-(19) are equivalent to equations (6)-(7), and we now show
that stationary and moving bumps are solutions of (14)-(19), and that the transition
between them is through a supercritical pitchfork bifurcation.

4.1 Stationary bumps

Fixed points of (14)-(19) correspond to stationary (zero velocity) bumps. From (19),
1 = 0 or m at a fixed point. ¢y = 0 corresponds to a stable bump and @ = 7 to an
unstable one, which we ignore from now on. We also have kK = AR (from (18)) and
v = A« (from (17)), i.e. the bump in a is centered at the same place as the center of
the bump in u, and is smaller by a factor of A.

As expected from the translational invariance of (6)-(7), the value of 6 at a fixed point
of (14)-(19) is arbitrary. We can see this by writing F'[-] as a Fourier series:

FI+a—vy+Rcos(y—0)—rcos(y—0—1)]

=ay+ i [a, cos (n(y — @) + by, sin (n(y — 0))] (23)

n=1

where ag, ..., b; ... are constant. The integrals in (21) and (22) will pick out only the
coefficients with subscript 1, so

gl —,R,0,k,1) = m[ay cos O + b sin 6] (24)

and

h(o — 7, R, 0, k, 1) = m[ay sin @ — by cos ] (25)
Thus, the term g(a — v, R, 0, k,9) cosf + h(a — v, R, 0, k,1) sinf in (15) is actually
equal to may, a constant, and the term h(a—-, R, 0, k,1) cos 0 —g(a—, R, 8, K, 1) sin §
in (16) is equal to —mby, also a constant. Note that these statements are true irre-
spective of whether 6 is constant or a function of time. When ¢ =0, F[I + o — v +
Rcos(y —6) — kcos (y — 60 — )] is even about y = 6, so by, by, ... are all zero. In

10



particular, b; = 0, making the right hand side of (16) zero, as it must be for a fixed
point. Thus (14)-(19) has a continuum of fixed points, parametrized by the position
of the maximum of the bump.

4.2 Moving bumps

From simulations of the rate model (6)-(7), we expect a fixed point of (14)-(19) to
become unstable as A is increased, and the system to have an attractor on which
(t) = wt for some non-zero and constant w, with all other variables constant. Since
§ € S!, this attractor is actually a periodic orbit. Assuming that we are on the
attractor, df/dt = w and (18) and (19) give us

Y = —tan ' (Tw) (26)

so that 9 is nonzero if and only if w is nonzero. Also, remembering that —7/2 < ¢ <
7/2 for a stable bump, we see that ¢ and w have opposite signs. This is in agreement
with our intuition about the model, viz. that the activity in a lags behind the activity
in u. Equations (17) and (18) give v = Aa and k = ARcosy < AR, so the peak
height in a of a moving bump is less than that of a stationary one. Substituting
these values for v, k and v into (14)-(15) we see that on the attractor, & and R must
simultaneously solve

o= Bf [(1— Ao, R, ARcos {—tan™" (rw)}, — tan™" (7w)] (27)

and

R=C {cos (wt)g [(1 — A)a, R,wt, ARcos {—tan ! (tw)}, —tan™! (Tw)]
+ sin (wt)h [(1 — A)a, R,wt, ARcos {—tan ' (tw)}, —tan ! (TUJ)]} (28)

where the value of ¢ in (28) is irrelevant, since (as shown in section 4.1) the function
on the right hand side is independent of ¢. Let a = &(w,A) and R = R(w, A) be
the equations that define the roots of (27)-(28), and define ¢)(w, A) = —tan ' (Tw),
R(w,A) = AR(w, A) cos [(w, A)], and F(w, A) = A&(w, A). Then we can write (16)
as

