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Abstract Spike-timing dependent plasticity is the process by which the strengths of connections be-

tween neurons are modified as a result of the precise timing of the action potentials fired by the neurons.

We consider a model consisting of one integrate-and-fire neuron receiving excitatory inputs from a large

number — here, 1000 — of Poisson neurons whose synapses are plastic. When correlations are intro-

duced between the firing times of these input neurons, the distribution of synaptic strengths shows

interesting, and apparently low-dimensional, dynamical behaviour. This behaviour is analysed in two

different parameter regimes using equation-free techniques, which bypass the explicit derivation of the

relevant low-dimensional dynamical system. We demonstrate both coarse projective integration (which

speeds up the time integration of a dynamical system) and the use of recently-developed data-mining

techniques to identify the appropriate low-dimensional description of the complex dynamical systems

in our model.

Keywords Spike timing dependent plasticity · equation-free · model reduction · neuronal network

1 Introduction

Neurons typically communicate with one another via trains of action potentials — each characterised

by a transient increase and then decrease in the cell’s membrane potential [17,27]. When an action

potential from one neuron (the “presynaptic”) arrives at the synaptic connection to the dendrite of

another (the “postsynaptic”) a current is induced, via a series of biochemical processes, that flows into

the postsynaptic neuron. This current may make the postsynaptic neuron more likely to fire an action

C. R. Laing

Institute of Natural and Mathematical Sciences, Massey University, Private Bag 102-904 NSMC, Auckland, New Zealand.

Tel.: +64-9-414 0800 extn. 43512

Fax: +64-9-443 9790

E-mail: c.r.laing@massey.ac.nz

I. G. Kevrekidis

Department of Chemical and Biological Engineering and Program in Applied and Computational Mathematics, Princeton

University, Princeton, NJ, 08544, USA

Tel.: 609-258-2818

E-mail: yannis@princeton.edu



2 Carlo R. Laing, Ioannis G. Kevrekidis

potential, in which case the connection is said to be “excitatory,” or less likely (“inhibitory”). But

the strength of the connection between two neurons, i.e. the magnitude of the current that flows into

the postsynaptic neuron for each presynaptic action potential, is not fixed. Rather, such strengths are

plastic, and their modification is regarded as the cellular basis for development and learning [6].

One common form of synaptic plasticity is spike-timing dependent plasticity (STDP) [5,36,43,11].

In this mechanism, the strength of the connection from a presynaptic neuron to a postsynaptic one is

modified based on the precise firing times of the two neurons, relative to one another. Put simply, if the

presynaptic neuron fires in a short window before the postsynaptic does, the connection is strengthened.

If it fires after the postsynaptic, the connection is weakened. The effect is more pronounced the closer

in time the two neurons fire. Clearly this mechanism can lead to competition between neurons, as a

strong connection from one neuron to another will make the firing of the presynaptic more likely to

result in the firing of the postsynaptic, resulting in strengthening the connection, and vice versa for

weak connections. It can also lead to unbounded values of synaptic strength, which can be addressed

in several ways [44,52,25]. This assumes that the connection is excitatory, which we will do here.

STDP has been studied experimentally since the mid-1990s [5,4,36] and has been the subject of

many computer simulations and corresponding analysis [28,52,49,25,21,44,39,48,22,41,35,1]. From a

dynamical systems point of view STDP has some interesting properties. Most simulations of networks

with STDP are stochastic, in the sense that the firing times of some (or all) neurons are chosen stochas-

tically. However, the distributions of synaptic strengths often seem to approach some approximately

stationary state [49]. Another property, of primary interest here, is the slowness of the evolution of the

distributions of synaptic strengths, relative to the dynamics of individual action potentials. These differ-

ent timescales make simulations of networks with STDP very time consuming [41], but also suggest that

recently-developed “equation-free” (EF) techniques [32,53,31,30,16,50] could be useful for accelerating

such simulations and analysing the networks’ dynamics. Roughly speaking, the EF approach provides

a framework for accelerating the evolution towards — and analysing and predicting the existence of —

long term stationary structures of a low-dimensional description of a dynamical system, even though

the equations governing this description are not explicitly available [29]. A network with STDP is also of

interest as it combines not only the dynamics on a network (i.e. the individual neurons’ dynamics, which

depend on the structure of the network) but also dynamics of a network, as the connection strengths

evolve due to the dynamics of the neurons. This interplay may result in complex spatio-temporal be-

haviour [40]. Note that EF techniques have been used previously to study a network undergoing STDP

giving rise to map formation in the laminar nucleus of the barn owl’s auditory system [37].

