Chimeras in networks of planar oscillators
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Chimera states occur in networks of coupled oscillators, and are characterized by having some
fraction of the oscillators perfectly synchronized, while the remainder are desynchronized. Most
chimera states have been observed in networks of phase oscillators with coupling via a sinusoidal
function of phase differences, and it is only for such networks that any analysis has been performed.
Here we present the first analysis of chimera states in a network of planar oscillators, each of which
is described by both an amplitude and a phase. We find that as the attractivity of the underlying
periodic orbit is reduced chimeras are destroyed in saddle-node bifurcations, and supercritical Hopf

and homoclinic bifurcations of chimeras also occur.
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Networks of coupled oscillators and their synchroniza-
tion properties have been studied for many years [1, 2].
One particular class of interest involves phase oscillators,
where each oscillator is described by a single angular
variable [3, 4]. The use of such phase models is justi-
fied when the attraction to an underlying limit cycle is
“strong” relative to the effects of other oscillators in the
network [1, 3, 5]. Recently a number of investigators
have studied “chimera” states in networks of phase os-
cillators [6-18], in which some fraction of the oscillators
synchronize while the remainder run freely, even though
the oscillators may be identical. Early analyses of these
states [6, 7, 10, 12-17] used a self-consistency argument
which can be traced back to Kuramoto [5] to show ex-
istence of chimeras. Later work [8, 9, 11, 19] used the
remarkable ansatz of Ott and Antonsen [20, 21] to de-
rive differential equations governing the evolution of or-
der parameters of the systems under study, allowing one
to determine the stability of chimera states and the bi-
furcations they may undergo.

It has long been known that networks of identical phase
oscillators, coupled through a sinusoidal function of phase
differences, have non-generic behaviour [18, 22-24]. Most
chimera states have been observed in such idealized net-
works, and in order to determine whether chimeras might
be observed in real physical systems one should investi-
gate their robustness with respect to, for example, het-
erogeneity in intrinsic frequencies, or variations in oscil-
lator amplitude. The first issue has already been ad-
dressed [8, 9], and here we investigate the second.

Several authors have observed chimeras in networks of
oscillators described by more than one variable [6, 7, 15,
16, 25, 26], so they are known to exist, but these au-
thors have either provided no analysis, or have reduced
their (identical) oscillators to phase oscillators in order
to analyse their dynamics using the approaches men-
tioned above. In this Letter we give the first analysis of a
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chimera state in a network of planar oscillators in which
the reduction to phase oscillators is not performed.
The model we consider is
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These equations describe a pair of populations of N
Stuart-Landau oscillators with all-to-all coupling within
each population of strength p, and all-to-all coupling be-
tween the two populations of strength v. Such oscillators
are related to the normal form of a Hopf bifurcation, and
are a specific example of A —w oscillators [1, 5, 27]. Such
a pair of coupled populations of oscillators has been stud-
ied by several authors [11, 28, 29|, and can be thought
of as the simplest “network of networks” that one could
study.

Defining X; = rje’, Eq. (1) can be written

dr;
_dt] = (1—7‘3) E T cos (O — 0 — )
N
+ Nkil T N4k COS (9N+k —9j —Oé) (3)
N
do; _ 2 1| K .
il ory + b 3217“;@ sin (0 — 60; — «)

N
v
+ ¥ Z N4k sin (Ongx — 65 — a)] (4)



and Eq. (2) can be written as a similar pair of equa-
tions. From Eq. (3) we see that as ¢ — 0, the rate of
attraction to the limit cycle r; = 1 Vj becomes infinite,
and Eq. (4) reduces to Equation (1) of [11] (after a re-
definition of w), i.e. our system reduces to a previously-
studied network of phase oscillators. We will investigate
the dynamics of (1)-(2) when e # 0. By allowing the
radius r to vary, we expect a wider variety of behaviour
than that seen in networks of phase oscillators; for ex-
ample, oscillator death and chaos [30]. For comparison
with previous results we define § = 7/2 — o and we let
w=(14+A)/2,v=(1—A)/2, where A is a parameter [11].

