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Abstract

We study the unexpected disappearance of stable homoclinic orbits in regions

of parameter space in a neural field model with one spatial dimension. The

usual approach of using numerical continuation techniques and local bifur-

cation theory is insufficient to explain the qualitative change in the model’s

behaviour. The lack of robustness of the model to small perturbations in pa-

rameters is surprising and the phenomenon may be of broader significance

than just our model. By exploiting the Hamiltonian structure of the time-

independent system, we develop a numerical technique with which we dis-

cover that a small, separate solution curve exists for a range of parameter val-

ues. As the firing rate function steepens, the small curve causes the main curve

to break and stable homoclinic orbits are destroyed in a region of parameter

space. Numerically, we use level set analysis to find that a codimension-one

heteroclinic bifurcation occurs at the terminating ends of the solution curves.

By replacing the firing rate function with a step function, we show analytically

that the bifurcation is related to the value of the firing threshold. We also show

the existence of heteroclinic orbits at the breakpoints using a travelling front

analysis in the time-dependent system.
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1. Introduction

Pattern formation in spatially extended systems is an area of study that has

shown major progress within the last few decades. Systems from a wide range

of biological, geophysical, ecological, physical and material sciences are stud-

ied, making pattern formation an interdisciplinary science. Spatial patterns

can be stationary, travelling or disordered in both space and time, i.e. spatio-

temporally chaotic. Spatially localised solutions are of importance in many dif-

ferent areas, such as the study of localised buckling of long struts [1, 2], nonlin-

ear optics [3], vibrating granular media [4], convection problems [5] and neu-

roscience [6, 7]. In neural field models, stationary spatially localised regions of

high activity (“bumps”) have been studied in the context of working memory,

as single-bump steady state solutions are believed to be the analogue of short-

term memory [6, 8–10]. Although these systems are quite diverse, they often

display similar behaviour. Given this, it is of interest that the systems usually

have key features in common such as bistability, invariance under translation

and spatial reflection, and are represented by differential equations that are at

least fourth-order in space. The time-independent system can often be written

as a dynamical system in space, where spatially localised solutions correspond

to homoclinic orbits to the fixed point at the origin. Homoclinic snaking is also

a feature in many systems [2, 11–15], with some of the best studied examples

being fourth-order partial differential equations [1, 2, 15].

By exploiting the properties of higher order reversible Hamiltonian equa-

tions, advances have been made in the understanding of homoclinic solutions

in pattern forming systems. One such example is the Swift-Hohenberg equa-

tion in both one and two spatial dimensions [11–13, 16]. We refer the reader

to the work of Champneys [1] for a review of both the theory and application

of homoclinic orbits to equilibria in even-order reversible systems in four or

more dimensions. Reversible and Hamiltonian systems have some important

properties which we briefly discuss here. In a reversible, non-Hamiltonian sys-

tem, symmetric homoclinic orbits are codimension zero, therefore they persist

under a perturbation that preserves reversibility. However, asymmetric homo-

clinic orbits are codimension one and are destroyed by a generic perturbation

that breaks the conserved quantity but still preserves reversibility [1]. In a non-

reversible Hamiltonian system, both symmetric and asymmetric homoclinic
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orbits are codimension-zero. This is also true for a Hamiltonian-reversible sys-

tem.

In this paper we extend the work of Laing and Troy [7, 17] who found mul-

tiple bump solutions of a particular neural field model. We write the steady

states of this model as solutions of a fourth-order reversible Hamiltonian ODE,

and use these properties to investigate how steady states vary as parameters

change.

Laing and Troy [7, 17] studied the integro-differential equation

∂u(x, t)
∂t

= −u(x, t) +
∫ ∞
−∞

w(x− y)f [u(y, t)] dy (1)

where

f(u) = 2 exp [−r/(u− θ)2]Θ(u− θ), (2)

Θ is the Heaviside step function and

w(x) = e−b|x|(b sin |x|+ cosx). (3)

Here, u(x, t) is the average voltage, or activity level, of a neuronal population

at spatial position x and time t. The coupling function w(x) is the distance-

dependent strength of connectivity between neuronal elements and is even.

The parameter b governs the rate at which oscillations inw decay with distance.

The choice of w was motivated by labelling studies showing that approximate

periodic stripes are formed by coupled groups of neurons in the prefrontal cor-

tex [18–20]. The firing rate function f(u) models neurons firing once threshold

is reached and tends to a maximal limit as the stimulus is increased. Parameter

θ is the firing threshold and r is the steepness parameter.

In [7], multiple bump steady states of (1), which are homoclinic orbits to

the fixed point at the origin, were followed as b was varied. By plotting the L2

norm of u as a function of b, a “snaking” phenomenon was seen in the solution

branches. “Snaking” has been seen previously in higher order scalar systems

and in systems with homoclinic orbits [2, 11–15]. The role of r was briefly dis-

cussed, and it was found that increasing r by 5% led to a qualitative (although

quite minor) change in the bifurcation diagram. This was further investigated

by Elvin [21], who found large “breaks” in curves of solutions when r was de-

creased by 5− 10%. In general, we expect a qualitative model such as (1) to be

robust to small perturbations in parameters, therefore we want to understand
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what is causing the breaks. We show below that the steady states of (1)-(3) can

be described by a four dimensional reversible Hamiltonian system. Our goal

is to exploit the Hamiltonian structure and reversibility properties to explain

the qualitative changes in the behaviour of the model, using two different ap-

proaches.

Firstly, we develop a numerical technique to find all homoclinic orbits of the

system; these orbits correspond to the spatially localised steady states of (1)-(3).

Numerically, we find a separate solution curve which exists when the firing

rate function is sufficiently steep. This curve has not been reported previously

and cannot be found using standard continuation techniques. Using level set

analysis, we show that a codimension-one bifurcation, corresponding to the

termination of solution curves, occurs at certain parameter values.