Several authors have derived continuum-level descriptions of the synaptic strengths in networks of

neurons undergoing STDP [52,44,25,10,39]. All have relied upon the smallness of the change in the

strength of a synapse caused by a single pair of action potentials, which in turn makes the distribution of

synaptic strengths evolve slowly. A Fokker-Planck equation for the evolution of the probability density of

the synaptic strengths is often derived. The derivation of this equation involves several approximations,

and often some of the terms in this equation cannot be calculated explicitly [10]. Alternatively, simplified

model neurons such as the Poisson neuron must be used in order to make analytical progress [39,25,44,

9].

Our approach — being largely computer-assisted — does not require any of these assumptions,

and is thus quite general. However, for the EF approach to be successful, other assumptions must be
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satisfied [29]. Specifically, the system must be able to be described by a set of low-dimensional “coarse”

variables. This implies the existence of a low-dimensional manifold onto which the system is rapidly

attracted. Checking that this is the case, and determining what the coarse variables are, is a nontrivial

issue. We also need a way of mapping between the coarse variable(s) and the full set of variables in the

original network, in both directions (“lifting” and “restricting”). These issues will be addressed below.

The structure of the paper is as follows. We present the model network in Sec. 2; it is of the same

form as that studied by several other groups [49,25]. We demonstrate a common numerical technique in

Sec. 3, that of projective integration, i.e. the acceleration of time integration of a dynamical system. In

Sec. 4 we choose a different parameter regime in which the network seems well-described by a particle

moving in a double-well potential, under the influence of noise. We demonstrate data-mining techniques

to support this conclusion and show how one can calculate properties of the network’s behaviour using

a single coarse variable (observable). We summarise with a conclusion in Sec. 5.

2 Model

We consider a model very similar to that of [49] and [25]. It consists of a single integrate-and-fire

neuron with excitatory inputs from 1000 neurons and inhibitory inputs from 200. The strengths of the

inhibitory synapses are fixed, but the strengths of the excitatory synapses evolve under the following

rule: Define ∆t = tpost− tpre to be the time difference between any pair of presynaptic and postsynaptic

action potentials. Then the change in the strength of the synapse between the pre and postsynaptic

neuron caused by this pair of firings is

∆g =





λ (1− g)
σ
e−|∆t|/τ , ∆t > 0

−αλgσe−|∆t|/τ , ∆t < 0

0, ∆t = 0

(1)

where g is the strength of the synapse immediately before the interaction occurs (0 ≤ g ≤ 1), τ = 20

msec, λ is an overall “learning rate” and σ and α are parameters. Note that the maximum increase in

g caused by one pair of firings is λ, while the magnitude of the maximum decrease is αλ. If the change

∆g makes g negative we set g = 0, and if the change makes g > 1 we set g = 1. If σ = 0 we recover

the dynamics of [49]. Rubin et al. [44] considered the cases σ = 0 and σ = 1, while [25] considered the

effects of varying σ between 0 and 1.

To actually implement the model, the integrate-and-fire neuron obeys

τm
dV

dt
= Vr − V + gmaxgex(Vex − V ) + gin(Vin − V ) (2)

where gmax = 0.015, Vr = −70mV, Vex = 0mV, Vin = −70mV and τm = 20 msec, together with the

rule that once V reaches −54mV it is reset to −60mV, and the neuron is deemed to have fired. The

inhibitory input consists of 200 independent Poisson processes, each having a rate of 10Hz. (This rate

is fixed throughout the paper.) When an inhibitory input occurs, gin 7→ gin + gin, where gin = 0.05,

and otherwise

τi
dgin
dt

= −gin (3)
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The excitatory input consists of N = 1000 independent Poisson processes, each having a rate specified

in the text. When an excitatory input at synapse a occurs, where a ∈ {1, . . .N}, gex 7→ gex + ga, and

otherwise

τe
dgex
dt

= −gex (4)

We have τe = τi = 5 msec. The quantity gmax is chosen to be dimensionless and the conductances

gex and gin are measured in units of leak conductance of the neuron and thus they and the associated

quantities gin and ga are also dimensionless. The plasticity in (1) is implemented using the N + 1

dimensionless variables M and Pa for a = 1, . . .N . These satisfy

τ
dM

dt
= −M and τ

dPa

dt
= −Pa (5)

and every time the postsynaptic neuron fires, M 7→ M − λα, and every time (excitatory) synapse a

fires, Pa 7→ Pa + λ. M is used to decrease synaptic strengths: if synapse a fires at time t, we have

ga 7→ max [ga +M(t)gσa , 0]. (Note that M is negative.) Pa is used to increase the strength of synapse a:

if the postsynaptic neuron fires at time t, we have ga 7→ min [ga + Pa(t)(1 − ga)
σ, 1].

