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Dominant Lyapunov exponents for a solution with spatial wavelength
27/3 that is even about the origin (lower) and for perturbations with
spatial period 27 (upper). Note that this Lyapunov exponent has multi-
plicity 2. Parameter values: p=—4, v=2.. . . . . ... ... ... ...
A chaotic solution with spatial period 27 /3 that is even about the origin
and unstable to perturbations of period 27x. A small perturbation with
spatial period 27 is added at ¢ = 3. Parameter values: R =9, p = —4,
v = 2. Compare with Figure 11. . . . . . ... ... ... ... .. ...
Dominant Lyapunov exponents for a solution in Fix(%4) (lower) and per-
turbations corresponding to one two—dimensional irreducible representa-
tion (equation (3.2) in Section 3.2, dashed) and the other (equation (3.3),
top solid). Parameter values: R =80, v =2. . . .. .. ... .......
A chaotic solution in Fix(X4) that is unstable with respect to perturba-
tions of period 27. A small perturbation with spatial period 27 is added
at £ = 0.2. Parameter values: R = 80, p = —11, v = 2. Compare with
Figure 13. . . . . . .
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We have also found that this solution, whether regarded as a solution of the periodic
problem or the Neumann problem, undergoes a supercritical blowout bifurcation. For
the Neumann problem, this involves breaking only a reflectional symmetry of the solution
while for the periodic problem, this is equivalent to a period-increasing bifurcation. We
believe this to be the first observation of a blowout bifurcation from a chaotic solution
of a PDE associated with a side-band instability.

For solutions with spatial period 27 /3 and varying amounts of symmetry we found

that chaotic solutions are always unstable with respect to perturbations of period 27.
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with respect to perturbations with period three times that of the solution, we would not
expect to see this solution occurring starting with an arbitrary initial condition.
Finally, we consider solutions in Fix(¥4) and compute the dominant Lyapunov ex-
ponents associated with perturbations corresponding to the two two—dimensional irre-
ducible representations of ¥, as a function of p for R = 80, v = 2. We see for these
parameter values that as g is varied the solution in Fix(¥4) changes from periodic or
quasiperiodic to chaotic but remains unstable with respect to both types of perturba-
tion. An example of a chaotic solution from the parameter range shown in Fig. 13 is

presented in Fig. 14

5 Conclusion and Discussion

In this paper we have extended the ideas in [5], regarding chaotic solutions with reflec-
tional symmetries of the complex Ginzburg-Landau equation and their stability with
respect to reflectional symmetry—breaking perturbations, to the study of the stability of
such solutions with respect to perturbations having longer spatial wavelengths than the
underlying solution.

Many solutions, as expected, are unstable with respect to perturbations of longer
spatial wavelength. This indicates that the degree of self-organisation of chaotic solutions
is very small compared to that for steady state and time periodic solutions. Indeed, the
prospect of finding a spatio-temporal chaotic solution which is spatially periodic and
stable with respect to all possible period-increasing perturbations is very unlikely. Thus,
chaotic solutions which are spatially periodic are only found numerically because these
conditions are imposed on them. We would not expect to see such solutions forming
starting with an arbitrary, non-periodic initial condition. Thus, we conclude that while
periodic boundary conditions are often mathematically very convenient, they are not
necessarily physically relevant for chaotic solutions.

Homogeneous Neumann bounday conditions are often physically relevant and while
the application of these boundary conditions would appear to restrict the symmetry of
the problem it is well known that this problem can be embedded in the periodic problem
which has much more symmetry [2, 8]. In this case, if we apply Neumann boundary
conditions at x = 0 and = = 7, then the solutions that we found in Fix(X;) also have

Ay(7/2,t) = 0 and are invariant under a reflection about = 7/2 and so satisfy
Az, t) = A(r — z,1)

for all t. Moreover, these solutions are stable to perturbations which break this reflec-
tional symmetry and so there is a degree of self-organisation in the solutions as they

have a stable symmetric solution.
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A chaotic solution in Fix(X;) with spatial period 7 and homogeneous Neumann
boundary conditions that is unstable with respect to perturbations of spatial period 27,
i.e. after the blowout bifurcation is shown in Fig. 6. A small perturbation with spatial
period 27 is added at ¢ = 10 and the symmetry of the solution is quickly lost as expected.
The parameter values are R = 4.2, y = —4 and v = 2.8. Note that only the real part of
the solution is shown.