Secondly, we replace the firing rate function in (2) by a step function so

that analytical techniques can be used to find travelling waves in the time-

dependent system. We find the speed of travelling fronts, showing that station-

ary fronts exist at the same parameter values for which break-points in the solu-

tion curves exist. Using the Hamiltonian structure of the system we show that

heteroclinic connections between fixed points also occur at the breakpoints.

The structure of the paper is as follows. In Sec. 2 we derive the ODE govern-

ing steady states of (1)-(3) and discuss its properties. In Sec. 3 we take a phase

space approach and derive a map, certain solutions of which correspond to

homoclinic orbits. The Hamiltonian structure is exploited in Sec. 4, while in

Sec. 5 we discuss the consequences of replacing the firing rate function by the

Heaviside step function. We conclude in Sec. 6.

2. The model and its properties

The model in (1)-(3) supports spatially-uniform steady states, spatially-lo-

calised solutions such as homoclinic orbits and both stationary and travelling

wave fronts (heteroclinic connections between a resting state and an excited

state), and spatially-periodic patterns. We have previously shown the existence

of both stable and transient spatially-periodic patterns beyond a Turing insta-

bility in (1)-(3) in one and two spatial dimensions [22]. Both the non-trivial spa-

tially uniform steady states, spatially-localised solutions and spatially-periodic

solutions depend upon the parameter b.
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For now, we consider time-independent solutions of (1) for which

lim
|x|→∞

(u, u′, u′′, u′′′) = (0, 0, 0, 0), (4)

i.e. stationary, spatially-localised solutions. These solutions satisfy the integral

equation

u(x) =
∫ ∞
−∞

w(x− y)f [u(y)] dy. (5)

Using the particular form of w in (3), eqn. (5) can be transformed into a differ-

ential equation by the use of Fourier transforms.

2.1. Derivation of ODE

Noting that (5) involves a spatial convolution and taking the Fourier trans-

form in space of this equation we obtain

F [u] = F [w]F [f(u)] (6)

where F [·] denotes the Fourier transform. For w as given by (3),

F [w] =
4b(b2 + 1)

s4 + 2s2(b2 − 1) + (b2 + 1)2
(7)

where s ∈ R is the transform variable. Substituting (7) into (6) and rearranging

we obtain (
s4 + 2s2(b2 − 1) + (b2 + 1)2

)
F [u] = 4b(b2 + 1)F [f(u)]

which using Fourier transform identities can be written

F [u′′′′ − 2(b2 − 1)u′′ + (b2 + 1)2u] = F [4b(b2 + 1)f(u)] (8)

where prime indicates derivative with respect to x. Applying inverse Fourier

transforms to (8) we obtain the ODE

u′′′′ − 2(b2 − 1)u′′ + (b2 + 1)2u = 4b(b2 + 1)f(u) (9)

subject to the boundary conditions in (4). Solutions of (9) which are homoclinic

to the origin correspond to spatially-localised steady states of (1). This tech-

nique of using Fourier transforms to convert integral equations to differential

equations has been used several times before [6, 17, 23–26]. Equation (9) has a

number of important properties which we now discuss.
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2.2. Hamiltonian structure and reversibility

Firstly, writing (9) as a system of four first-order ODEs and linearising them

about the origin, we find that the Jacobian of this system has the four eigenval-

ues±b±i, i.e. the origin is a bifocus, with a two-dimensional unstable manifold

and a two-dimensional stable manifold. Now (9) can be written as a reversible

Hamiltonian system. For simplicity, write (9) as

u′′′′ + a1u
′′ + a2u+ g(u) = 0 (10)

where a1 = 2(1− b2), a2 = (b2 + 1)2 and g(u) = −4b(b2 + 1)f(u). Defining the

variables v, pu and pv via

u′ = v (11)

v′ = pv (12)

p′u = a2u+ g(u) (13)

p′v = −pu − a1v (14)

and defining the Hamiltonian

H(u, v, pu, pv) = puv +
p2
v

2
+
a1v

2

2
− a2u

2

2
−G(u) (15)

where

G(u) ≡ −8b(b2 + 1)
∫ u

0

exp [−r/(z − θ)2]Θ(z − θ) dz,

we see that the Hamiltonian is conserved (H ′ = 0) and the dynamics are given

by

u′ =
∂H

∂pu
(16)

v′ =
∂H

∂pv
(17)

p′u = −∂H
∂u

(18)

p′v = −∂H
∂v

(19)

Note that G′(u) = g(u). The system in (16)–(19) is invariant under the space-

reversing symmetry

R(x, u, v, pu, pv) 7→ (−x, u,−v,−pu, pv),

that is, it is reversible.
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3. Using a map

Having established the Hamiltonian structure of (9), we take a phase space

approach and derive a two-dimensional map, certain solutions of which cor-

respond to homoclinic orbits to the origin of (9). By doing this we reduce the

problem of finding single-bump homoclinic orbits to finding the zeros of a real

scalar function.

3.1. Derivation of a map

We are interested in homoclinic orbits to the fixed point at the origin of (9).

Homoclinic orbits of interest lie in W s ∩ Wu where W s and Wu denote the

stable and unstable manifolds of the origin, respectively. In a Hamiltonian sys-

tem, energy is conserved and the orbits of the system must lie on the energy

surfaces. Therefore homoclinic orbits lie on the energy surfaces, or level sets,

H(u) = e ∈ R, where e is a constant. Since H = 0 at the origin, we only con-

sider solutions on the zero energy surface, H = 0, which reduces the dimen-

sion of the system under consideration from four to three. Since (9) is linear for

u < θ we have explicit expressions for both the stable and unstable manifolds

of the origin, and thus we need only consider the solutions of (9) for θ < u. We

choose two sections that effectively reduce the system dimension from three to

two. Let Σ0 be the two-dimensional section

Σ0 = {(u, v, pu, pv)|u = θ, v > 0, H = 0}

Now the value of (v, pv) defines a unique point on Σ0, since if H = 0 then pu
can be found in terms of u, v and pv , using (15). We also define the section Σ1

by

Σ1 = {(u, v, pu, pv)|u = θ, v < 0, H = 0}

Note that Σ0 and Σ1 are two halves of a single plane (see Fig. 1). Now for u < θ,

solutions on the unstable manifold of the origin, Wu, can be written as

u(x) = ebx(A sinx+B cosx)

for some A,B ∈ R. Using the translational invariance of the system we can

choose u(0) = θ, i.e. solutions on Wu ∩ Σ0 can be written

u(x) = ebx(A sinx+ θ cosx) (20)
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with −bθ < A, since we need 0 < v on Σ0. Note that only one parameter, A, is

needed to describe a point on Wu ∩ Σ0.