This system has been well-studied [25,49], and typical behaviour is shown in Fig 1. When σ is

small the ga typically split into two groups, one having large values and the other having small values.

The firing rate of the excitatory inputs controls the relative number in each group: for a higher firing

rate there are more synapses in the “weak” group [49]. Increasing σ moves the two “modes” of the

distribution together until they eventually merge. Increasing λ for small σ “fills-in” the gap between the

two populations seen in Fig. 1(c). One point of interest to us is the apparent slowness of the distribution

evolution dynamics. As seen from Fig. 1 (a and b) it can take on the order of 1000 seconds for the system

to reach an equilibrium distribution, even though the longest explicit timescale in the model is of order

10 msec. It is this separation of timescales between the microscopic dynamics (of the integrate-and-fire

neuron, the synaptic dynamics, and the variables M and the Pa) and the macroscopic dynamics (of the

probability density of the ga) that we will exploit in Sec. 3.

The dynamics of this network are fairly simple, but more interesting behaviour can occur when

correlations are introduced in the firing times of the excitatory inputs [39,25,48]. We will consider the

case where the 1000 excitatory inputs are divided into two groups of 500 each, and correlations are

introduced such that any two spike train inputs within one group have correlation coefficient c, but

there are no correlations between any spike train from one group and any spike train from the other

group. This is done as follows [39,25,22]. To solve the ODEs (2)-(5) time is discretised into steps of

δt = 0.05 msec, and the forward Euler method is used. At the nth timestep the state of excitatory

input a, Xn
a , is either 1, with probability faδt (corresponding to neuron a firing) or 0 (if neuron a is not

firing), where fa is the firing rate of neuron a (constant over time, and the same for all neurons within

the same group). Thus the state of all 500 excitatory neurons in one group at the nth timestep can

be described as a vector with 500 elements [Xn
1 Xn

2 . . . Xn
500]. To introduce correlations, a “phantom”

input neuron with index 0 is created, and this neuron’s dynamics are statistically the same as any of the

other neurons in the group, i.e. its firing times are generated from a Poisson process with rate f = fa.

Then at the nth timestep, and for each a ∈ {1, . . . 500}, with probability
√
c we replace Xn

a by Xn
0

(thus keeping the original Xn
a with probability 1 − √

c). Typical behaviour when c = 0.01 is shown in

Fig. 2, where we have chosen all ga in a population to initially be equal, but with a difference between



Equation-free analysis of spike timing dependent plasticity 5

(a)

(b)

Time (sec)

g a

 

 

0 500 1000 1500 2000 2500

0

0.5

1

Time (sec)

g a

 

 

0 500 1000 1500 2000 2500

0

0.5

1

0

20

40

60

0

50

100

0 0.5 1
0

20

40

60

80

g
a

0 0.5 1
0

50

100
(c) (d)

g
a

Fig. 1 (a) and (b): density plots of the ga as a function of time. Initially the ga are randomly and uniformly chosen

from [0, 1]. (c): steady state distribution when σ = 0.01, corresponding to panel (a). (d): steady state distribution when

σ = 0.1, corresponding to panel (b). Parameters are σ = 0.01 (a) and σ = 0.1 (b). λ = 0.005, α = 1.05. Firing rate of

excitatory inputs is 10 Hz.

populations, so that the evolution of each population is clear. The final distribution is bimodal, with the

two modes corresponding to the two populations. (This happens even if all ga are initially the same.)

The evolution of the distributions is again slow, on the order of hundreds of seconds. In Sec. 3 we show

how to speed up the simulation of these dynamics.

Note that there are two main strategies for simulating networks such as the one considered here:

time-stepping and event driven [8]. Time-stepping is described above — ODEs are solved approximately

by taking small time steps, and events are detected. In event-driven simulation the network is stepped

from event to event, updating variables at each event. Such a strategy requires the equations to be
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Fig. 2 (a): density plot of the ga as a function of time. (b) and (c): histograms showing the distributions of the ga for

the two populations at t = 5 sec (b) and t = 1000 sec (c). Intially all ga in one population were 0.3 and in the other, 0.2.