Finally, we consider solutions in Fix(¥2) which have spatial period #, are even about
the origin and are odd about 7/4. Recall that in this case we are only interested in the
Lyapunov exponents of multiplicity two associated with the two-dimensional irreducible
representation of Y. In Fig. 7 these dominant Lyapunov exponents are shown. We see
that over the parameter range shown, the underlying solution changes from periodic or
quasiperiodic to chaotic and back again but is always unstable with respect to pertur-
bations of period 27. We give an example of such an unstable chaotic solution in Fig.
8. A small perturbation with spatial period 27 is added to the solution at t = 0.3. The
parameter values are R =62, p = —4, v = 2.

For all contour plots, black contour lines correspond to negative values and grey

contour lines to positive values.

4.2 Period 27/3 solutions

In order to investigate the effect of perturbations three times the period of the solution,
we computed solutions with period 27 /3, initially with no other symmetries imposed.
The dominant Lyapunov exponents associated with the two-dimensional irreducible rep-
resentation of Z3 are shown in Fig. 9. This shows a transition to chaos before and after
which the solution is unstable with respect to perturbations of period 2x. An example
of an unstable chaotic solution corresponding to this parameter range is shown in Fig.
10. Note that at approximately ¢ = 1.25, the solution almost has D3 symmetry but then
all symmetry is soon quickly lost after this point.

We next consider solutions in Fix(X3) which have spatial period 27/3 and are also
even about the origin. Again, we only consider the dominant (multiple) Lyapunov ex-
ponents associated with the two-dimensional irreducible representation which are shown
in Fig. 11 as a function of R for p = —4 and v = 2. We see that for this range of
parameters the underlying solution is either periodic, quasiperiodic, or chaotic, but is
always unstable with respect to perturbations of period 2x7. We show an example of
such an unstable chaotic solution in Fig. 12 for parameter values R = 9, p = —4 and
v = 2. Again, the black contour lines indicate negative values and the grey contour
lines indicate positive values. We note that by rescaling the spatial scale the solution
at these parameter values is the same as the solution which was stable with respect

to perturbations of period twice that of the solution. Since this solution is not stable
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occasional “bursts” away from it.

The blowout bifurcation of Fig. 3 seems to be supercritical, as we see bursting be-
haviour at parameter values close to the bifurcation which is very similar to the on-off
intermittency seen in many other examples of blowout bifurcations in low dimensional
systems. In Fig. 5 we choose the parameter values R = 4.2, p = —4, v = 2.1667 and
plot the norm of the vector formed from the odd-numbered Fourier coefficients in the
spectral representation of the solution as a function of time. The norm is zero if and
only if the solution satisfies A(z,t) = A(x + x,t). The initial condition was randomly
chosen and had spatial period 27x. Thus, for long periods of time, the chaotic motion
appears to be even with period © while there are occasional bursts where the period is
27.

We should also note that the blowout bifurcation does not occur at a particular
parameter value but over a range of values. This is typical for a system in which the
parameter we vary is non—normal [1, 7]. (A non—normal parameter is one for which not
only the dynamics normal to the invariant subspace change as we vary the parameter,
but also the dynamics restricted to the invariant subspace.)

The discovery of this blowout bifurcation is significant in that we believe it to be the
first such bifurcation associated with side-band instabilities from an underlying spatio—
temporally chaotic solution. Covas et al [7] found a blowout bifurcation in a PDE
describing the dynamics of a mean field dynamo model, but in that case the instability
acted to break a reflectional symmetry. Fujisaka et al [10] examined the stability of
the spatially uniform solution of three PDEs with respect to spatially inhomogeneous
perturbations and found on-off intermittency associated with blowout bifurcations. The
advantage of examining the spatially uniform state is that an expression for the dominant
normal Lyapunov exponent can then sometimes be explicitly derived.

The other curious feature of Fig. 3 is that the dominant Lyapunov exponents as-
sociated with the isotypic components W3 and W, are very similar. In theory these
quanitities are completely independent and so this similarity is somewhat surprising.
We have investigated the solution to see whether it has any extra symmetries which we
were not expecting and found none. Thus, we are unable to explain why these Lyapunov
exponents are so similar.

