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In this paper we study the effect of two distinct discrete delays on the dynamics of a
Wilson-Cowan neural network. This activity based model describes the dynamics of
synaptically interacting excitatory and inhibitory neuronal populations. We discuss
the interpretation of the delays in the language of neurobiology and show how they
can contribute to the generation of network rhythms. First we focus on the use of
linear stability theory to show how to destabilise a fixed point, leading to the onset
of oscillatory behaviour. Next we show for the choice of a Heaviside nonlinearity for
the firing rate that such emergent oscillations can be either synchronous or anti-
synchronous depending on whether inhibition or excitation dominates the network
architecture. To probe the behaviour of smooth (sigmoidal) nonlinear firing rates we
use a mixture of numerical bifurcation analysis and direct simulations, and uncover
parameter windows that support chaotic behaviour. Finally we comment on the role
of delays in the generation of bursting oscillations, and discuss natural extensions
of the work in this paper.
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1. Introduction

Delays arise naturally in models of neurobiological systems. For example the finite
speed of an action potential (AP) propagating along an axon means that spike-
signalling between neurons depends upon how far apart they are. Hence, the inter-
est in understanding network models with space-dependent delays, as in (Laing &
Coombes 2006). Upon arrival at a synaptic contact point the transduction of an
electrical signal into a biochemical signal and back again, to a post-synaptic poten-
tial (PSP), gives rise to a further delay. Yet another delay is associated with the
spread of the PSP through the dendritic tree of the neuron to the cell body, where
further APs can be initiated. It is now quite common to model both these forms of
signal processing using either a form of distributed delay, as in (Laing & Longtin
2003), or as a simple fixed or discrete delay. For an excellent review of the role of
time delays in neural systems we refer the reader to the article by Campbell (2007).
The effects of such delays can be quite varied. Although commonly associated with
the generation of oscillations (Plant 1981), delays can also lead to oscillator death
(Reddy et al. 1998), control phase-locking (Coombes & Lord 1997), and underlie
multi-stability (Shayer & Campbell 2000).

In this paper we focus on the dynamics of two-population neural models with
the incorporation of two discrete delays. In particular we will work with the well
known Wilson & Cowan model (1972). Such activity based models are expected to
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provide a caricature of the behaviour of more realistic spiking networks when the
time-scale of synaptic processing is much longer than the membrane time constant
of a typical cell (Ermentrout 1986). This is perhaps most clearly demonstrated by
recent work of Roxin et al. (2005), which further emphasises that a single delay
in the activity based representation can further improve the match with spiking
networks. The delay in the activity based model is interpreted by them as describing
the time course of AP initiation. However, an alternative interpretation of this delay
is that it is necessary to adequately model the time-lag involved in generating a
rate based representation of a spiking network. In particular single neuron firing
rates (for slow synapses) will be largely determined by the steady state values of
non-spiking currents, and thus the delay may be more naturally interpreted as the
time for these currents to relax. In any case, this paper will show how to analyse a
delayed neural network with a hybrid approach, combining linear stability theory,
the construction of periodic orbits (for piece-wise constant nonlinear firing rate
functions) and numerical techniques.

2. The model

As discussed above, under certain approximations spiking network models can be
reduced to just a few variables. One famous example is the Wilson & Cowan (1972)
model, which describes the evolution of a network of synaptically interacting neu-
ronal populations (typically one being excitatory and the other inhibitory). In the
presence of delays this model takes the form

u̇ = −u + f(θu + au(t − τ1) + bv(t − τ2)),

1

α
v̇ = −v + f(θv + cu(t − τ2) + dv(t − τ1)). (2.1)

Here, u and v represent the synaptic activity of the two populations, with a relative
time-scale for response set by α−1. The architecture of the network is fixed by the
weights a, b, c, d, whilst θu,v describe background drives (biases). The firing rate

function f is commonly chosen as a sigmoid:

f(z) =
1

1 + e−βz
, (2.2)

which satisfies the (Ricatti) equation f ′ = βf(1−f), with β > 0. The fixed delays τ1

and τ2 distinguish between delayed self-interactions and delayed cross-interactions.
The delay differential equation (DDE) model (2.1) is similar, though not equivalent,
to voltage based models, which have linear combinations of sigmoidal functions of
the different variables on the right hand side (Marcus & Westervelt 1989; Olien
& Bélair 1997; Shayer & Campbell 2000; Wei & Ruan, 1997). Restrictions of the
parameter choices recover a number of models already considered in the literature,
such as that of i) Glass et al. (1988), when a < 0, b = 0, ii) Chen & Wu (1999),
when α = 1, a = d = 0 and b = c > 0, iii) Battaglia et al. (2007), when α = 1,
a = d < 0, b = c > 0 and f(z) is a threshold-linear firing rate.