We define the mapping P : Σ0 → Σ1 for all y0 ∈ Σ0 as resulting from

numerically integrating (9) with y0 as an initial condition until the solution hits

Σ1 for the first time, at the point we define to be y1. In practice we will only

consider points y0 ∈Wu ∩Σ0, where Wu ∩Σ0 is a one-dimensional manifold.

For such points, as long as −bθ < A, the solution of (9) through y0 will always

transversally meet Σ1 for some x > 0, and thus P is defined for these y0.

From (20) our initial condition for (9) is
u(0)

u′(0)

u′′(0)

u′′′(0)

 =


θ

A+ bθ

−θ + 2Ab+ b2θ

−A− 3bθ + 3b2A+ b3θ

 (21)

which can be written in Hamiltonian coordinates using (11)-(14) as
u(0)

v(0)

pu(0)

pv(0)

 =


u(0)

u′(0)

−a1u
′(0)− u′′′(0)

u′′(0)

 (22)

Using (21)-(22) we can write

Wu ∩ Σ0 = {(u, v, pu, pv)|u = θ, v > 0, H = 0, pv = 2bv − θ(b2 + 1)}

which can be visualised as a straight line in the right half of the (v, pv) plane.

Because of the reversibility of the system, the stable manifold of the origin,W s,

is given by W s = R(Wu). Thus

W s ∩ Σ1 = {(u, v, pu, pv)|u = θ, v < 0, H = 0, pv = −2bv − θ(b2 + 1)}

which forms another straight line in the left half of the (v, pv) plane.

To find homoclinic orbits to the origin with u > θ over only one interval (a 1-

bump solution), we choose a y0 ∈Wu∩Σ0 and let y1 = P (y0). If y1 ∈W s∩Σ1

then y0 lies on such a homoclinic orbit, as shown in Fig. 1. Let the coordinates

of y0 ∈ Wu ∩ Σ0 be (v0, p0
v) and y1 ∈ W s ∩ Σ1 be (v1, p1

v), and suppose that

these points lie on a homoclinic orbit to the origin. If v0 = −v1 then y0 lies on a

symmetric homoclinic orbit, otherwise it is on an asymmetric orbit. In practice
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for a general y0 ∈Wu∩Σ0 we calculate the signed vertical distance, h, between

P (y0) and W s ∩ Σ1:

h = p1
v − [−2bv1 − θ(b2 + 1)] = p1

v + 2bv1 + θ(b2 + 1)

Recalling that a point on Wu ∩ Σ0 can be parameterised by A we can regard h

as being a scalar function of A; to find homoclinic orbits to the origin we just

need to find zeros of h(A). Note that any N -bump solution can be found by

modifying the mapping P to terminate on the N th intersection of Σ1, crossing

in the appropriate direction.

3.2. Numerical Results

For all of the analyses in this section we set θ = 1.5. We initially set r =

0.095. By varying b, we use the mapping derived above to search different

regions of parameter space and find all existing homoclinic orbits. For b =

0.25, we find that the mapping is continuous, as seen in Fig. 2 where a plot

of W s ∩ Σ1, Wu ∩ Σ0 and the mapping of initial conditions on Wu ∩ Σ0 are

shown. The circles on Wu ∩ Σ0 indicate the two initial conditions which map

to W s ∩ Σ1 (also indicated by circles), therefore these two initial conditions lie

on two homoclinic orbits. The orbits are symmetric as the pv coordinate of each

initial condition on Wu ∩ Σ0 is unchanged under the mapping to W s ∩ Σ1.

To find the solution curves, we convert the solutions found with the map-

ping to full solutions over the finite domain x ∈ [−15π, 15π], as with this size

domain the boundary conditions in (4) are satisfied. The software package

AUTO [27] is used for continuation and solving bifurcation problems in ordi-

nary differential equations with one or more free parameters and includes the

package HomCont for the bifurcation analysis of homoclinic orbits. Therefore

we write the ODE in (9) as a system of first order equations, take a full solu-

tion as a starting solution, and use AUTO to compute the solution curves by

varying the parameter b. We find the solution curves shown in the top plot of

Fig. 3 where the global maximum of u is plotted as a function of b. The sym-

bols Γ1,Γ3 and Γ5 indicate families of 1-, 3- and 5-bump solutions respectively.

The results agree with the solution curves found in [7] where there are two

single-bump symmetric homoclinic orbits at b = 0.25. We vary b but no new

solution curves are found using our two-dimensional mapping (for r = 0.095)

and the solution curves are continuous. Solid (dotted) lines show branches of
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stable (unstable) solutions. Solution stability is determined numerically using

an eigenvalue analysis of the spatially perturbed full system [21]. We see that

the system is multi-stable as N -bump solutions, in general, come in pairs of

one stable solution and one unstable solution.

We now decrease r to 0.090. By varying b and using our mapping, we find

unexpected solutions which lie on a separate curve inside the main solution

curve, centred approximately about b = 1 (middle plot of Fig. 3). The small

separate curve lies very near, but does not quite touch, the main solution curve

which is still continuous. This separate solution curve has not been reported

previously in the literature and could not be found using standard continua-

tion methods as we previously had no known solution on the small curve.