The final observation for this example is that the dominant Lyapunov exponent
associated with perturbations in W 1s always zero indicating that the solution is stable
with respect to these perturbations also. These perturbations are odd with period =«
and there is always a zero Lyapunov exponent associated with these perturbations as
explained in [5]. Thus, within the space of 27 periodic functions, this chaotic solution
which is even and has period = is stable with respect to all possible symmetry breaking

perturbations.
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4 Numerical results

In this section we describe some numerical results relating to the theory presented above.

The results are obtained using a pseudo—spectral method as described in [5].

4.1 Period 7 solutions

Solutions with period 7 and no reflectional symmetries were computed together with
the dominant Lyapunov exponents associated with the two isotypic components as a
function of R for v = 1.9 and p = —4. Since W; = Fix(Z3), a positive dominant
Lyapunov exponent in this case indicates a chaotic solution. As there are always three
zero Lyapunov exponents associated with the motion in Fix(Zy) [5] then the dominant
Lyapunov exponent associated with non-chaotic motion is always zero. The stability of
this solution to period-doubling perturbations is determined by the dominant Lyapunov
exponent associated with W;. Numerical results are shown in Fig. 1. We see that for
these parameter values there are intervals in which the solution is chaotic and stable
to perturbations of period 27 (which we discuss below), periodic or quasiperiodic and
unstable with respect to perturbations of period 2, and chaotic and unstable with
respect to perturbations of period 27. A typical example of a chaotic solution that is
unstable to perturbations of period 27 is shown in Fig. 2. Note that only the real part
of the solution is shown. This is a contour plot with black contour lines for negative
values and grey contour lines for positive values.

It was found that the chaotic solutions that are stable with respect to perturbations
of period 27 in the interval containing R = 4 in Fig. 1 not only have period = but are
also even about some point in [0,7/2), i.e. they are conjugate to a solution in Fix(3;)
via a spatial translation. Thus, we computed these solutions in Fix(X;) together with
the two dominant Lyapunov exponents associated with the ¥-isotypic components W3
and Wy. These are shown in Fig. 3 as a function of v for R = 4.2 and p = —4. We see
that for v between 1.9 and approximately 2.15 the solution in Fix(X;) is chaotic and
stable with respect to perturbations of period 2x. A typical example of such a solution
is shown in Fig. 4, corresponding to v = 1.9.

We see from Fig. 3 that as v increases the solution in Fix(¥;) becomes unstable
to perturbations of period 27 while remaining chaotic. This is known as a blowout bi-
Jurcation [7, 13] and has been studied widely in systems of coupled chaotic oscillators.
Blowout bifurcations can be classified as either subcritical or supercritical [1]. The main
difference is that for a subcritical bifurcation there are riddled basins of attraction before
the bifurcation (when the normal Lyapunov exponent is negative) while for a supercrit-
ical bifurcation there is on—off intermittency after the bifurcation, where the attractor

spends long periods close to the submanifold that was stable before the bifurcation with
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Defining p = sy, we find that ¥, is generated by p and s; which satisty
si=1, pP°=1, sip=p's

and so it is isomorphic to Dg. We note that 3 = ps; and r, = p*. Now Dg has four
one—dimensional irreducible representations, corresponding to the four combinations of

p and s1 being +1, and two two—dimensional irreducible representations given by

| cosw/2 —sinw/2 1 1 V3 IR
p= [ sinw/2 COSUJ/Q] 9 [ V3 1 ] and s; = [0 1 ] , (3.2)

and

DO | =

[_1 _\/gl andslzll 0]. (3.3)

| cosw —sinw |
P= sin w cosw | V3o —1 0 —1
For all of the one-dimensional irreducible representations,
r, = p2 =1,

so these isotypic components are not of use for studying period—tripling instabilities.
However, r,, does not act trivially for either of the two—dimensional representations and
so these are relevant. We note that for the underlying solution to be stable with respect
to period-increasing perturbations, the dominant Lyapunov exponents associated with

both the two-dimensional irreducible representations must be negative.

3.3 Higher values of n

By considering the cases of n = 2 and n = 3, the pattern for higher values of n can
clearly be seen. Depending on the reflectional symmetries of the solutions, there are

three basic cases to consider for each n:

(i) If the solution has no reflectional symmetries, then the solution is fixed only by

T2x/n and so the group is Z,.