Firstly, we show a chimera state for (1)-(2); see Fig. 1.
Panel (a) shows a snapshot of all 6; at an arbitrary time.
We see that population two (with N +1 < j < 2N) has
completely synchronised (all r; ~ 1.0019), while oscilla-
tors in population one (with 1 < j < N) remain incoher-
ent. Panel (b) shows that oscillators in population one
lie on a closed curve (a slight distortion of the unit cir-
cle) in the complex plane. Panel (¢) shows the angular
density of the oscillators in population one. It is non-
uniform, i.e. these oscillators are not completely incoher-
ent, and it was the dynamics of this density that Abrams
et al. [11] studied, using the parametrisation of Ott and
Antonsen [20]. In this chimera state the oscillators in
population two have a constant angular velocity and ra-
dius, and the distributions in panels (b) and (c) of Fig. 1
remain stationary. It is worth noting that the chimera
state shown in Fig. 1 is attracting, i.e. nearby states are
attracted to it, unlike the corresponding chimera states
in networks of identical phase oscillators which are neu-
trally stable [11, 18]. Allowing both the radius and
the phase of the oscillators to vary seems to eliminate
the non-generic behaviour seen in networks of identical,
sinusoidally-coupled phase oscillators, in the same way
that making the oscillators non-identical does [8, 9.

We briefly digress to analyse the chimera state shown
in Fig. 1 in the limit € — 0, i.e. 7; = 1Vj. Let §; = ©
for N4+ 1 < j < 2N and move to a coordinate frame
rotating with angular velocity €2 in which © is constant.
Using rotational invariance, set ©® = 0. Then, from the
equation for population two,

0=w—-Q—06—psina+vS (5)

and (using Eq. (5)) each oscillator in population 1 satis-
fies

dé
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where S = N_lzivzlsin(b’k—a) and C =

N1 Zivzl cos (0 — ). In the limit N — oo, S and
C are constant and can be replaced by the expected val-
ues of sin (0 — «) and cos (6 — &) respectively, calculated
using the angular density, p(6), which is proportional to
the reciprocal of the velocity, df/dt [7, 12]. Thus chimera
states are described by the simultaneous solution of

S = /0 sin (6 — a)p(0)db (7)
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FIG. 1: (color online) A chimera state for (1)-(2). (a): A
snapshot of the 6;. (b): r; as a function of 6; (relative to
On+1) for j = 1,...N. (c): The density of the 8,’s, relative
to On+1, for j = 1,...N. Parameters: N = 500,w = 0,¢ =
0.05, 3 = 0.08, A = 0.2,6 = —0.1.

and
2
C= /0 cos (6 — a)p(0)do (8)

where p() = K(df/dt)~! and K is a normalization fac-

tor such that fozw p(0)dd = 1. Following solutions of
Egs. (7)-(8) as parameters are varied one can find re-
gions of parameter space in which chimera states exist,
in agreement with the results of Abrams et al. [11] (re-
sults not shown). Eq. (6) can be interpreted as saying
that in a chimera state, each oscillator in population one
follows a periodic orbit, and is nonlinearly driven by its
own mean field. This effect is known to be capable of
destroying completely synchronous behaviour [31]. We
now analyse the chimera state in (1)-(2) for € # 0 using
a similar argument, showing that it can be described by
a single complex number.

Let X; =Y for N +1 < j < 2N and go to a rotating
coordinate frame such that Y is constant in this frame.
Rotate the frame so that Y is real and positive. Then



from Eq. (2) we have
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where X = N1 Efgvzl X, and each oscillator in popu-
lation one satisfies
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Given )A(, the real part of Eq. (9) can be solved for Y,
and the imaginary part of Eq. (9) can be used to show
that each oscillator in population one satisfies
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i.e. each oscillator in population one is driven in a non-
linear way by the mean field of population one. Thus our
self-consistency equation, i.e. the analogue of (7)-(8), is

N 1 (X) N
%= ﬁ/0 X(t: X) dt (12)

where X (t; X) is a periodic solution of Eq. (11) with pe-

~

riod T(X). The main difference between Egs. (7)-(8) and

Eq. (12) is that X (¢ X) must be found by numerically
integrating Eq. (11) to find a periodic solution, whereas
the periodic solution of Eq. (6) need not be found —
only the density, p(#), proportional to the reciprocal of
the angular velocity, is needed.