C [cos (wt)h (1 — A)d(w, A), R(w, A), wt, F(w, A), P(w, A)) (29)
—sin (wt)g ((1 = A)d(w, A), R(w, A), wt, F(w, A), ¥(w, A))]
—R(w, A)w =0
r wG(w,A) =0 (30)



i.e. a scalar equation in one variable, parametrized by A. We write it in this form
because we know that w = 0 is always a fixed point of (14)-(19), and, from section 4.1,
there is no dependence on t in (29). (w = 0 is always a solution of (30) because if
w = 0, ¥ = 0, and therefore b; in the Fourier representation of F[-], (23), is zero,
making the right hand side of (16) zero.) We also know that wG(w, A) is an odd
function of w (therefore G(w, A) is even in w). To see this, note that R(—w, A) =
R(w, A), and it can be shown that g(o — 7, R, —wt, K, —1)) = g(a —y, R, wt, k, ) and
h(a — 7, R, —wt, k,—) = —h(a — v, R,wt, K, 1), so the left hand side of (29) is an
odd function of w.

We expect two nonzero solutions of (30), of equal magnitude but opposite sign, to
be created as A increases through some critical value. To show that this occurs, we
expand G(w,A) as a Taylor series. We can expand about w = 0, but should not
expand about A = 0, as this is a singular limit. Instead, we choose to expand about
A =0.15, i.e. we write

G(w, A) = p1 + pa(A — 0.15) + pzw® + pg(A — 0.15)* + - - - (31)

The value A = 0.15 was chosen arbitrarily — we expect the bifurcation to occur at a
small positive value of A. The series expansion, (31), will be more accurate for values
of A closer to the bifurcation value (A ~ 0.165, from Figure B.8) for a given truncation
of the series, but as can be seen below, this value works well. Approximate values of
the four coefficients puq, ..., s can be found by numerically differentiating (30), as
explained in [25]. For the parameter values given in Section 3 we find p; ~ —0.0438,
Mo & 2.6012, puz ~ —9.986 and py ~ 1.762. In Figure B.8 we have plotted with a solid

line
o \/—[m + pi2(A — 0.15) + pa(A — 0.15)2]
K3
when the expression under the square root is positive, i.e. approximate nonzero roots
of (30), together with measured values of w for the system (6)-(7) and (14)-(19). The
agreement is very good, even having truncated G(w, A) after quadratic order.

(32)

Thus we have shown that the instability to traveling bumps as A is increased in the
integro-differential system (6)-(7) is due to a pitchfork bifurcation in the speed of a
bump. The pitchfork bifurcation is supercritical.

4.8 Noisy pitchfork bifurcation

We now consider the effect of adding noise to the normal form of a supercritical
pitchfork bifurcation in which the variable is speed. Instead of examining the behavior
of this variable, we look at its integral over a fixed amount of time. We can use this
to derive a quantity equivalent to the absolute value of the average speed of a bump,
as plotted in Figures B.3 and B.5. The intuition behind this procedure is that the
velocity reverses sign at random times, and since the velocity undergoes a pitchfork
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bifurcation, we make the ansatz that the main effect of noise on the whole system
will also appear in the normal form of that bifurcation [19].

Consider the system

w=wA —w?) +£()
0= w (33)

where 6 represents the position of the maximum of the bump and A plays the role of
A above. £ is a Gaussian white noise term with autocorrelation (£(¢)&(s)) = 2Do(t —
s). A < 0 corresponds to the case A less than the bifurcation value (~ 0.165 in
Figure B.8). In this case, w = 0 is a stable fixed point, and the average velocity is zero.
For A > 0 and D = 0, there are two stable values of w, namely +v/)\, corresponding
to left and rightward-moving bumps. The absolute value of the velocity is then v/A
when A > 0 and the absolute value of the distance moved after time ¢, i.e.

/Otw(s) ds

is proportional to t. For D > 0 there is the possibility of w(¢) changing sign over
time, which leads to some cancellation in the integral. This cancellation causes a the
drop in the absolute value of the average speed during a simulation of duration 7,
|6(T) — 6(0)|/T, as shown in Figure B.9.