(ii) If the solution is either even or odd, then there is an additional reflectional sym-

metry so the group is D,,.

(iii) If the solution is even about the origin and odd about 7/(2n), then the group is
D,,.

Since all the dihedral and cyclic groups only have one and two dimensional irreducible

representations, the methods used here are easily extended to higher values of n.
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where Wi = Fix(Z3). Since the two-dimensional irreducible representation is not abso-
lutely irreducible, there is no further decomposition of the linear operator g4(A) into
two diagonal blocks, as occurred in the previous section with the group D4. However,

it does have a complex structure [15] in that

C —-D

A =
gl = |

Y

for some matrices C' and D. This implies that if there is a solution ¢ = [u,v]? of the

variational equation

6 = ga(A)lw, ¢, (3.1)

then there is also another distinct solution of (3.1) given by ¢ = [—v,u]T. Thus the
Lyapunov exponents are again of multiplicity two in this case.

The solution with spatial period 27 /3 will be stable to perturbations of period 27
if the (multiple) dominant Lyapunov exponents associated with the isotypic component
W, are negative.

We now consider solutions which have some reflectional symmetries and have period
27 /3. If solutions are also even about the origin, then the solutions have symmetry group
which we call X3 generated by r, and s; and so is isomorphic to the dihedral group Ds.
This group has two one-dimensional irreducible representations r, = I,s; = [ and

r, = 1,81 = —1I, and one two-dimensional representation

cosw —sinw 1 —1 =3 1 0
T, = ) = — and sy = )
sinw COS W 2\ V3 -1 0 —1

In a similar way to the D4 case above, r, acts as the identity for the one-dimensional
irreducible representations and so perturbations in the corresponding isotypic compo-
nents have the same period as the solution. Thus, only the two-dimensional irreducible
representation is of interest and since it is also absolutely irreducible, the Lyapunov
exponents associated with the corresponding isotypic component will have multiplicity
two. Again numerically it is sufficient to consider only perturbations for which s; = 1.

The theory is again similar for solutions which have spatial period 27 /3 and are odd
about the origin.

Finally, we consider solutions which are even about the origin, odd about #/6 and
have period 27 /3. It is helpful to define

BA(x,t) := so817,3A(2, 1) = —A(x /3 — x,1),

since functions fixed by 3 are odd about 7 /6. The symmetry group ¥4 of these solutions
thus includes s; (even about the origin), # (odd about x/6) and r, (period 27/3).

9



represent different combinations of reflectional symmetries being broken which preserve
the period, which we considered in [5]. There is also one two-dimensional irreducible

representation of Dy given by

cosw/2 —sinw/2 0 —1 1 0
. = and s =
sinw/2  cosw/2 1 0 0 —1

For this representation
-1 0
0 —1

and so all perturbations in the corresponding isotypic component have minimal period

R =

r, = R =

27 and so are spatially period doubling.

We note that since this two-dimensional irreducible representation is also absolutely
irreducible, the linear operator g4(A) can be decomposed further into two identical
blocks associated with the spaces on which s; acts as [ or —I. This results in Lyapunov
exponents of multiplicity two. Moreover, numerically it is sufficient to work with only
one of these two identical blocks in order to find just one of the Lyapunov exponents.
See Aston and Dellnitz [4] for more details. By choosing the block associated with the
space on which s; = I, we have a Fourier decomposition of the perturbation in this case

given by

o0

Az, t) = i bi(t) cos (2k — 1)z + ZZ c(t) cos (2k — 1)z,

k=1 k=1
The alternative choice of perturbation which gives the second identical Lyapunov expo-
nent consists of replacing the cosines with sines.
Stability of the chaotic solution with respect to period-doubling perturbations is
determined by the sign of the dominant Lyapunov exponent associated with this type

of perturbation.