As r decreases (making f steeper), the separate solution curve meets the

main solution curve at (b, r) = (1.0167, 0.0899) (4 d.p.). As we decrease r

further, a “break” develops in the main solution curve and the gap widens

with a spiral terminating each side of the break. In the bottom plot of Fig. 3

(r = 0.085), there is a very clear gap where no stable homoclinic orbits ex-

ist. The terminating ends of the break in the solution curve appear to end in

spirals. It has not been possible to numerically determine the stability of the

solutions on spirals, however, we expect that stability changes in saddle-node

bifurcations.

Figure 4 shows results from simulations of the full system (1)–(3) as b is

varied across the break seen in the bottom panel of Fig. 3. We use the same

initial condition (shown in the top panel of Fig. 4) and three different values

of b. For b = 0.8 and 1.2 we find stable 1-bump solutions but for b = 1 (i.e. in

the break seen in the lower panel of Fig. 3), two fronts travelling in opposite

directions are observed, resulting in an expanding region of high activity.

In Fig. 5 we take a closer look at the small curve that exists for r = 0.090

and see that a kink has appeared in the main solution curve near b = 1 where

the distance between the main curve and the small curve is at a minimum. At

r = 0.095, the small solution curve did not exist and there was no kink in the

main solution curve. The ends of the small solution curve seem to terminate

in spirals. Figure 6 shows the intersection of the small solution curve with

the main solution curve at (b, r) = (1.0167, 0.0899) (4 d.p.) where two tails

ending in spirals are formed. These two tails become the terminating ends on
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each side of the break in the main solution curve as r decreases from 0.0899.

The main solution curve breaks around b = 1 and here, the coefficient of the

second deriviative in the ODE in (9) vanishes. We plot solutions at b = 0.932 for

r = 0.090 and r = 0.0899 in Fig. 7 to see if there are qualitative differences in the

solutions. In the left plot we show solutions from the main curve (solid line)

and the small curve (dotted line) from Fig. 5 for r = 0.090. At this particular

value of b, the solution on the small curve is near the terminating spiral and is

a “dimple” bump solution, that is, the solutions have a positive second spatial

derivative at the centre of the bump. The solution is also broader than the

single-bump solution on the main curve. In the right plot of Fig. 7 we do the

same for the main curve (solid line) and the left tail formed by the small curve

(dotted line) in Fig. 6 for r = 0.0899. Again, near the terminating spiral on the

tail, the solution is a “dimple” bump and is a broader solution than that on the

main curve.

We are interested in how the small branch of solutions from Fig. 5 changes

as r is varied. In Fig. 8 we plot the curve for five different values of r. The

topmost curve is the small solution curve at r = 0.090. Continuation methods

reveal a shrinking of this curve as r increases beyond 0.090. At r = 0.091875,

the two endpoints of the curve meet, creating an isola [28]. The isola exists

only briefly and disappears quickly as r increases further. Therefore the small

solution curve only exists for a small range of r. To see how the solutions

change on the curves in Fig. 8, we plot the solution at b = 1 from four of the

curves in Fig. 9. As the small curve shrinks, the solution becomes progressively

broader and eventually, on the isola that exists at r = 0.091875, becomes a

“dimple” bump. All solutions on the isola are “dimple” bump solutions.

We now know how this particular branch of solutions is created, that it

eventually meets the main curve, causing it to break as r decreases and creating

a gap in the main solution curve where no stable homoclinic orbits exist.

Although the mapping reduces the problem of finding homoclinic orbits

to finding the zeros of a real scalar function, the function obtained is not nec-

essarily continuous so it can be difficult to make conclusions about the global

existence of solutions and global bifurcations. The existence of a small separate

branch of solutions partially explains the gap in the curve, but we want to un-

derstand why the curves end and what causes the gap to widen as f becomes

steeper. In the next section we use level set analysis to find a global bifurcation
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at the terminating ends of the solution curves.

4. Heteroclinic connections

Homoclinic orbits lie on energy surfaces, therefore the topology of the level

sets {u : H(u) = e, e ∈ R} can change only where the level set contains a critical

point. These critical points are the fixed points of the system. Up until now, we

have only considered homoclinic orbits to the fixed point at the origin; we now

study other fixed points of the system to understand what causes the curve of

solutions to break and destroy homoclinic orbits to the origin.

4.1. Theory

Depending on parameter values, (9) can have up to three fixed points. One

is the origin, Z0, which exists when 0 < θ. The other two are referred to as

Z1 for which (u, u′, u′′, u′′′) = (u1, 0, 0, 0) and Z2, for which (u, u′, u′′, u′′′) =

(u2, 0, 0, 0), where u1 < u2 and u1 and u2 are both roots of

u =
8b exp [−r/(u− θ)2]

b2 + 1

Homoclinic orbits to the origin lie on the zero energy surface, the level set H =

0, and can only be destroyed if this level set contains a fixed point. Using (15),

we find H at Z1 and Z2 as a function of b for the three different values of r:

r = 0.095, 0.090, 0.085, as in Sec. 3.2. By doing this we can determine if either

of the nonzero fixed points can meet the zero energy surface, H = 0. Note that

the value of H at Z1 and Z2 must be found numerically.

4.2. Results

Figure 10 shows the value of the Hamiltonian (H) at the two non-trivial

fixed points as a function of b (bottom row) and solution curves (top row) as a

function of b for three different values of r. For r = 0.095 (left column), both

H(Z1) and H(Z2) are negative for all b and the solution curves are continuous.

For r = 0.090 (middle column), there are two values of b for which H(Z2) = 0

and these values of b correspond to the endpoints of the small separate solution

curve in the top panel. So there are two values of b for which the fixed point

Z2 meets the zero energy surface H = 0. For r = 0.085 (right column), there is
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a large break in the main solution curve and the terminating ends of the break

correspond to the values of b for which H(Z2) = 0.