Having found a solution of Eq. (12), it can be numeri-
cally continued as parameters are varied. Typical results
are shown in Fig. 2 where we vary e. We see that for
these parameter values the solution of Eq. (12) can be
continued to € ~ 0.109, where it appears to undergo a
saddle-node bifurcation. For e small, points on the lower
branch in panels (a)-(e) correspond to the stable chimera
known to exist [11] when e = 0, while the upper branch
corresponds to the saddle chimera. A typical solution of
Eq. (11) is shown in Fig. 2 (f).

The saddle-node bifurcation seen in Fig. 2 can be fol-
lowed as a second parameter, say d, is varied. The result
is shown in Fig. 3 (dashed curve). We see that as ¢ is
increased, the range of values of e for which a chimera
state exists also increases. However, the curve of saddle-
node bifurcations in Fig. 3 relates only to the existence
of chimeras (found through a self-consistency argument
similar to that of Kuramoto [5]) not their stability. Nu-
merical simulations of Egs. (1)-(2) show that a stable sta-
tionary chimera which exists to the right of the dashed
curve in Fig. 3 can undergo a supercritical Hopf bifurca-
tion as parameters are varied, leading to a “breathing”
chimera [8, 9, 11]. These oscillatory states then seem
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FIG. 2: (color online) The solution of Eq. (12). (a): Re(X);
(b): Im()A(); (c): Y; (d): Q and (e): T()Z')7 as functions of e.
(f): Real and imaginary parts of the self-consistent solution
of Eq. (11) for parameter values shown with a circle in panels

(a)-(e). Parameters: 8 =0.08,4A =0.2,6 = —0.01.

to be destroyed in a homoclinic bifurcation as parame-
ters are further varied. Numerically determined curves
of Hopf and homoclinic bifurcations are shown in Fig. 3.
These curves are conjectured to terminate at a Takens-
Bogdanov bifurcation on the curve of saddle-node bifur-
cations, which seems to be the generic arrangement for
chimera states [8, 11, 19]. Varying A or 3 rather than
0 results in a similar arrangement of saddle-node, Hopf
and homoclinic bifurcation curves (results not shown).

To the left of the dashed curve in Fig. 3 and above
the curve of homoclinic bifurcations, the perfectly syn-
chronous state (X; = Xy Vj, k) is stable. Despite the
radii of our oscillators being able to vary, we have not
been able to find oscillator death or more exotic dynam-
ics by varying parameters. Perhaps this is not too sur-
prising, since non-identical oscillators (which we have not
considered here) and strong coupling relative to the at-
traction to the limit cycle (i.e. the opposite limit from
that considered here) seem to be required to observe os-
cillator death [30, 32].
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FIG. 3: (color online) Bifurcation curves in the § — € plane for
chimera solutions of (1)-(2). Hopf and homoclinic bifurcations
were found by direct simulation of (1)-(2). A = 0.2,8 =
0.08, N = 500.

In principle, the stability of the chimera states studied
here, and thus the location of the Hopf bifurcation seen in
Fig. 3, could be determined using the ideas presented in
Sec. 6 of Matthews et al. [30]. However, a difficulty arises
because we do not have an analytic expression for the
chimera state around which to linearise — the density,
p(r,0), of oscillators in population one can only be found
indirectly by numerically solving Eq. (11). (Note that the
stability or otherwise of the periodic solution of Eq. (11)
that we find is not related to the stability of the chimera

state. Solving Eq. (11) is just a convenient way of finding
the invariant density for population one.)

For chimeras to be observable in a physical system they
must be generic, and not only occur in networks of iden-
tical phase oscillators with all-to-all coupling via a sinu-
soidal function of phase differences, which are known to
have unusual properties [18, 22-24]. Their persistence
when phase oscillators are made non-identical has been
characterised previously [8, 9], and in this Letter we have
shown that chimeras also persist (within limits) when
both the amplitude and phase of the oscillators are al-
lowed to vary.