6(2) - 6(0)| = (34)

Another way to understand the effect of noise is to examine the behavior of (33)
as a function of A for different noise levels — see Figure B.10. We see that for low
noise levels the average speed is close to the deterministic expression, v/A for A > 0,
zero otherwise. For larger noise levels there is an interval of A values (approximately
0 < A < 0.5 in Figure B.10) for which the average speed is much less than its noise—
free value. The size of this interval increases with increasing noise level. Thus noise
can be thought of as “delaying” the bifurcation in the sense that it increases the value
of A beyond which the average speed of the bump is appreciably greater than zero.
This delaying is also seen in a plot of bump speed versus A for (6)-(7) (not shown),
and is an example of the postponement [16,28] of a pitchfork bifurcation. Note that
this delay will not occur in (33) if we just examine the probability density function
for w, since noise—induced transitions are not possible in one dimension [16]. It may,
however, occur in a dynamical equation for |w|, an issue under investigation.

The process of deriving normal forms for bifurcations in noisy systems is discussed
in [19,42], and although we do not make a quantitative connection between the noise
strength in the full system of (8), (10) and in the one-dimensional normal form (33),
the qualitative behavior in the vicinity of the bifurcation should be the same for the
two systems.
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5 Persistent Random Walk

As a further simplification of the noisy supercritical pitchfork bifurcation normal
form, we model the motion of a bump as a persistent random walk with constant
velocity [32], where the probability of changing direction, rather than that of going
in a certain direction, is fixed. The advantage of this form of model is that it al-
lows us to gain even more analytical insight into the full dynamics of the stochastic
model (8), (10) than was possible with the stochastic normal form, (33).

5.1 Discrete time

First, consider the walk on a lattice, i.e. a discrete time process with constant time—
step. Let p be the probability of not changing direction (so the probability of changing
direction is 1 — p), and consider a walk with three steps. We use “0” to indicate a
step to the right and “1” a step to the left. The possible paths, the probabilities of
taking these paths, and the total distance moved are shown in Table C.1, where the
factor of 1/2 comes from the initial choice of moving left or right.

The probabilities of going a distance z, P(z), are then

) (35
) (36
—1)=p(1-p)+ (1 -p)?/2 (37
) (38

~— e’ ' N

and from P(z) it is straightforward to calculate the mean and variance of the absolute
value of distance traveled as a function of p.

It is possible to enumerate all possible paths of a given length and calculate P(z),
but the number of possible paths increases exponentially with path length. A more
efficient method results from noting that it is possible to calculate P(x) for n + 1
steps in terms of P(z) for n steps, i.e. to use recursion. Our presentation follows
Masilover and Weiss [32]. It is necessary to keep track of the direction from which the
walker arrived at its current position. (This is similar to the approach of Masoliver
et al. [30,31] for calculating mean first passage times for non—-Markovian processes.)
Let g,(x) be the probability that the walker is at position z at time n, having been
at  — 1 at the previous time step, and r,(z) be the probability that the walker is at
position z at time n, having been at x + 1 at the previous time step. Then

nt1(2) = pgn(z = 1) + (1 = p)rn(z — 1) (39)
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and
Tni1(z) = prp(x +1) + (1 — p)gu(z + 1) (40)

P(z) for a given n is the sum of r,(z) and ¢,(z). Note that if n is odd (even), the
only possible values of = are odd (even). Using this notation, Table C.1 gives

|

3
~—
\
[\

N N N N N
=
RS

N N N S S N

with all other probabilities being zero, and this provides the first step in the recurrence
relationship. Note the special case p = 1, which gives ¢,(n) = 1/2 and r,(—n) = 1/2
for all n, with all other probabilities being zero, so that the expected value of |z| is n,
with variance zero. Examples of P(z) at different times and for two different values
of p are shown in Figure B.11. The top panel has p = 0.95, and the strong peaks
corresponding to never changing direction are clear. The lower panel has p = 0.7, and
the distribution is more Gaussian-like, although it must have finite support, as ¢, (k)
and r,(k) must both be zero for n < |k|.