For parameter values such that H(Z2) = 0, a codimension-one bifurcation

occurs in which the stable and unstable manifolds of Z0 and Z2 intersect, de-

stroying all homoclinic orbits to the origin. This bifurcation is similar to the

codimension-two heteroclinic bifurcation called a T -point or terminal point,

studied in two-dimensional parameter space in the Lorenz equations [29]. In

our system, as we move closer to the break points in the solution curves shown

in Fig. 10, the solutions spend longer near the fixed point Z2 and thus develop

a broad “plateau” in their centre. At each break point, Z2 intersects the homo-

clinic orbit, forming a heteroclinic orbit between Z2 and the origin.

We conjecture that the end points of the solution curves occur whereH(Z2) =

H(Z0) = 0 as this is the behaviour we have seen for r = 0.085 and r = 0.090.

Figure 11 shows the curve in (b, r) parameter space whereH(Z2) = H(Z0) = 0.

At r = 0.0899 (4 d.p.), the separate solution curve meets the main curve. In

Fig. 11 the horizontal line at r = 0.0899 intersects the plotted curve at the two

values of b where the endpoints of the small curve occur. Above the horizontal

line the small separate solution curve exists for a small range of r > 0.0899 and

the plotted curve gives the endpoints of this separate solution curve. Below

the horizontal line, the separate solution curve no longer exists and the plotted

curve gives the the terminating ends of the main solution curve.

5. Heaviside firing rate function

So far, many of our results have had to be calculated numerically, due to

the presence of the nonlinear function (2). More analytical progress can be

made if the firing rate function f is replaced by a piecewise linear function [6]

or a Heaviside step function [8, 24]. Here we consider the case when f(u) =

2Θ(u− θ), which is the result of taking r → 0 in (2).

In most neural field models, some form of lateral inhibition is required for

stable stationary bumps to exist [8, 10]. It has been shown previously that

spike-frequency adaptation changes travelling waves from fronts to bumps in

a one-dimensional single population model [30]. More recently, Kilpatrick and

Bressloff [31] found that stable stationary bumps can coexist with fronts in an

excitatory neuronal network with synaptic depression, however, bumps can-
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not exist in the presence of adaptation. In this section we show that our model,

with decaying oscillatory connectivity but no negative feedback, can support

travelling waves in the form of fronts as well as stable stationary bumps.

5.1. Using a Map

The derivation of a map can be carried out in a similar way to that in

Sec. 3.1, the only difference being that we can now analytically find u(x) when

θ < u(x), rather than having to numerically integrate (9). The solutions found

are shown in Fig. 12, and there is a wide range of b for which no stable ho-

moclinic orbits can be found. The values of b for which the solution curves

terminate agree with the values of b corresponding to r = 0 in Fig. 11. Thus

it seems that the terminating ends of the solution curves for r = 0 must occur

when a nonzero fixed point of the system meets the zero energy surface. We

now investigate this further by finding heteroclinic orbits of the system.

5.2. Heteroclinic connections

As before, we find fixed points of (9). The origin is a fixed point for θ > 0

and there exists one other, Ẑ, for which (u, u′, u′′, u′′′) = (8b/(b2 + 1), 0, 0, 0),

when 0 < θ < 8b/(b2 + 1). Using (15) we see that at Ẑ, H = 32b2 − 8b(b2 + 1)θ,

thus Ẑ will lie on the level set H = 0 when

θ =
4b

b2 + 1
. (23)

Setting θ = 1.5 in (23) we find that this equation is satisfied when b = 0.4514 or

2.2153 (4 d.p.) which are exactly the endpoints of the curves in Fig. 12 and also

the values of b at which the curve in Fig. 11 touches the b axis. Furthermore,

eqn. (23) cannot be satisfied by any real b if θ > 2, which implies that the curve

in Fig. 12 will not break if θ > 2. It appears that the breaks in the solution curve

are related to the firing threshold, θ.

5.3. Stationary fronts

The analysis so far has been concerned with time-independent solutions

of (1)-(3), which satisfy the ODE (9). However, it is also possible that (1)-(3)

supports travelling fronts or pulses. A wave travelling with constant speed is

stationary in a coordinate frame moving with an appropriate constant speed,

so we now study time-dependent solutions of (1), utilizing a moving coordi-

nate frame.
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5.3.1. Front Construction

Following [32], by using a Green’s function in time the solution of (1) can

be written in integral form

u(x, t) =
∫ ∞
−∞

∫ ∞
0

η(s)w(y)f [u(x− y, t− s)] ds dy (24)

where η(t) = Θ(t)e−t, and this form can be used to construct travelling wave

solutions. We now set f(u) = 2Θ(u−θ) and explicitly construct travelling front

solutions that join the states u = 0 and u = 8b/(b2 + 1). For certain parameter

values these fronts are stationary, and these parameter values are found to be

those for which heteroclinic connections between the origin and Ẑ were found

in Sec. 5.2.

Define the travelling coordinate ξ = x − ct, where c is a speed, and let

U(ξ, t) = u(x− ct, t). Then (24) can be written

U(ξ, t) =
∫ ∞
−∞

∫ ∞
0

η(s)w(y)f [U(ξ − y + cs, t− s)] ds dy. (25)

A travelling wave solution of (24) is a time-independent solution of (25), say

q(ξ), which satisfies

q(ξ) =
∫ ∞
−∞

∫ ∞
0

η(s)w(y)f [q(ξ − y + cs)] ds dy. (26)

If we define

φ(ξ) ≡
∫ ∞
−∞

w(y)f [q(ξ − y)] dy (27)

then (26) can be written

q(ξ) =
∫ ∞

0

η(s)φ(ξ + cs) ds. (28)

Suppose that θ < q(ξ) for ξ < 0, q(0) = θ and q(ξ) < θ for 0 < ξ, i.e. q is a front.