3.2 Spatial period tripling (n = 3)

When n = 3, solutions have spatial period 27 /3 and so are fixed by the action of 7y /.
For ease of notation, we define w = 27 /3. If the solutions have no other symmetries,
then they are contained in Fix(Zs). There are only two irreducible representations of
Z;3 which are given by

sin w Ccos w

r, =1, rw:[

cosw —sinw ]

The corresponding isotypic decomposition is

X =W & W,,



isotypic component. Thus,

bo(t) | ~ Nealt) |
Alz,t) e W, = A(z,1) = 5 —I—kz_;bk(t) cos 2kx + 1 5 —I—kz_;ck(t) cos 2kx
Alz, t) e Wy = A(z,l) = Z bi(t) sin 2kx + 1 Z cx(t) sin 2kx

k=1 k=1

]2

Az, t) e Wy = A(z,1) = i bi(t) cos (2k — 1)z + ¢ cp(t) cos (2k — 1)z

k=1

]2

Az, t) e Wy = A(z,1) = i bi(t)sin (2k — 1)z + ¢ cp(t)sin (2k — 1)z

o
Il

1

We investigate solutions in Fix(X;), and since we are interested in period—increasing
instabilities we only calculate the dominant Lyapunov exponents associated with Wy
and Wy (on which r, acts as —I) and not that associated with W3 (on which r, acts as
the identity).

It is also possible to consider solutions with period = which are odd functions of .
However, this is very similar to the previous case in that the symmetry of the solutions
is again isomorphic to Z, x Zy and so we do not consider this case in detail.

The other combination of reflectional symmetries, which we considered in [5], is when
solutions are even about one point and odd about another. In particular, we consider
solutions with a spatial period of 7 which are even about the origin and odd about = /4.

To help in the following discussion, we define
nA(x,t) 1= sy817, 2 A(2, 1) = —A(7 /2 — z,1).

If A(z,t)is fixed by n then it is odd about 7 /4. Thus, the group of symmetries of these
solutions includes s; (even about the origin), n (odd about 7/4) and r, (period «).

Defining R = ns; we see that this group, which we call ¥, is generated by R and s;
which satisfy

R*=1, =1, s;R= R sy,

and so is isomorphic to Dy. We note that n = Rs; and r, = R%  There are four

one—dimensional irreducible representations of D4 given by
R=1 81 = I
R=-1 S1 = I
R=1 S1 = -1
R=-1 S1 = —],

but since r, == R? = [ for all of these, perturbations in the corresponding isotypic

components are not useful when considering spatial period doubling. Indeed, these
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The Fourier decompositions of solutions in Wi and W, are

bo(t -
Az, t) € Wy = A(z,t) = 0; ) + Z{bk(t) cos 2kx + cx(t) sin 2kz }
k=1
+1 do(t) + i{dk(t) cos 2kx + ey (1) sin 2kx }
2

k=1

Alz,t) € Wy = A(x,t) = i{bk(t) cos (2k — 1)x 4 ¢x(t) sin (2k — 1)z}

k=1

+1 i{dk(t) cos (2k — 1)z + ex(t) sin (2k — 1)z}

In this case, the solution with period = will be stable with respect to perturbations of
period 27 if the dominant Lyapunov exponent associated with perturbations in W, is
negative and unstable otherwise.

If we have solutions which have period = and in addition are even functions of x, then
the solutions can be found by solving for A on the interval [0, /2] with homogeneous

Neumann boundary conditions and are contained in Fix(¥;) where
El = {]7r7r7317r7\'51}7

which is 1somorphic to Zy x Zy as r, and s; are both generators for Z,. This group
has four one—dimensional irreducible representations, corresponding to the four possible
combinations of r, and s; being +17, and there are four corresponding isotypic compo-

nents given by

Wy, = {Ae X :A.(0,t)=0and A,(x/2,t) =0} = Fix(¥)
W, = {Ae X :A(0,t) =0 and A(x/2,t) =0}

Ws; = {Ae X :A.(0,t)=0and A(x/2,t) =0}

Wy = {Ae X :A(0,t) =0 and A,(r/2,t) =0},

We note that functions in each isotypic decomposition can be distinguished by different
boundary conditions. This observation has been exploited numerically in bifurcation
problems in [3].

By expanding A(z,1) as a Fourier series it is easy to see which modes occur in each



corresponding to, respectively, a rotation of the complex amplitude, space translation,
time translation and a spatial reflection. We note that a special case of the rotation

occurs when § = 7 and this gives another symmetry of order two. As in [5], we define
TA(z, 1) = s2A(x,t) = —A(z, t).