Figure B.12 shows the average speed of a particle undergoing a persistent random walk
with speed 1 as a function of noise level. To relate the probability of continuing in
the same direction, p, to the noise level, D, we use an Arrhenius—type rate associated
with the rate of activation of a particle over a barrier [10]. Such a barrier crossing
is likened here to the changes of direction of the bump — more specifically to the
barrier crossing of w in (33). (Note that (33) corresponds to the motion of a particle
in a double well potential.) Specifically, we have 1 —p = e~ /P. The factor of 1 in the
exponent is chosen for simplicity — in section 5.2 we fit such an Arrhenius—type rate
to numerically—obtained data.

The peak in the dashed curve in Figure B.12 near D = (.2 is misleading in that it
suggests that it is possible for a particle to move faster than 1, which it clearly cannot.
The reason for this peak is that the variance grows very quickly once the noise level
is high enough (0.1 < D in Figure B.12) so that bumps can make a small number of
changes of direction during a walk. Note that the peak in Figure B.12 is also observed
in the plot of the absolute value of the average speed of a bump in the rate model
(Figure B.5), for the normal form of the pitchfork bifurcation with noise (Figure B.9),
and could be seen in Figure B.6 if we had plotted mean + standard deviation.
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5.2 Continuous time — Markovian dichotomous noise

The continuous time version of a persistent random walk is the stochastic differential
equation

dz

— =1I(t 47
= 10) (47)
where I(t) € {—v, v} and the probability that I(t) switches from —v to v, or from v to
—uv, in time interval dt is % B dt. In other words, the velocity is just dichotomous Marko-
vian noise. Then the probability density function of z, p(z,t), is known [13,16,41] to
satisfy the integro—differential equation

Bp(x,t) 2 ¢ —B(t—s) 62;0(3:, S)
5 = v /_ooe g ds (48)

Differentiating this with respect to time we obtain the telegrapher’s equation [15,32,41]:

o
ot?

op ,0%p
+ ﬁa = (49)

v
02

(An alternative derivation of (49) as the continuous version of the persistent random
walk discussed in Section 5.1 is given in [32].) The solution of (49) with initial con-
ditions p(x,0) = d(z) (i.e. the particle starts at the origin) and dp(z,t)/0t|;—o = 0 is
derived in Appendix A (see also [15]). It is

e—Bt/2

2

p(z,t)=

{5(:5 o)+ 8(x + vt) + H (vt — |z l%[o (%m)

et (2=

where H (-) is the Heaviside step function and [, is the modified Bessel function of the
first kind of order n. (Note that this equation is also given (although incorrectly) in
both [32,41].) The delta functions describe the motion of particles that never change
direction. The Heaviside function reflects the fact that no particle can travel at a
speed greater than v, and the Bessel functions describe the motion of particles that
change direction at least once. The p(x,t) in (50) has the same form as the P(z) in
Section 5.1, except that the spatial and temporal domains are now continuous (not
shown).

The mean of the absolute value of the distance traveled after time ¢ is then
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(|x(t)|)=2/oooxp(x,t)dx=e_ﬂt/2{ ﬂ/ :1310( Uth—xz’)d

Bt : 8
Ly p—— ( m) dx}

t t
= ’Utei’gt/Q Il B— + IO /8— (51)
2 2
where the angled brackets represent averaging over realizations.

To obtain the second moment of |x(t)| (or z(¢)) we note that after taking the spatial
Fourier transform of p(z,t),

o(s,t) = /_O:Op(x, t)e % dx (52)
we have ,
(07 = 2(0) = =22 53

As derived in Appendix A, eq. (A.5),

o(s,t) = e P2 (g + %) {\/ﬁ sin (t\/UQSQ - ,82/4)} (54)

We find that

0? 1 ,
952 {msm (t\/v%? - ﬁ2/4>} ~

= —4v?[Bt cosh (Bt/2) — 2sinh (Bt/2)]/5° (55)

and substituting this into (53),(54) we have

(2 (t)[2) = 4”273&/2 (ﬁ ;) lﬂtcosh (ﬁ;) — 9sinh (%)] (56)
_ 20%(Bt —Bi + e (57)