Other parameters: λ = 0.001, α = 1.05, σ = 0.01, c = 0.01. Firing rate of excitatory inputs is 40 Hz.

analytically solvable, and has been implemented for several models of STDP, including the one discussed

here [7,12].

3 Projective integration

Coarse projective integration is a common EF technique used to speed up the time integration of a

complex dynamical system [20,29]. We will demonstrate it here using projective integration of distri-

butions [19]. The idea is that since the distributions of the ga are changing slowly, we should be able to

integrate the distributions forward in time, using much larger time steps than those used to integrate

the full underlying system. The main issues are: how do we describe (parameterise) a distribution, and

how do we find the evolution of these parameters, which we regard as variables in a low-dimensional

description of the dynamical system? We will parametrise a distribution by expanding the inverse of

the cumulative density function (CDF) as a finite sum of orthogonal polynomials; other possibilities

exist [45]. Figure 3(a) shows the CDF for the two populations whose evolution is shown in Fig. 2, at

t = 1000. The inverses of these functions are shown in panel (b). The horizontal axis must go from 0

to 1, and we use x to denote this variable. (We can obtain these plots by simply plotting the sorted

values of the ga within each population.) We now expand the functions shown in Fig. 3(b) in orthogonal

polynomials on [0, 1], with uniform weight. These are the shifted Legendre polynomials, which satisfy

∫ 1

0

Pn(x)Pm(x)dx =
δnm

2n+ 1
(6)

The first few are P0(x) = 1, P1(x) = 2x− 1, P2(x) = 6x2 − 6x+ 1.
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Fig. 3 (a): cumulative distribution functions for the two populations whose evolution is shown in Fig. 2, at t = 1000.

(b): inverses of the CDFs shown in panel (a). Parameters as in Fig. 2.

Thus we write

gja(x, t) ≈
q∑

i=0

aji (t)Pi(x) j = 1, 2 (7)

where the superscript labels the population. From now on we set q = 5, as this has been found to be

high enough to accurately capture the dynamics. Ideally, this value should be monitored as parameters

are varied (by comparing results obtained using q polynomials with those obtained using q− 1 or q+1

polynomials) and increased or decreased as necessary in order to accurately describe the full dynamics.

The aji can be easily extracted from a simulation of the full system at any time t by minimizing the
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quantity

S =

500∑

k=1

[
gja(xk, t)−

q∑

i=0

aji (t)Pi(xk)

]2
(8)

where xk = (k − 0.5)/500. Minimizing S is nothing more than linear least squares fitting of data

like that in Fig. 3(b) to a linear combination of the polynomials P0(x) to Pq(x) [32]. In equation-free

terminology, this is the restriction operator, which maps from the ga to the coefficients aji . An example

is shown in Fig. 4 for the simulation in Fig. 2, where only the results for 0 ≤ t ≤ 700 are presented. As

expected, these coefficients vary slowly, with a small amount of “noise” present. Interestingly, only the

first two coefficients seem to be significant, with the higher-order coefficients fluctuating around zero.

This suggests that the system is effectively low dimensional. The EF approach is to assume that the

results in Fig. 4 can be obtained by integrating a dynamical system for only these variables, i.e. that

the system “closes” at this level.

We now address the question of evolving these coefficients, given just their values. To do this we

need to lift, run and then restrict, and then project. We proceed to explain these terms. Lifting involves

initialising the full system in a way that is consistent with the values of the aji . We use (7) to do this:

given the aji , we evaluate the right hand side (RHS) of (7) at x = (k − 0.5)/500 for k = 1, 2 . . .500.

The other variables are initialised (rather arbitrarily) as Pa = 0 ∀a, and others are randomly chosen

from uniform distributions, the ranges of which are given in Table 1. The precise values to which these

variables are initialised are not important, as due to the separation of timescales in the system, the

variables will equilibrate over the times for which we observe the distribution of synaptic strengths.

More specifically, the time-constants for the evolution of V,M, ge, gi and the Pa are between 5 and 20

msec (see Sec. 2) and these are the characteristic times over which these variables change.

Variable V M ge gi

Range [−60,−56] [−0.001, 0] [20, 25] [0, 0.1]

Table 1 Ranges of randomly chosen initial conditions for projective integration.