Then

φ(ξ) = 2
∫ ∞
ξ

w(y) dy. (29)

Since q(0) = θ, we see from (28) that

θ =
∫ ∞

0

η(s)φ(cs) ds (30)

which can be solved for the speed c in terms of other parameters [21]. Station-

ary fronts satisfy

θ =
∫ ∞

0

η(s)φ(0) ds = 2
∫ ∞

0

w(y) dy =
4b

b2 + 1
(31)
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since
∫∞
0
η(s) ds = 1, which is the same expression as found in (23). Using the

expression for travelling fronts in (28), we find the front speed, c, as a function

of b. The results are shown in Fig. 13. Stationary fronts exist at b = 0.451 and

b = 2.215 which are the same values of b at which the endpoints of the solution

curves in Fig. 12 occur.

5.3.2. Front Stability

The stability of the travelling fronts just constructed can be determined by

linearising the dynamics about them and constructing an Evans function, as

has been done previously for neural field models with a Heaviside firing rate

function [24, 30, 32–34]. We first let U(ξ, t) = q(ξ) + u(ξ, t) where q(ξ) satis-

fies (26), and expand (25) to first order in u, obtaining

u(ξ, t) =
∫ ∞
−∞

∫ ∞
0

η(s)w(y)f ′[q(ξ − y + cs)]u(ξ − y + cs, t− s) ds dy. (32)

To find bounded continuous solutions on R for each t we look for solutions of

the form u(ξ, t) = u(ξ)eλt. Substituting this into (32) we obtain

u(ξ) =
1
c

∫ ∞
−∞

∫ ∞
ξ−y

η(s/c− ξ/c+ y/c)w(y)f ′[q(s)]u(s)e−λ(s−ξ+y)/c ds dy. (33)

Defining z = q(s) and recalling that f ′(z) = 2δ(z − θ), (33) can be written

u(ξ) =
∫ ∞
−∞

∫ q(∞)

q(ξ−y)
η(q−1(z)/c− ξ/c+ y/c)w(y)e−λ(q−1(z)−ξ+y)/c

× 2δ(z − θ)
c|q′(q−1(z))|

u(q−1(z)) dz dy, (34)

and using the fact that q−1(θ) = 0, this simplifies to

u(ξ) =
2u(0)
c|q′(0)|

∫ ∞
−∞

η(y/c− ξ/c)w(y)e−λ(y−ξ)/c dy. (35)

Evaluating (35) at ξ = 0, using the fact that η(y) = 0 for y < 0, and rescaling y

we obtain

u(0) =
2u(0)
|q′(0)|

∫ ∞
0

η(y)w(cy)e−λy dy, (36)

which has nontrivial solutions only if E(λ) = 0, where

E(λ) = 1− 2
|q′(0)|

∫ ∞
0

η(y)w(cy)e−λy dy. (37)
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We identify E(λ) as the Evans function, and its roots are the isolated eigenval-

ues associated with the linearisation of (25) about the travelling wave solution

q. It is straightforward to show that E(0) = 0, as expected, reflecting the trans-

lational invariance of the problem. Defining

H(λ) =
∫ ∞

0

η(y)w(cy)e−λy dy (38)

and using the fact that E(0) = 0, one can write

E(λ) = 1− H(λ)
H(0)

(39)

thus avoiding the explicit construction of q′(0). When c = 0, E(λ) = λ/(1 + λ),

independent of the coupling function w. In this case the only root of E(λ) is

λ = 0.

It can be shown that the essential spectrum associated with the stability of

q lies strictly in the left half of the complex plane [32], and combining this with

the result immediately above, we see that stationary front solutions of (24) are

linearly stable.

5.4. Results

We now put together the results from Secs. 5.2 and 5.3 by plotting the solu-

tion curves, the speed of travelling fronts and the Hamiltonian at the nonzero

fixed point Ẑ as functions of b in Fig. 14. The breaks in the solution curves oc-

cur for the same two values of b for which stationary fronts (heteroclinic con-

nections) exist and for the parameter values at which the Hamiltonian of the

nonzero fixed point is equal to zero. So — for this value of θ — at two values

of b a global bifurcation creates a heteroclinic connection at the breakpoints of

the solution curves, destroying the homoclinic orbits in the region of the break.

6. Discussion

We have examined the unexpected disappearance of stable homoclinic or-

bits in certain regions of parameter space in a neural field model with one spa-

tial dimension, using the decaying oscillatory coupling function and smooth

firing rate function studied previously in [7, 21]. For a particular firing thresh-

old, we have shown that the solution curve of stable homoclinic orbits to the
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fixed point at the origin breaks when the firing rate function is sufficiently

steep, destroying stable homoclinic orbits in a region of parameter space. The

sudden break in the solution curve is unexpected and unexplained. Through

the use of Fourier transforms, the equation satisfied by the steady state was

written as a fourth-order reversible Hamiltonian system [7] and the properties

of such systems were exploited to explain the phenomenon.

Using a two-dimensional mapping we have reduced the problem of finding

homoclinic orbits to finding the zeroes of a real scalar function and discovered

that a small separate solution curve exists when the firing rate function is suf-

ficiently steep. Standard continuation techniques were insufficient to discover

this curve as we had no starting solution on that particular branch of solutions.

We have found that as the firing function steepens, this small curve merges

with the main solution curve, causing it to break and the gap to widen. Within

the region of the break, no stable homoclinic orbits to the fixed point at the

origin exist and a codimension-one bifurcation occurs at the breakpoints in the

solution curve, where the stable and unstable manifolds of the fixed point at

the origin and a nonzero fixed point collide. There appear to be spirals at the

terminating ends of the solution curve.

By restricting the firing rate function to be a multiple of the Heaviside step

function, we have used analytical techniques to show that the firing thresh-

old has to be at an appropriate level for the solution curves to break and that

stationary fronts (heteroclinic connections) exist at the breakpoints. Although

the global bifurcation studied in this paper has not been previously seen in a

neural field model, the bifurcation is very similar to the codimension-two bi-

furcation seen in two-dimensional parameter space in the Lorenz equations (a

T-point) [29].

The model (1)-(3), and other similar models [6, 10, 24, 33], have been used

to investigate working memory, as stable single-bump solutions are thought

to be the analogue of short-term memory. We have demonstrated here how a

specific model can lose stable single-bump solutions as parameters are varied.