The standard deviation of |z(t)|/t is \/(|x(t)\2> — (|z(¢)|)?/t, and plotting this as a
function of § gives a unimodal function with a maximum at some intermediate value
of 5 (or equivalently, noise intensity), as seen in Figure B.6 (bottom). Note that we
never calculate the mean of z(¢), which we know to be zero from the symmetry of the
problem.
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Another way to calculate the second moment is to note that the autocorrelation of
I(t) is [13,16,36]

((s)I(r)) = v?e P77 (58)
so that

202(Bt — 1+ e Pt
32

¢ ¢ t ot
(@ (t)) = < [ 16syas [ 1) dr> = [ [0y ds dr =
0 0 o Jo
(59)
Alternatively [32], by multiplying (49) by x? and then integrating over z, one obtains
the differential equation satisfied by the second moment

2

d
+8 S”"t

d*(z?)

) _ o2
0 =20 (60)

The appropriate initial conditions are (z2)(0) = 0, d(z?)/dt|;—¢ = 0, and with these,
(60) has the solution (59).

Figure B.13 shows the absolute value of the average speed, (51), and one standard
deviation from this (using (59)), as a function of noise level. To match Figure B.9,
we choose v = /0.2 and t = 1000. We again use an Arrhenius-type rate to connect
switching rate to noise level, fitting the expression § = ®e~%/P to the data points in
Figure B.9 (a least squares fit gives & = 0.0895, ¢ = 0.0063).

6 Summary

Spike frequency adaptation can destabilize bumps in networks of spiking neurons and
network rate models, leading to traveling bumps [14]. We have shown that adding
noise to either a spiking model or a rate model that includes adaptation significantly
reduces the average speed of a traveling bump, “restabilizing” it and effectively negat-
ing the effect of adaptation. This restabilization occurs for noise levels smaller than
those needed to break up the bump. To understand this process we studied a rate
model that can be reduced to six ordinary differential equations. From these six equa-
tions we constructed a single scalar equation whose non-zero roots are the velocity
of the bump and showed that these roots appear in a symmetric pair as the strength
of the adaptation is increased. Thus the transition from stationary to moving bump
is through a supercritical pitchfork bifurcation in bump speed.

Adding noise to the normal form of a supercritical pitchfork bifurcation, where the
variable undergoing the bifurcation is speed, reproduces the observed drop in the
absolute value of the average speed as the noise level is increased. The reason for this
drop is that noise can change the sign of the speed a number of times during the
course of a simulation. Net distance traveled is the integral of speed, so these sign
changes result in a decrease in the overall distance traveled, and thus the average
speed. The behavior of the full spiking network can therefore be understood in terms
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of this noisy normal form. (Bump destabilization is also seen if synaptic depression —
another important feature of single neurons — is included, rather than spike frequency
adaptation, and adding noise to the depression dynamics can restabilize the bump.)

As a further simplification, we modeled the noisy pitchfork bifurcation as a persistent
random walk, in which a particle moves at a constant speed, but the probability of
changing direction is constant (and related to noise level through an Arrhenius-type
rate). If this process is taken to be continuous in time, the probability density function
for position obeys the telegrapher’s equation, which has an explicit solution. From this
solution we can explicitly construct the mean and standard deviation of the absolute
value of the average speed of the particle (quantities that are easily measured from
simulations of a full network, the particle being the bump in this case) and they agree
quantitatively with the behavior of the full network model.

One aspect of the behavior of a spatially—extended system is not well captured by a
persistent random walk: for high noise levels, the position of the maximum of a bump
does not necessarily move continuously. The form of the coupling, (3), promotes local
activity while suppressing more distant activity, and at high noise levels there can be
ongoing “competition” between bumps in a form of “winner takes all” contest. Since
the domain is spatially extended, a bump may appear some distance from one that
is in the process of disappearing, leading to an effective “jump” in the position of the
currently highest bump. (This type of behavior was also seen in [14], in response to
a suddenly—moved stimulus.) For both the noisy normal form (33) and the persistent
random walks in Section 5, the particle is assumed to move continuously, so this type
of jumping will not be captured by these simplified models.