As we are interested in spatial period increasing bifurcations, we consider the CGL
equation on the spatial domain [0,27] together with periodic boundary conditions but
we consider solutions with period 27 /n for some integer n > 1. Thus, perturbations
with period 27, the domain length, represent an increase in the period by a factor of n.
Clearly such solutions are invariant under a translation of their period 27 /n and so are
contained in Fix(Z,) where Z, is the cyclic group of order n generated by ry,/,. We
will also consider solutions which have in addition some reflectional symmetries.

We noted in [5] that the CGL equation usually has three zero Lyapunov exponents.
However, these are all associated with isotypic components which do not involve an

increase in the period and so are not relevant in this context.

3 Period Increasing Bifurcations

We consider solutions with period 27 /n for particular values of n. We will concentrate
on the values of n = 2 and n = 3 since then the generalisation to higher values of n will

be obvious.

3.1 Spatial period doubling (n = 2)

When n = 2, the solutions that we are interested in have spatial period 7 and so are fixed
by the action of r,. If the solutions have no other symmetries then they are contained

in Fix(Zy). The corresponding isotypic decomposition is simply
X =W, e W,
where

Wy, = {Ae X :r,A= A} = Fix(Z,)
Wy, = {AeX:r,A=—A}.



that ¢ satisfies the equivariance condition
v9(A) = g(~vA) forall v €T, (2.2)

where I' is a compact Lie group. For any subgroup ¥ of I', we define the fixed point
space

Fix(£)={Ae€e X:0A=Aforall 0 € £}

and it is easily verified that
g : Fix(¥) — Fix(¥)

for all subgroups ¥ of I' so that the fixed point spaces are invariant under the flow of
the nonlinear equation (2.1).
For each subgroup ¥ of I, there is a unique Y-isotypic decomposition of the space

X given by
X =) oW,
k

where each isotypic component W is the sum of irreducible subspaces which are associ-
ated with one of the irreducible representations of X. If there is a solution A(¢) € Fix(X)
of (2.1), then the X-isotypic components are invariant under the linearisation of ¢ about
A(t), i.e.

ga(A(t)) : Wy — W,

and so there is a block diagonal structure to the linear operator ga(A(%)). Since this
linear operator is involved in the variational equation which is used to compute Lyapunov
exponents, we can associate Lyapunov exponents with a particular isotypic component.

There are two important consequences of this decomposition which are as follows:

1. the Lyapunov exponents can be calculated for perturbations in each of the isotypic

components independently;

2. the motion in Fix(X) will be stable if the dominant Lyapunov exponent associated
with each of the isotypic components other than the trivial one (which is Fix(X))

are negative.

We apply these ideas to the CGL equation (1.1) which has a number of symmetries

given by
0A(z,t) = e?A(z,t), 0€]0,27)
roA(z,t) = Az + a,t), «a€][0,27)
5A(z,t) = Az, t+03), BER
s1A(z,t) = A(—z,1),



odd perturbations.

In this paper we continue the investigation, but consider solutions that have a spatial
period L and investigate their stability with respect to perturbations that have spatial
period kL for some integer k > 1, i.e. spatial period increasing perturbations. These are
often referred to as side-band perturbations. (Note that this is quite different from the
ideas of period—doubling or multiplying that have gained much attention in the past 20
years — these refer to an increase in the temporal period of oscillation by a factor of 2
or more.) This is a generalisation of work by Benjamin and Feir [6] who considered the
stability of travelling periodic water waves to side-band perturbations, and by Eckhaus
[9] who considered the stability of spatially periodic steady state solutions of a PDE
to side-band perturbations. This work was later extended and corrected by Stuart and
DiPrima [14]. The work of Benjamin and Feir was in the context of a Hamiltonian system
which was not the case for the work of Eckhaus. However, the concept of stability with
respect to side-band perturbations is similar in both cases.

Fujisaka et al [10] also consider the stability of chaotic solutions of partial differential
equations but they restrict attention to spatially uniform solutions and their stability
with respect to non-uniform perturbations. This is analagous in some ways to bifurcation
from a trivial (i.e. spatially uniform) solution. We take this process further by considering
bifurcations from nontrivial (i.e. spatially non-uniform) solutions.