Before analysing the full DDE system it is first useful to describe the dynamics
in the absence of delays, where we recover the basic Wilson & Cowan model. For
τ1 = τ2 = 0 it is straight-forward to find values of θu and θv corresponding to
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Hopf and saddle-node bifurcations. The point (u∗, v∗) is an equilibrium if there is
a solution to the pair of equations

θu = f−1(u∗) − au∗ − bv∗, θv = f−1(v∗) − cu∗ − dv∗, (2.3)

where f−1(z) = β−1 ln(z/(1 − z)). The Jacobian matrix is therefore

L =

[

−1 + aβu∗(1 − u∗) bβu∗(1 − u∗)

αcβv∗(1 − v∗) α[−1 + dβv∗(1 − v∗)]

]

. (2.4)

Thus the conditions for a Hopf bifurcation (HB) are

TrL = −(1 + α) + aβu∗(1 − u∗) + αdβv∗(1 − v∗) = 0 and detL > 0. (2.5)

Eliminating v∗ as

v∗±(u) =
1 ±

√

1 − 4[(1 + α)/β − au∗(1 − u∗)]/(αd)

2
, (2.6)

we can then plot the fixed point equation (parametrically) in the (θu, θv) plane, as
in Fig. 1. A similar procedure can be used to determine the locus of saddle-node
(SN) bifurcations defined by detL = 0, as well as the Bogdanov-Takens bifurcation
defined by detL = 0 and TrL = 0 (when the SN and HB curves intersect). Indeed
the Wilson & Cowan model also supports a saddle-node on an invariant circle
bifurcation (when the SN curve lies between the two HB curves), and can also
support a saddle-separatrix loop and a double limit cycle. See (Hoppensteadt &
Izhikevich 1997, Ch 2) for a detailed discussion.

3. Linear stability analysis of fixed point

The existence of an equilibrium is, of course, independent of any delays. Many
authors have described in detail how the presence of delays affects the stability
of an equilibrium, and here we follow the spirit of work by (Marcus & Westervelt
1989; Wei & Ruan 1999; Giannakopoulos & Zapp 2001). In the presence of delays
the linearised equations of motion have solutions of the form (u, v) = (u, v)eλt.
Demanding that the amplitudes (u, v) be non-trivial gives a condition on λ that
may be written in the form E(λ) = 0, where

E(λ) = det

[

λ + 1 − aβu∗(1 − u∗)e−λτ1 −bβu∗(1 − u∗)e−λτ2

−cβv∗(1 − v∗)e−λτ2 λ/α + 1 − dβv∗(1 − v∗)e−λτ1

]

, (3.1)

and the equilibrium (u∗, v∗) is given by the simultaneous solution of (2.3). For λ ∈ R

we see that λ = 0 when

(1 − κ1)(1 − κ2) − κ3 = 0, (3.2)

where κ1 = aβu∗(1−u∗), κ2 = dβv∗(1−v∗) and κ3 = bcβ2u∗v∗(1−u∗)(1−v∗). Thus
a real instability of a fixed point is defined by (3.2) and is independent of (τ1, τ2).
Referring back to the analysis of §2, we see that this is identical to the condition
for a saddle-node bifurcation. In contrast a dynamic instability will occur whenever
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Figure 1. Hopf (HB – dashed line) and saddle-node (SN – solid line) bifurcation set in the
Wilson-Cowan network (no delays) with a mixture of excitatory and inhibitory connections
for α = 1, a = −b = c = 10, d = 2 and β = 1.

λ = iω for ω 6= 0, where ω ∈ R. The bifurcation condition in this case is defined by
the simultaneous solution of the equations Re E(iω) = 0 and Im E(iω) = 0, namely

0 = (1 − κ1 cos(ωτ1))(1 − κ2 cos(ωτ1)) − (ω + κ1 sin(ωτ1))(ω/α + κ2 sin(ωτ1))

− κ3 cos(2ωτ2), (3.3)

0 = (1 − κ1 cos(ωτ1))(ω/α + κ2 sin(ωτ1)) + (ω + κ1 sin(ωτ1))(1 − κ2 cos(ωτ1))

+ κ3 sin(2ωτ2). (3.4)

For parameters that ensure ω 6= 0 we shall say that the simultaneous solution of
equations (3.3) and (3.4) defines a Hopf bifurcation at (τ1, τ2) = (τc

1 , τc
2 ). More

correctly we should also ensure that as the delays pass through this critical point
that the rate of change of Re λ is non-zero (transversality) and that there are no
other eigenvalues with zero real part (non-degeneracy).