This gives insight into some of the features that such a model must have in

order for it to be able to support such solutions. It is interesting to note that

one of the solutions seen in the break in Fig. 3 is a travelling front, similar to

those observed in slice experiments [35, 36].
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In general, we want a qualitative model to be robust to small changes in

parameters, however, the phenomena we have seen occurs in a certain region

of parameter space that has not been previously studied and the rich behaviour

displayed is of interest in its own right. Further areas of study arise out of the

work presented here. We do not yet know what causes the isola to spring

into life as the firing rate function steepens nor do we fully understand the

apparent spirals occurring at the terminating ends of the solution curves. As

stationary fronts occur at the breakpoints in the solution curves, we also note

an exploration of travelling fronts in the region of discontinuity of the solution

curves, as shown in Fig. 4, as a topic for further study.

Acknowledgements

The first author thanks E. Knobloch for useful discussions.

References

[1] A. R. Champneys. Homoclinic orbits in reversible systems and their ap-

plications in mechanics, fluids and optics. Physica D, 112:158–186, 1998.

[2] G. W. Hunt, M. A. Peletier, A. R. Champneys, P. D. Woods, M. Ah-

mer Wadee, C. J. Budd and G. J. Lord. Cellular buckling in long structures.

Nonlinear Dyn., 21:3–29, 2000.

[3] M. Tlidi, P. Mandel and R. Lefever. Localized structures and localized

patterns in optical bistability. Phys. Rev. Lett., 73:640–643, 1994.

[4] P. B. Umbanhowar, F. Melo and H. L. Swinney. Localized excitations in a

vertically vibrated granular layer. Nature, 382:793, 1996.

[5] J. H. P. Dawes. Localized convection cells in the presence of a vertical

magnetic field. J. Fluid Mech., 570:385–406, 2007.

[6] Y. Guo and C. Chow. Existence and Stability of Standing Pulses in Neural

Networks: I. Existence. SIAM J. Appl. Dyn. Syst., 4:217–248, 2005.

[7] C. R. Laing, W. C. Troy, B. Gutkin, and G. B. Ermentrout. Multiple bumps

in a neuronal model of working memory. SIAM J. Appl. Math., 63(1):62–97,

2002.

19



[8] S. Amari. Dynamics of pattern formation in lateral-inhibition type neural

fields. Biol. Cybern., 27(2):77–87, 1977.

[9] G. B. Ermentrout. Neural networks as spatio–temporal pattern–forming

systems. Rep. Prog. Phys., 61:353–430, 1998.

[10] D. J. Pinto and G. B. Ermentrout. Spatially structured activity in synap-

tically coupled neuronal networks: II. Lateral inhibition and standing

pulses. SIAM J. Appl. Math., 62(1):226-243, 2001.

[11] J. Burke and E. Knobloch. Localized states in the generalised Swift-

Hohenberg equation. Phys. Rev. E., 73:056211, 2006.

[12] J. Burke and E. Knobloch. Homoclinic snaking: Structure and stability.

Chaos, 17:037102, 2007.

[13] J. Burke and E. Knobloch. Snakes and ladders: Localized states in the

Swift-Hohenberg equation. Phys. Lett. A, 360:681–688, 2007.

[14] E. Knobloch. Spatially localized structures in dissipative systems: open

problems. Nonlinearity, 21:T45–T60, 2008.

[15] L. A. Peletier and W. C. Troy. Spatial patterns : higher order models in physics

and mechanics. Birkhauser, Boston, 2001.

[16] D. J. B Lloyd, B. Sandstede, D. Avitabile and A. R. Champneys. Localized

hexagon patterns of the planar Swift-Hohenberg equation. SIAM J. Appl.

Dyn. Syst., 7(3):1049–1100, 2008.

[17] C. R. Laing and W. C. Troy. PDE methods for nonlocal models. SIAM J.

Appl. Dyn. Syst., 2(3):487–516, 2003.

[18] B. S. Gutkin, G. B. Ermentrout and J. O’Sullivan. Layer 3 patchy re-

current excitatory connections may determine the spatial organization of

sustained activity in the primate prefrontal cortex. Neurocomputing, 32–

33:391–400, 2000.

[19] J. B. Levitt, D. A. Lewis, T. Yoshioka and J. S. Lund. Topography of pyra-

midal neuron intrinsic connections in macaque monkey prefrontal cortex

(areas 9 and 46). J. Comput. Neuro., 338:360–376, 1993.

20



[20] D. A. Lewis and S. A. Anderson. The functional architecture of the pre-

frontal cortex and schizophrenia. Psych. Med., 25:887-894, 1995.

[21] A. J. Elvin. Pattern formation in a neural field model. PhD thesis, Massey

University, 2008, http://hdl.handle.net/10179/717.

[22] A. J. Elvin, C. R. Laing and M. G. Roberts. Transient Turing patterns in a

neural field model. Phys. Rev. E, 79:011911, 2009.

[23] S. Coombes, G. J. Lord and M. R. Owen. Waves and bumps in neu-

ronal networks with axo-dendritic synaptic interactions. Physica D, 178(3-

4):219–241, 2003.

[24] S. Coombes. Waves, bumps, and patterns in neural field theories. Biol.

Cybern., 93(2):91–108, 2005.

[25] S. Coombes, N. A. Venkov, L. Shiau, I. Bojak, D. T. J. Liley and C. R. Laing.

Modeling electrocortical activity through improved local approximations

of integral neural field equations. Phys. Rev. E., 76(5):51901, 2007.

[26] V. K. Jirsa and H. Haken. Field theory of electromagnetic brain activity.

Phys. Rev. Lett., 77(5):960–963, 1996.

[27] E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve,

Y. A. Kuznetsov, B. E. Oldeman, B. Sandstede and X. Wang AUTO 2000:

Continuation and bifurcation software for ordinary differential equations

(with HomCont), 2000.