We then run the full network for 1 second, four times, with different realisations of the random

processes (firing times and initial conditions) each time. For each of these four realisations we extract

the time series of the aji as above and then average across the realisations to give one time series per

coefficient. Examples are shown in Fig. 5 for a2i . We then fit a straight line through each of these time

series over the interval [0.25, 1]. The slope of this line is then our estimate of the rate of change of the

corresponding coefficient; see Fig. 5. Using this technique we can effectively estimate the RHS of the

dynamical system
da

dt
= F (a) (9)

where a = (a10 a11 . . . a2q−1 a2q)
T and F is — by definition — the function describing the rate of change

of a, and thus integrate (9) forward in time.

A simulation time of 1 second for these bursts is long enough for the fast variables to have time

to equilibrate, but short enough that the slow variables of interest change in only a linear fashion over

this interval. Of course, averaging over more than 4 bursts will increase the accuracy of our estimate of
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Fig. 4 Coefficients of the orthogonal polynomial expansion of the gas whose evolution is shown in Fig. 2 for population

1 (panel (a)) and population 2 (panel (b)). Parameters as in Fig. 2.

F (a), but at the expense of requiring more computation. Note in Fig. 5 that a changes slightly during

the first 0.25 sec. of integration, and thus we are not estimating F (a) at exactly the value of a at which

we initialised the network, but at a close point nearby. This slight discrepancy can be removed by using

implicit techniques [38].

The projective integration in Fig. 6 was done using Euler’s method, with a fixed time-step of 4

seconds. Comparing with the results in Fig. 4, and keeping in mind that we are simulating a stochastic

dynamical system, the agreement appears visually very good. Each time-step involves one evaluation of

the RHS of (9) and each evaluation involves averaging over 4 bursts of length 1 second. Thus we need

4 seconds of simulation in order to take one step of 4 seconds, giving no speed-up (ignoring the cost

of lifting, restricting, and taking the Euler step, which is reasonable). However, the bursts can trivially
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Fig. 5 Dynamics of coefficients in (7) during a short burst. Initially, a2
0
= 0.2 and all other a2

i
= 0. (a): a2

0
and the best

straight line fit over 0.25 < t < 1. (b): a2
i
for i = 1, . . . 6. a2

1
is shown in blue, and the best straight line fit to this data

over 0.25 < t < 1 is also shown. Parameters as in Fig. 2.

be done in parallel on a multicore processor, whereas there seems to be no obvious way to parallelise

a direct simulation of the full system. Thus on a quad-core system, as was used for these calculations,

the “wall clock” speedup is 4. There is no communication between processors during the bursts, as the

only information that must be passed to them is the current value of a, and the only information they

have to return is the values of a over the burst.

The time-step of 4 seconds was chosen to demonstrate the advantages of projective integration. Using

a larger time-step than this results in larger fluctuations of the variables in Fig. 6, and using a smaller

time-step (while more accurate) results in less of a speedup. As with any numerical scheme, one can

vary parameters associated with it, such as the number of bursts averaged over and the time-step used

for Euler’s method, and systematically investigate the effects of these changes [33]. Note that we are not
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Fig. 6 Projective integration of (9). In each panel the blue curve shows a0 and the green one, a1. Compare with Fig. 4.

Parameters as in Fig. 2.

restricted to Euler’s method: any other valid scheme for time-stepping could be used. We could also use

Newton’s method to find zeros of (9) and their dependence on parameters, but that is computationally

intensive, as many realisations must be averaged over in order to accurately evaluate derivatives using

finite differences (see, for example, [3] for discussion on this). We thus leave these ideas for future, more

quantitative, publications.

Our coarse projective integration has been successful (for the parameter values used) because the

full network can in principle be described by a low-dimensional deterministic system of the form (9).

Also, the precise values of most of the variables, when initialising the full network at the start of each

burst, do not crucially determine the evolution of the network, for reasons mentioned above. These

statements may no longer be true at different parameter values, and should be checked, ideally in an

automated fashion.
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While there exist some analytical results regarding the evolution of the distribution of synaptic

weights [52,10,25,39,44], these all rely on some form of approximation. We emphasise that our tech-

niques do not rely on any approximations regarding the model’s dynamics, and can be applied, essen-

tially unchanged, as “wrappers” around other models. Similarities between our results and those cited

directly above can be regarded as confirmation that the approximations used in those works are indeed

valid. The acceleration of the simulation of a network via projective integration is significant, but also of

interest is the discovery that so few coefficients are needed in the expansion (7) to accurately represent

the distribution of synaptic strengths. Note also that finding unstable fixed points of (9) (which we could

do in principle) cannot be done by just integrating the full network forwards in time; this is another

advantage of the EF approach.