The CGL equation plays the role of a model partial differential equation to which
we apply these ideas. However, this approach is of course very general and can be
applied to a wide range of partial differential equations. Also, this approach can easily
be generalised to higher spatial dimensions.

In Section 2, we describe the symmetries of the CGL equation and our approach
to determining stability of these solutions by computing dominant Lyapunov exponents
which are associated with particular isotypic components of the function space. We
concentrate on spatial period doubling and tripling in Section 3 and show how these ideas
generalise to larger period perturbations. Numerical results are presented in Section 4

while the significance of these results is discussed in Section 5.

2 Symmetry and Bifurcation

We briefly review our approach to dealing with symmetry breaking bifurcations in chaotic
systems with symmetry for the sake of completeness. For more details, see [4, 5].

We consider a general evolution equation of the form
Ar=g(A), g:X—-X, (2.1)

where ¢ is assumed to be a nonlinear operator involving spatial derivatives and X is an

appropriate Hilbert space which incorporates the boundary conditions. We also assume



1 Introduction

The formation of patterns in the solutions of partial differential equations which model
many physical systems has been the subject of much interest over many decades. As-
sociated with this are ideas of self organisation in which particular patterns are chosen
by a particular system and this is determined by the stability of different patterns since
only stable solutions will be seen in practice. Mathematically speaking, solutions of
an equation are found in a particular function space. The question of stability can be
a delicate one since it is often necessary to consider the effects of small perturbations
on the solution which are not in the same space as the solution. A simple example is
when a solution has certain symmetry properties but such a solution may be unstable
to perturbations which break the symmetry of the solution.

Studies in pattern formation are usually concerned with either steady state or time
periodic solutions of PDE’s and patterns are often associated with symmetries of the
solutions [11]. However, we consider patterns that occur in spatio-temporally chaotic
solutions of PDE’s, which are defined in terms of their symmetries, and of particular
interest is their stability with respect to perturbations which break the symmetries of
the solution. In a previous paper [5] we considered reflectional symmetries but in this
paper, we consider symmetries which are associated with spatial periodicity.

Spatially periodic boundary conditions are often imposed on solutions of PDE’s.
This has the advantage of reducing an infinite spatial domain to a finite one. However,
when considering the stability of such solutions, it is important to consider the effect
of perturbations which are periodic, but which have a longer period than that of the
solution itself. One example of this occurs in the Kuramoto-Sivashinsky equation in
which there is a nontrivial branch of steady state solutions which bifurcates from the
trivial solution. There are solutions on this branch which are stable with respect to
periodic perturbations whose period is any integer multiple of the period of the solution
(see the numerical results in [12]) and so we would expect to see this solution in the
physical systems modelled by the Kuramoto-Sivashinsky equation.

In a previous paper [5] we investigated chaotic solutions of the complex Ginzburg—

Landau (CGL) equation
A= RA+ (1+iv)V?A— (1 +ip)AlA]?, = €]0,27) (1.1)

with A € C and R,v, p € R that possessed various reflectional symmetries, concentrat-
ing on their stability with respect to perturbations without these symmetries. We found
that for most parameter values, chaotic solutions that were restricted to lie within sym-
metric subspaces were unstable with respect to perturbations out of these subspaces.
However, we did find a small region of parameter space in which there were solutions

that were even about some point in the domain [0,2x) and were stable with respect to
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Abstract

The complex Ginzburg-Landau (CGL) equation on a 1-dimensional domain
with periodic boundary conditions has a number of different symmetries, and
solutions of the CGL may or may not be fixed by the action of these symmetries.
In this paper we investigate the stability of chaotic solutions that are spatially
periodic but have a period that is some fraction of the domain length, L, with
respect to perturbations that have a spatial wavelength equal to the domain length.
We do this by considering the isotypic decomposition of the space of solutions and
finding the dominant Lyapunov exponent associated with each isotypic component.

We find a region of parameter space in which there exist chaotic solutions
with spatial period L/2 and homogeneous Neumann boundary conditions that are
stable with respect to perturbations of period L. On varying the parameters in the
CGL it is possible to arrange for this solution to become unstable to perturbations
of period I while remaining chaotic, leading to a supercritical blowout bifurcation.

For a large number of parameter values checked, chaotic solution with spatial

period /3 were found to be unstable with respect to perturbations of period L.
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