[28] P. G. Drazin. Nonlinear systems. Cambridge University Press, 2002.

[29] P. Glendinning and C. Sparrow. T-points: A codimension two heteroclinic

bifurcation. J. Stat. Phys., 43(3–4), 1986.

[30] S. Coombes and M. R. Owen. Bumps, breathers, and waves in a neural

network with spike frequency adaptation. Phys. Rev. Lett., 94, 2005.

[31] Z. P. Kilpatrick and P. C. Bressloff. Effects of synaptic depression and

adaptation on spatiotemporal dynamics of an excitatory neuronal net-

work. To appear, Physica D.

21



[32] S. Coombes and M. R. Owen. Evans functions for integral neural field

equations with Heaviside firing rate function. SIAM J. Appl. Dyn. Syst.,

3(4):574–600, 2004.

[33] C. Laing and S. Coombes. The importance of different timings of exci-

tatory and inhibitory pathways in neural field models. Network: Comp.

Neural Sys., 17(2):151–172, 2006.

[34] M. R. Owen, C. R. Laing and S. Coombes. Bumps, rings, and spots in a

two-dimensional neural field: splitting and rotational instabilities. New J.

Phys., 9:378, 2007.

[35] R. D. Traub, J. G. Jefferys and R. Miles. Analysis of the propagation of

disinhibition-induced after-discharges along the guinea-pig hippocampal

slice in vitro. J. Physiol., 472:267–287, 1993.

[36] J.-Y. Wu, X. Huang and C. Zhang. Propagating waves of activity in the

neocortex: what they are, what they do. The Neuroscientist, 14:487–502,

2008.

22



y1

y0∑ ∑
01

Wu

Ws

Figure 1: Schematic of a homoclinic orbit. The orbit intersects the section Σ0 transversally at the

point y0 and the section Σ1 transversally at the point y1. The stable and unstable manifolds of the

fixed point are W s and Wu respectively.
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Figure 2: Mapping of initial conditions on Wu ∩ Σ0 for parameter values (b, r, θ) =

(0.25, 0.095, 1.5). The circles on Wu ∩ Σ0 indicate the two initial conditions that map to the two

circles on W s ∩ Σ1. The two initial conditions lie on two symmetric homoclinic orbits.
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Figure 3: Solution curves of homoclinic orbits for (1)–(3) with b the continuation parameter. Top:

For r = 0.095, the main solution curve is continuous. Middle: For r = 0.090, a small separate

solution curve exists and lies near, but does not quite touch, the solution curve of stable homoclinic

orbits. Bottom: For r = 0.085, the small solution curve has met the main curve, causing a large

“break” where no stable homoclinic orbits exist. Solid line: stable, dashed: unstable. See the text

for an explanation of labels.
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Figure 4: Top: initial condition (dashed) and steady states of a simulation of (1)–(3) for b = 0.8

(dash-dotted) and b = 1.2 (solid). Bottom: snapshots at the specified times when b = 1. Other

parameters: r = 0.085, θ = 1.5.
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Figure 5: Closer view of the small separate solution curve in the middle plot of Fig. 3 for r = 0.090.

There is a kink in the main solution curve where the distance to the small curve is smallest.
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Figure 6: As r decreases from 0.090 to 0.0899, the small separate solution curve shown in Fig. 5

meets the main solution curve at b = 1.0167. A closer view of the intersection between the two

solution curves shows that two tails ending in spirals have formed.
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Figure 7: Left: Solutions at b = 0.932 for r = 0.090 on the main solution curve of single-bump

solutions (solid line) and the small solution curve (dotted line) in Fig. 5. Right: Solutions at b =

0.932 for r = 0.0899 on the upper curve of single-bump solutions (solid line) and the small tail

caused by the small curve meeting the main curve (dotted line) in Fig. 6. In both cases, the solutions

on the small curve near the terminating spiral are “dimple” bumps that become broader the closer

they are to the spiral.
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Figure 8: The topmost curve is the small curve found for r = 0.090 in Fig. 5. As r increases

to 0.0905, 0.0910, 0.0918 and 0.091875, the curve shrinks and eventually forms an isola at r =

0.091875.
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Figure 9: Solutions at b = 1 from the curves for r = 0.0905, 0.0910, 0.0918 and 0.091875 in Fig. 6.

As the small curve shrinks (r increases), the solutions become progressively broader and on the

isola at r = 0.091875, the solutions have become “dimple” bumps.
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Figure 10: Top row: solution curves of homoclinic orbits to the origin of (1)–(3). Bottom row: the

value of the Hamiltonian (H) at the two non-trivial fixed points Z1 (dashed line) and Z2 (solid

line). Columns from left to right: r = 0.095, r = 0.090, r = 0.085. Dash-dot vertical lines indicate

values of b for which H(Z2) = 0.
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Figure 11: Points in (b, r) parameter space where H(Z2) = H(Z0) = 0 for θ = 1.5 in (1)–(3). At

r = 0.0899 (horizontal line), the separate solution curve meets the main solution curve. Below

this line, the curve gives the endpoints of the solution curve. Above this line, the curve gives the

terminating ends of the separate solution curve.
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Figure 12: Single-bump solution curves of (1) and (3) with f(u) = 2Θ(u− 1.5).
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Figure 13: Speed of travelling fronts, c, in (28) as a function of b for θ = 1.5. Stationary fronts occur

at b = 0.451 and b = 2.215. (Note that the curve does not exist for b < 0.195 because for a front of

the type constructed to occur we must have θ < 8b/(b2 + 1).)
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Figure 14: Top: Single bump solution curves of (1) and (3) with f(u) = 2Θ(u − 1.5). Middle:

Speed of travelling fronts, c, in (26) as a function of b. Bottom: Hamiltonian at the nonzero fixed

point Ẑ. The breaks in the solution curves occur for the same values of b for which both stationary

fronts exist and the Hamiltonian of Ẑ is zero.
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