“Restabilization by noise” of a spatiotemporal pattern does not seem to have been
discussed elsewhere, although several papers [8,20] contain results regarding the ef-
fects of noise strength (manipulated indirectly by changing the number of Brownian
walkers in a simulation) on moving “spots” in simulations of excitable media. Our
results are an example in the same spirit as stochastic resonance, in which moderate
amounts of noise act in a beneficial way (at least in the context of working memory,
where a moving bump would be seen to have a detrimental effect on the task). It
is not clear which aspects of these systems that support bumps (spatially—extended
coupling, a slow variable, traveling structures that appear through a pitchfork bifur-
cation in speed) are necessary for this restabilization, and the question of which other
systems [6,33] show such behavior is an interesting and open one. Figure B.4 shows a
counter—example of noise-induced restabilization, where noise causes a traveling wave
to break up, rather than slow down.

We have also studied both integrate—and-fire and rate models incorporating synaptic
depression [1] rather than, or in addition to, spike frequency adaptation, and such net-
works also show destabilization of stationary bumps as the strength of the depression
is increased and restabilization when noise is added to the dynamics of the depression.
This will be reported elsewhere [24]. Models of two—species reaction—diffusion systems
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with global coupling [18,21] have been observed to support stationary “spots” and
“standing pulses”, which begin to move as a parameter is varied, and a similar phe-
nomenon has been seen in both a model three—component reaction—diffusion system
in which the only coupling is by diffusion [35], and a pair of coupled Ginzburg-Landau
equations [40]. The effects of noise on such systems remains to be investigated.
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A Solution of the telegrapher’s equation

Since the derivation of the solution of this equation in [32] is incorrect, and that in [15]
has a number of typographical errors, we rederive the solution here, following [15].
The telegrapher’s equation is

=+ B = v (A1)

with initial conditions p(x,0) = §(x) and Op(x,t)/0t|;—o = 0. The Fourier transform
of pis

o(s,1) =/ p(z,t)e " dx (A.2)
which satisfies
d*o do 9 9
W-FBE-FUSO'—O (A.3)

with initial conditions o(s,0) = 1 and do(s,t)/dt|;—o = 0. The solution of (A.3) with
these initial conditions is

o(s,t)=e P2 [cos (tm)
T (tm)] (A4)

_ B2 (g n %) {\/ﬁ sin (t\/M)} (A.5)

Since p is real, the inverse Fourier transform of (A.5) is
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2 §+8t

—00

p(z,t) = o (5 2)

/ > \/% sin (tm) ds  (A6)

_en” (g + Q) {H(vt YA (ﬁm)} (A7)

v ot )

and performing the differentiation gives (50).
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B Figures
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Fig. B.1. Absolute value of the speed of a bump during a period of 480 time units for the
spiking neuron model, equations (1)-(2) as a function of A. Error bars are + one stan-
dard deviation from the mean. Different initial conditions lead to slightly different values
of speed, as (1)-(2) is a highly nonlinear and high-dimensional, possibly chaotic, determin-
istic dynamical system (For example, note the fluctuations about the smooth motion in
Figure B.2, left panel).
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Fig. B.2. Rastergrams of the activity in the integrate-and—fire network (1)-(2). Left panel:
o = 0 (i.e. no noise), right panel: ¢ = 0.3. A = 0.2 for both. A “dot” represents the firing of
an individual neuron. The sloped bands represent moving localized bumps of activity (recall
that the boundary conditions are periodic). The fluctuations in bump size and shape in the
left panel are of deterministic origin — see text for discussion.
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Fig. B.3. Absolute value of the average speed of a bump during a period of 480 time units as
a function of noise level, for the spiking neuron model, equations (1)-(2). Parameter values
are given in the text. Dashed lines are + one standard deviation from the mean. We have
set A =0.2.