Interestingly models with two delays can lead to an interference effect whereby
although either delay, if long enough, can bring about instability, there is a window
of (τ1, τ2) where solutions are stable to Hopf bifurcations. This is nicely discussed
in Chapter six of the book by MacDonald (1989); see also Chapter 3 of the book
by Stépán (1989). An example of this effect, obtained by computing the locus of
Hopf bifurcations according to the above prescription, is shown in Fig. 2. A similar
figure, showing a band of stability that lies between two broad regions of instability,
is found in the work of Murdoch et al. (1987).
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Figure 2. A bifurcation diagram showing the stability of the equilibrium in the Wilson &
Cowan model with two delays. Parameters as in Fig. 1 with (θu, θv) = (−2,−4).

4. Synchronous and anti-synchronous solutions

In general, despite linear stability analysis showing where to look, it is a challenge
to find periodic solutions in closed form. Moreover, determining their stability is
a problem that, in general, is best examined with numerical tools. However, some
results are known about the phase relationship between the two populations during
an oscillation. In particular Chen et al. (2000) have shown that for α = 1, θu = θv,
a = d = 0 and b = c that every non-constant solution of (2.1) is either synchronous
or phase-locked. Here we explore the explicit construction of such solutions in the
limit of high gain (β → ∞), so that f(z) = H(z), with H the Heaviside step
function. Such equations are commonly encountered in physiological control systems
(Glass et al. 1998; Longtin & Milton 1998). For example in Fig. 3 we show a
coexisting synchronous and anti-synchronous stable periodic orbit in a network
with purely inhibitory connections. Previous work on the analysis of periodic orbits
in delayed neural networks with Heaviside nonlinearity can be found in (Guo et al.
2005).

(a) Inhibitory network

We first consider a purely inhibitory network with a, b, c, d < 0, with some bias
θu = θv and α = 1. Regarding a synchronous T -periodic solution, u(t) = v(t) with
u(t + T ) = u(t), like that shown in the top panel of Fig. 3, we parametrise such a
solution in terms of two fundamental times T1,2 and the maxima and minima A± of
the orbit. Here T1 denotes the time spent on the decreasing part of the trajectory,
and T2 that spent on the rising phase. Exploiting the piece-wise linear nature of
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Figure 3. Co-existing synchronous (top) and anti-synchronous (bottom) solutions for
f(z) = H(z). Parameters are α = 1, a = d = −1, b = c = −0.4, θu = θv = 0.7,
τ1 = 1 and τ2 = 1.4.

the dynamics we then have that

A− = A+e−T1 , (4.1)

A+ = 1 + (A− − 1)e−T2 , (4.2)

θu = −aA+e−(T1−τ1) − bA+e−(T1−τ2), (4.3)

θu = −a
[

1 + (A− − 1)e−(T2−τ1)
]

− b
[

1 + (A− − 1)e−(T2−τ2)
]

. (4.4)

Solving these we obtain the period of oscillation T = T1 + T2, where

T1 = ln

(

s + θu + a + b

θu

)

, T2 = ln

(

θu − s

θu + a + b

)

, (4.5)

and s = − (aeτ1 + beτ2). The amplitude of the oscillation is A = A+ − A− =
(a + b + s)/s.

Similarly, to analyse an anti-synchronous solution, u(t) = v(t+T/2) with u(t) =
u(t + T ), as in the bottom panel of Fig. 3, we note that by symmetry, the rising
and falling phases have the same duration, say T1. For the parameters considered
we find that τ1 < T1 < τ2, and we obtain the relations

A− = A+e−T1 (4.6)

A+ = 1 + (A− − 1)e−T1 (4.7)

θu = −a
[

1 + (A− − 1)e−(T1−τ1)
]

− b
[

1 + (A− − 1)e−(2T1−τ2)
]

. (4.8)

Solving the above we find that T1 satisfies the transcendental equation

θu = −a

[

1 +
eτ1(e−T1 − 1)

eT1 − e−T1

]

− b

[

1 +
eτ2e−2T1(1 − eT1)

eT1 − e−T1

]

. (4.9)
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Figure 4. A periodic solution in a single population model with excitatory self-feedback.
In this example a = 1, b = 0, −θu = h = 0.5 and τ1 = τd = 2.