We now consider a different parameter regime and show that here the network can be well-described

by a single collective variable which appears to satisfy a stochastic differential equation.

4 Data-mining and a stochastic differential equation

Consider again a network with 1000 excitatory neurons, split into two populations of 500 each. All

excitatory neurons fire at 30Hz and there are correlations within each of the two populations, as above.

We again have 200 inhibitory inputs firing at 10Hz. Compared with the parameter values in Sec. 3 we

increase λ and α, and consider a much larger value of the correlation: c = 0.5. Typical behaviour is

shown in Fig. 7. We see apparently stochastic switching between periods where one population of inputs

is dominant, and where the other population is dominant. Such behaviour is reminiscent of a particle in

a double-well potential, subject to noise [30,16,15]. Note the symmetry of the system: there is nothing

distinguishing one subpopulation of 500 excitatory inputs from the other.

Assuming that the network can be described in a low-dimensional way, the first task is to identify

appropriate variable(s) with which to describe the state of the system, and then to find the dynamics of

those variables. We address the first question using data-mining, specifically, using diffusion maps [13],

a nonlinear manifold learning algorithm. The full data-set we have is the collection of “snapshots” of

the state of the network (i.e. the ga, the Pa and V, gin, gex,M) at 30, 000 timepoints, each separated by

0.025 sec. The ga as a function of time are shown in Fig. 7 (only the first 2/3 of the data set is shown),

and we assume that the dynamics of these variables suffices to describe the network’s behaviour. At

each of these 30, 000 timepoints the ga are regarded as a vector in R
1000. To perform our data-mining

we use a subset of these, selecting every 10th vector, i.e. we mine the set of ga at 3000 timepoints,

each 0.25 sec apart. The underlying assumption behind diffusion maps is that these data points lie on a

low-dimensional (probably nonlinear) manifold in a 1000-dimensional space. We would like to find the

dimensionality of this manifold, and to construct a coordinate system on it.

Let xi ∈ R
1000 be the set of ga at the ith such time-point, where i ∈ {1, 2, . . .3000}. We define a

3000× 3000 matrix K by

Ki,j = exp

[
−
( ||xi − xj ||

ε

)2
]

(10)
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Fig. 7 The behaviour of a network with 1000 excitatory inputs at 30Hz and 200 inhibitory inputs at 10Hz. (a): the ga.

(b): the difference between the means of the two populations, m1 −m2. Other parameters: gmax = 0.015, gin = 0.05, λ =

0.01, α = 1.5, σ = 0.01, c = 0.5.

where || · || indicates the Euclidian norm and we choose ε = 20. We then define the diagonal matrix D̂

by

D̂i,i =
3000∑

j=1

Ki,j (11)

and the matrix M = D̂−1K. The matrix M has eigenvalues 1 = λ0 ≥ λ1 ≥ · · · ≥ λ2999 ≥ 0 with right

eigenvectors ν0,ν1, . . .ν2999. The eigenvector ν0 is constant (all entries are 1). If there is a spectral

gap after several eigenvalues, this suggests that the data set {xi} is low dimensional, and the leading

eigenvectors ν1,ν2, . . . provide a useful low-dimensional description of the data [31,30,15,47] (assuming

that data in these dimensions is not a “harmonic” of directions already found [18]).

The spectral gap between the first and second non-trivial eigenvalues, λ1 and λ2, is shown in Fig. 8.

This spectral gap strongly suggests that the data shown in Fig. 7 lies on a 1-dimensional manifold (a

curve). The theory behind diffusion maps then says that the first non-trivial eigenvector, ν1, provides

a coordinate system along this curve. Specifically, the diffusion mapping is

xi 7→ ν
(i)
1 ∈ R (12)

for i = 1, . . . , 3000, where ν
(i)
1 is the ith component of ν1. This is a mapping from R

1000 to R. We refer

to the unbolded ν1 as the scalar “diffusion map coordinate” and ν
(i)
1 is a specific value of ν1. Figure 9

shows the data from Fig. 7 projected onto the first two diffusion map coordinates, ν1 and ν2. We see

that while there is some variation in the ν2 direction, position in this data “cloud” can be parametrised

by just the ν1 coordinate.

The diffusion map coordinate ν1 is plotted as a function of time in Fig. 10, along with ν2. (The plots

of ν3, . . . ν6 all appear similar to the plot of ν2, not shown.) By comparing the top panel of Fig. 10 with
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Fig. 9 Projection of the data shown in Fig. 7 onto the first two diffusion map coordinates, ν1 and ν2.