One caveat is that the system studied here has all-to-all
coupling, both within and between populations. It would
be interesting to determine whether this is necessary in
order to observe chimeras. Indeed, this raises a more
general question as to which network topologies support
chimeras. Also, the system (1)-(2) is invariant under the
phase shift X; — €7 X; Vj, where v is a real constant.
This seems to be the reason that, in a chimera state, the
synchronous population undergoes uniform rotation at
fixed radius in the complex plane, and we can describe the
incoherent population as having a stationary distribution
in a uniformly rotating coordinate frame. It would be of
interest to study chimeras in networks for which this is
not the case. Addressing these two issues would help
determine the general robustness of chimeras, and thus
the likelihood of them having relevance to the physical
world.

I thank Steve Strogatz for correspondence which in-
spired the work presented here.

[1] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchroniza-
tion (Cambridge U. Press, Cambridge, U. K., 2003).
[2] S. Strogatz, Sync: The emerging science of spontaneous
order (Hyperion, New York, 2003).
[3] J. Acebrén, L. Bonilla, C. Pérez Vicente, F. Ritort, and
R. Spigler, Reviews of Modern Physics 77, 137 (2005).
[4] S. Strogatz, Physica D 143, 1 (2000).
[5] Y. Kuramoto, Chemical Oscillations, Waves, and Turbu-
lence (Springer, Berlin, 1984).
[6] Y. Kuramoto and D. Battogtokh, Nonlinear Phenom.
Complex Syst 5, 380 (2002).
[7] S.I. Shima and Y. Kuramoto, Phys. Rev. E 69, 036213
(2004).
[8] C. R. Laing, Physica D 238, 1569 (2009).
[9] C. R. Laing, Chaos 19, 013113 (2009).
[10] D.M. Abrams and S.H. Strogatz, Phys. Rev. Lett. 93,
174102 (2004).
[11] D. Abrams, R. Mirollo, S. Strogatz, and D. Wiley, Phys.
Rev. Lett. 101, 084103 (2008).
[12] D. Abrams and S. Strogatz, Int. J. Bifurcat. Chaos 16,
21 (2006).
[13] G.C. Sethia, A. Sen, and F.M. Atay, Phys. Rev. Lett.
100, 144102 (2008).

[14] O.E. Omel’chenko, Y.L. Maistrenko, and P.A Tass, Phys.
Rev. Lett. 100, 044105 (2008).

[15] Y. Kawamura, Phys. Rev. E 75, 056204 (2007).

[16] Y. Kuramoto, S. Shima, D. Battogtokh, and Y. Shiogai,
Prog. Theor. Phys. Suppl. 161, 127 (2006).

[17] E. A. Martens, C. R. Laing, and S. H. Strogatz, Phys.
Rev. Lett. 104, 044101 (2010).

[18] A. Pikovsky and M. Rosenblum, Phys. Rev. Lett. 101,

264103 (2008).

| E. Martens, Arxiv preprint arXiv:1003.2827 (2010).

| E. Ott and T. M. Antonsen, Chaos 18, 037113 (2008).

] E. Ott and T. M. Antonsen, Chaos 19, 023117 (2009).

| S. Watanabe and S.H. Strogatz, Phys. Rev. Lett. 70,

2391 (1993).

23] S. Watanabe and S. Strogatz, Physica. D 74, 197 (1994).

24] S. A. Marvel, R. E. Mirollo, and S. H. Strogatz, Chaos
19, 043104 (2009).

[25] H. Sakaguchi, Phys. Rev. E 73, 031907 (2006).

[26] Y. Kuramoto and S. Shima, Progr. Theor. Phys. Suppl.
150, 115 (2003).

[27] J. M. Greenberg, SIAM J. Appl. Math. 39, 301 (1980).

[28] E. Barreto, B. Hunt, E. Ott, and P. So, Phys. Rev. E 77,
036107 (2008).



[29] E. Montbrié, J. Kurths, and B. Blasius, Phys. Rev. E 70, [31] M. Rosenblum and A. Pikovsky, Phys. Rev. Lett. 98,
056125 (2004). 064101 (2007).

[30] P. Matthews, R. Mirollo, and S. Strogatz, Physica D 52, [32] G. Ermentrout, Physica D 41, 219 (1990).
293 (1991).