The period T is 2T1 and the absolute amplitude of oscillation, A = A+ − A−, is
given by

A =

(

1 − e−T1

)2

1 − e−2T1
. (4.10)

(b) Excitatory self-feedback

For a single population with self-feedback it is also possible to construct periodic
solutions (for a Heaviside firing rate). Here we consider just the evolution of u with
a = 1, b = 0, θu = −h, h > 0 and τ1 = τd, a fixed delay. An example of a periodic
trajectory is shown in Fig. 4. It is natural to parametrise the solution in terms of the
four unknowns A± and T±, which denote the largest (A+) and smallest (A−) values
of the trajectory and the times spent above (T+) and below (T−) the threshold h.
The trajectory increases from A− for a duration T+ and decreases from A+ for a
duration T−. The values for these four unknowns are found by enforcing periodicity
of the solution and requiring it to cross threshold twice, giving us four simultaneous
equations:

A+ = A−e−T+ + 1 − e−T+ , (4.11)

A− = A+e−T
− , (4.12)

A+ = he−(τd−T
−

) + 1 − e−(τd−T
−

), (4.13)

A− = he−(τd−T+). (4.14)

We solve these to find

T+ = ln
1 − A−

1 − A+
= τd + ln

A−

h
, T− = ln

A+

A−

= τd + ln
1 − A+

1 − h
, (4.15)

Article submitted to Royal Society



8 S. Coombes and C. R. Laing

Figure 5. Period and amplitude of an oscillatory solution in a single population with
excitatory self-feedback as a function of the delay τd. Other parameters as in Fig. 4.

assuming 1 > h (so that threshold can be reached). The amplitudes A± satisfy

A− = 1 + (1 − 1/h)A+, A+ = A− + [e(T−τd) − 1], (4.16)

where T = T+ + T− is the period of oscillation. We thus find that T satisfies the
transcendental equation

T = 2τd +

(

ln

[

R − e(T−τd)

R − 1

]

+ ln
[

R + (1 − R)e(T−τd)
]

)

, (4.17)

where R = 1/h. The absolute amplitude A = A+ − A− is given by A = [e(T−τd) −

1]. A plot of the period and amplitude as a function of τd is shown in Fig. 5.
By linearising about the periodic orbit shown in Fig. 4 and finding its Floquet
exponents, one can show that this orbit is actually unstable (Coombes & Laing,
2008).

5. Numerical bifurcation analysis

In the high-gain limit (when f is the Heaviside) explicit solutions of (2.1) can be
constructed, as in the previous section. For a general firing rate function solutions
cannot normally be explicitly constructed, but bifurcations of fixed points can be
detected and followed in parameter space, as in §3. DDE-BIFTOOL (Engelborghs
2001, 2002) is a software package for the numerical bifurcation analysis of sys-
tems of delay differential equations which can not only detect bifurcations of fixed
points, but can also follow branches of stable and unstable periodic orbits, and
homoclinic and heteroclinic orbits. In this section we demonstrate its capabilities
by analysing (2.1) as θu and τ1 = τ2 ≡ τ are varied. Typical results are shown in
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Figure 6. Bifurcation diagram. Solid line: saddle-node bifurcation of fixed points. Dashed
line: Hopf bifurcation. Circles joined by a line: saddle-node bifurcation of periodic orbits.
Parameter values are α = 1, θv = 0.5, τ1 = τ2 = τ , β = 60, a = −1, b = −0.4, c = −1 and
d = 0.

Fig. 6, where curves of saddle-node and Hopf bifurcations of fixed points are shown,
along with saddle-node bifurcations of periodic orbits. Here, as expected from §3,
varying τ does not change the fixed points, but it does affect their stability. Figure 7
shows horizontal slices through Fig. 6 at τ = 0.5, 0.2 and 0.09. For τ = 0.5, there
is a branch of stable periodic orbits joining Hopf bifurcations on the upper and
lower branches of fixed points. Between τ = 0.5 and τ = 0.2, a pair of saddle-node
bifurcations of periodic orbits is created, resulting in the creation of a branch of
unstable periodic orbits. For τ = 0.09, an unstable periodic orbit is created from
Hopf bifurcations on the unstable middle branch of fixed points.