26



0=0.0003 0=0.003

200 200

400 400

600 600

Time

A\

Time

800 800

1000 1000

1200 1200
20 40 60 80 100 20 40 60 80 100

Fig. B.4. The effects of Gaussian white noise on a traveling wave solution in a
one-dimensional ring of Fitzhugh-Nagumo excitable cells, (4)-(5). Noise with intensity o
is introduced at ¢ = 300. Boundary conditions are periodic, and parameters are D = 1,
0x =1, e = 0.005, v = 0.5 and b = 0.6. u is plotted, with black representing high values
and white, low values.
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Fig. B.5. Absolute value of the average speed of a bump during a period of 750 time units
as a function of noise level, for the spatially—discretized rate model, (8) and (10). Parameter
values are given in the text. Dashed lines are + one standard deviation from the mean.
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Fig. B.6. Top: Absolute value of the average speed of a bump during a period of 750 time
units as a function of colored noise level or “power”, €, for the spatially-discretized rate
model, (8) and (11). Bottom: Standard deviation of the absolute value of the average speed.
The standard deviation is zero only for strong enough frozen noise. See text for details of
the noise.
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Fig. B.7. Top: Absolute value of the average speed of a bump during a period of 2400 time
units as a function of noise correlation time, 7, for equations (8) and (11). Noise power
¢ = 0.1. Bottom: Average of the absolute value of the instantaneous speed. Dashed lines
indicate £ one standard deviation.
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Fig. B.8. Absolute value of the speed of a bump for the rate model (8)-(9) (“0”), equa-
tions (14)-(19) (“x”, using the same parameters as in (8)-(9)), and the expression (32)
(solid line).
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Fig. B.9. Absolute value of average rate of change of 8 for the normal form of a supercritical
pitchfork bifurcation (33) during 1000 time units, i.e. |#(1000) —#(0)|/1000, as a function of
noise intensity, D. A = 0.2. The variability is a result of taking multiple noise realizations.
The dashed lines indicate £ one standard deviation. Compare with Figures B.3 and B.5.

32



0.8 |

0.6

0.4

|Average speed|

0.2r

_02 I I I I

Fig. B.10. Absolute value of average rate of change of 6 for the normal form of a supercrit-
ical pitchfork bifurcation (33) during 1000 time units as a function of X\. “0”: D = 1074,
“x”: D = 102. Solid line: VX for A > 0, 0 otherwise. Errorbars indicate & one standard
deviation.
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Fig. B.11. P(z) for the discrete-time persistent random walk on a lattice, as calculated
using (39)-(46) at different values of z for p = 0.95 (top) and p = 0.7 (bottom). Only odd
values of z are used, as P(z) = 0 for even z.
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Fig. B.12. Absolute value of average speed for the discrete—time persistent random walk dur-
ing 59 steps. The probability of traveling in the same direction, p, is given by p = 1 — e 1D,
The dashed lines indicate £ one standard deviation. Compare with Figures B.3, B.5 and B.9.
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Fig. B.13. Absolute value of average speed, (51), as a function of noise intensity for the
continuous persistent random walk. In order to match Figure B.9 we set v = /0.2, ¢ = 1000,
and a least squares fit to the data in Figure B.9 gives 8 = 0.0895¢ 9-0063/D  The dashed
lines indicate &+ one standard deviation, from (59). Compare with Figures B.9 and B.12.
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C Tables

Path | Probability | Distance
000 p?/2 3
001 | p(1—p)/2 1
010 | (1—p)?/2 1
011 | p(1—p)/2 -1
100 | p(1—p)/2 1
101 | (1—p)?/2 -1
110 | p(1—p)/2 -1
111 p?/2 -3

Table C.1
Possible paths, probability of taking paths, and distance moved, for three steps of a discrete—
time persistent random walk.
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