Fig. 7 we see that ν1 seems to capture the dynamics of the network, with ν1 taking on positive values

when population 1 is active and negative values when population 2 is active. Indeed, if we define mi to

be the average of the ga within population i, plotting m1 −m2 versus ν1, as done in Fig. 11 shows that

ν1 captures the difference between the means of the two populations extremely well.

Having determined that ν1 is an appropriate variable with which to describe the state of the system,

we now need to find the dynamics of ν1. Our assumption is that ν1 satisfies a Langevin stochas-

tic differential equation, and that the probability density function P (ν1, t) satisfies the corresponding

Fokker-Planck equation

∂P (ν1, t)

∂t
=

[
− ∂

∂ν1
µ(ν1) +

∂2

∂ν21
D(ν1)

]
P (ν1, t) (13)

One can estimate the functions µ and D from their definition [24,42,53,31,30]:

µ(ν1) = lim
∆t→0

〈ν(t+∆t)− ν(t)〉
∆t

∣∣∣∣
ν(t)=ν1

(14)
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Fig. 10 The first two diffusion map coordinates, ν1 (a) and ν2 (b), as functions of time for the simulation shown in

Fig. 7.
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and

D(ν1) = lim
∆t→0

〈[ν(t+∆t)− ν(t)]2〉
2∆t

∣∣∣∣
ν(t)=ν1

(15)

where angle brackets indicate averaging. In practice we use the approximations

µ(ν1) ≈
〈ν(t +∆t)− ν(t)〉

∆t

∣∣∣∣
ν(t)=ν1

(16)

and

D(ν1) ≈
〈[ν(t+∆t)− ν(t)]2〉

2∆t

∣∣∣∣
ν(t)=ν1

− ∆t[µ(ν1)]
2

2
(17)

where the last term is a finite-∆t correction [53,42]. In order to use these approximations we need (a)

a large amount of data (so that averaging produces good results), and (b) for the data points to be

closely spaced in time (so that small ∆t is a good approximation to the limit ∆t → 0). Using only the

data exploited in the data-mining is not a good idea, since there are only 3000 data points (and this

cannot be increased by much, given the size of the matrices involved in the diffusion map algorithm).

Instead, we will use all of our data, i.e. the 30, 000 data points, each separated by ∆t = 0.025 sec. In

order to do so, we need the values of ν1 corresponding to all of these data points. (Recall, we only have

ν1 values for the 3000 points used in the data-mining.) We can find these values using the Nyström

formula for eigenspace interpolation.

To do this, we note that M = D̂−1/2SD̂1/2, where S = D̂−1/2KD̂−1/2. M and S are thus similar,

and have the same eigenvalues, λ0 ≥ λ1 ≥ . . . ≥ λ2999. Let {Uj}j=0,...,2999 be the corresponding

eigenvectors of S. These are related to the eigenvectors of M through

D̂1/2
νj = Uj . (18)

We have SUj = λjUj , or

U
(i)
j =

1

λj

3000∑

k=1

Si,kU
(k)
j (19)

where U
(i)
j is the ith component of Uj . Suppose we have a new vector xnew ∈ R

1000, consisting of the

values of the ga at some time, and we want to know the value of ν1 associated with it. We create an

3000× 1 vector Knew whose kth component is

K(k)
new = exp

[
−
( ||xnew − xk||

ε

)2
]
. (20)

We also have a generalised kernel vector Snew whose ith entry is

S(i)
new =

(
3000∑

k=1

Ki,k

)−1/2(3000∑

k=1

K(k)
new

)−1/2

K(i)
new. (21)

The entries in Snew quantify the pairwise similarities between xnew and the vectors in {xk}, consistent
with the definition of S. The eigenvector component Unew

j corresponding to xnew is then

Unew
j =

1

λj

N∑

i=1

S(i)
newU

(i)
j (22)
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Fig. 12 Estimates of the functions µ(ν1) (a) and D(ν1) (b) from 30, 000 equally-spaced values of ν1, using the approxi-

mations (16)-(17).

for j = 0, 1 (since we only want the value of ν1) and the value of ν1 corresponding to xnew is

νnew1 =
Unew

1

Unew
0

. (23)

By performing this calculation for the 30, 000 data points we obtain 30, 000 values of ν1, each 0.025 sec.

apart, and can use these to estimate the quantities in (16)-(17). The results are shown in Fig. 12.