Brute force numerical simulation can also be used to explore small systems of
delay differential equations. For example, Battaglia et al. (2007) studied a system
very similar to ours, setting a = d < 0 and b = c > 0, but using a threshold linear
firing rate function: f(z) = z if z > 0, and zero otherwise. They varied both local
and long-range interaction strengths (a and b in our notation) and found various
types of chaotic and periodic behaviour. We have performed a similar calculation,
with results shown in Fig. 8. For these parameter values the system appears to
have only one fixed point, and this undergoes a Hopf bifurcation on the curve
shown. The most positive Lyapunov exponent can be found in the same way as for
a system of ordinary differential equations (ODEs), by numerically integrating the
variational equation in parallel with the underlying system. (Note that only one
initial condition was used for each point in the parameter space, so multistability
is not detected.)

Figure 9 (left) shows a typical chaotic solution corresponding to the point
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Figure 7. Horizontal cuts through Fig. 6 at τ = 0.5 (top), τ = 0.2 (middle) and τ = 0.09
(bottom). Solid/dashed line: stable/unstable fixed points; circles/crosses: stable/unstable
periodic orbit (the maximum of u over one oscillation is plotted). Parameter values are as
in Fig. 6. Note the different axis scales.

(a, b) = (−6, 2.5) in Fig. 8. The right panel of Fig. 9 shows a quasiperiodic or-
bit which was obtained using the parameter values in the left panel, but simply
decreasing β (the steepness of the firing rate function).
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Figure 8. Maximal Lyapunov exponent. The black line marks a Hopf bifurcation, to the
right of which there is a stable steady state. A positive exponent indicates chaotic be-
haviour. Parameter values are α = 1, θu = θv = 0.2, τ1 = τ2 = 0.1, β = 60, a = d and
b = c.

Figure 9. Left: a chaotic solution. Right: a quasiperiodic solution. Parameters are α = 1,
a = d = −6, b = c = 2.5, θu = θv = 0.2, τ1 = τ2 = 0.1, with β = 60 (left) and β = 40
(right).

6. Discussion

Periodic and chaotic behaviour of the type seen above are of great interest in neu-
ral systems, as are “bursting” oscillations (Coombes & Bressloff 2005). Although
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the origins of bursting in low dimensional ODEs is quite well understood there has
been very little work on bursting in delay differential equations. Here we briefly
summarise the results of several groups. Destexhe & Gaspard (1993) studied a sys-
tem of two coupled DDEs, meant to model interacting populations of excitatory
and inhibitory neurons. By varying one parameter they found bursts containing
different numbers of action potentials. The bursting could be understood as result-
ing from a homoclinic tangency to an unstable limit cycle, and did not require the
usual “slow-fast” analysis (Coombes & Bressloff 2005). When the delays in their
system were set to zero, the bursting could not exist, since the system was then
two-dimensional. However, the general presence of a delay is not necessary to ob-
serve this bifurcation, as it can appear in three-dimensional ODEs (Hirschberg &
Laing, 1995).

Laing & Longtin (2003) studied the effects of paired delayed excitatory and
inhibitory feedback on a single integrate-and-fire neuron, with and without noise. By
assuming that the feedback was slow relative to the membrane time constant they
derived a rate model for the dynamics. With either inhibitory or paired excitatory
and inhibitory feedback these authors found periodic and chaotic oscillations in
the firing rate of the neuron, i.e. bursting. They verified many of their results by
simulating an actual integrate-and-fire neuron with appropriate delayed feedback.

Throughout this paper we have focused on discrete delays in neural population
models without spatial extent. However, there is a large body of literature devoted
to continuum models of neural tissue, particularly with regard to understanding the
mechanisms of pattern and wave formation (see Coombes 2005 for a review). Many
of the techniques we have touched upon here may be adapted for the treatment
of such neural field equations (which are typically written as nonlocal evolution
equations of integral type). Indeed work in this direction has already been pur-
sued by Roxin et al. (2005) in the context of macroscopic pattern formation in the
cortex, and by Golomb & Ermentrout (1999) and Bressloff (2000) for the analysis
of travelling waves in synaptic networks of integrate-and-fire neurons. More recent
work on space-dependent delays (induced by the finite conduction speeds of action
potentials along axons) can be found in (Atay & Hutt 2006; Laing & Coombes
2006; Coombes et al. 2007).

In summary, delays are ubiquitous in neural systems and should therefore be
included in any realistic neural model. Here we have briefly outlined the types of
analysis available for small systems of neuronally-inspired delay differential equa-
tions. There remains much to be discovered about the role of delays in more realistic
neural models.
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