Several observations can be made. Firstly, the drift term, µ(ν1), has three zeros. If the diffusive term,

D(ν1), could somehow be set to zero, the dynamics of ν1 would simply be dν1/dt = µ(ν1), and this

system has two stable fixed points at ν1 ≈ ±1 and one unstable fixed point at ν1 ≈ 0. Thus the reduced

system for ν1 can be usefully regarded as being bistable, but subject to noise. The other observation

regards the error bars shown in Fig. 12. They tend to be large where there is little data and vice versa.

We will address this issue below.
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Fig. 13 Effective potential, Φ(ν1), as a function of ν1. The solid curve comes from numerically evaluating (24), while the

circles joined by lines show the result of binning the 30, 000 values of ν1 and inverting P (ν1) ∝ exp [−Φ(ν1)].

Having obtained the data in Fig. 12 we can now easily perform several calculations. The first is to

estimate the effective potential Φ(ν1), related to µ(ν1) and D(ν1) by

Φ(ν1) = const.−
∫ ν1

νm

µ(s)

D(s)
ds+ logD(ν1) (24)

where νm is the minimum value of ν1 [16,30]. The steady state of the Fokker-Planck equation (13)

is given by P (ν1) ∝ exp [−Φ(ν1)]. We fit a third order polynomial through the mean values shown

in Fig. 12 (top) and a third order polynomial through the mean values in Fig. 12 (bottom), and

then numerically evaluated the integral in (24). The result is shown in Fig. 13, along with the result

determined by inverting P (ν1) ∝ exp [−Φ(ν1)]. The underlying system is symmetric, but we have not

forced this symmetry on µ,D nor Φ. The double-well potential is clearly seen.

Another calculation of interest is that of the distribution of switching times, i.e. the amount of time

that the system will remain in one potential well before switching to the other. (Or the amount of time

that the integrate-and-fire neuron is driven by one subpopulation, before switching to being driven by

the other.) For a well at ν1 = νmin, the average switching time is given by

τ ≈ 2π exp (∆Φ)

D
√
−Φ′′(νmin)Φ′′(νmax)

(25)

where the local maximum of Φ occurs at ν1 = νmax, ∆Φ ≡ Φ(νmax) − Φ(νmin), and D is the average

value of D(ν1) over the range shown in Fig. 12. Calculating these for the potential found using (24)

we found that the average time between switchings is about 10 seconds. The original (750 second)

simulation had an average time between switchings of about 15 seconds, in excellent agreement. The

distribution of escape times is shown in Fig. 14(a). We can also numerically integrate the associated

Langevin equation

dν1
dt

= µ(ν1) +
√
2D(ν1)η(t) (26)
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Fig. 14 (a) Distribution of escape times for the full simulation, duration 750 seconds. (b) Distribution of escape times

for simulation of (26), duration 7500 seconds.

where η(t) is uncorrelated Gaussian white noise with mean zero and unit variance. Doing so for a long

time (7500 seconds) gives an average time between switches of about 8 seconds. The distribution of

escape times for such a simulation is shown in Fig. 14(b).

As mentioned, the error bars in Fig. 12 vary across ν1, as the density of ν1 during the long simulation

is not uniform. One way to address this, and obtain better estimates of µ(ν1) and D(ν1), is to repeatedly

initialise the full system at a specific value of ν1, run a short burst from this initial condition, process

the results using the Nyström formula to find how ν1 varies during the burst, and estimate µ(ν1) and

D(ν1) by averaging over the many bursts. This can be done for a variety of different values of ν1, and

data like that shown in Fig. 12 can be found.

The problem of initialising the full system at a particular value of ν1 (“lifting”) is nontrivial, and a

variety of methods have been used [31,30,16,50]. Here we take a simple approach. We wish to estimate

µ(ν1) and D(ν1) at a set of evenly-spaced values of ν1, as in Fig. 12. If ν∗1 is one of these values, we

find all snapshots in our original long simulation for which ν1 is between ν∗1 − δν/2 and ν∗1 + δν/2,

where δν is the spacing between ν1 values in Fig. 12. We then repeatedly randomly choose one from

this collection of snapshots, initialise the full system at this state (recall that the snapshots are of all

variables) and run for a short time (0.025 sec.). For each of these bursts we use the Nyström formula

(with our 3000 original points) to calculate ν1 at the end of the burst, and use the difference between

this and the value of ν1 for the initial condition to estimate µ(ν1) and D(ν1). Averaging over these

bursts gives an estimate of µ(ν∗1 ) and D(ν∗1 ). The fact that snapshots may be used multiple times as

initial conditions, or that they have already been used in our calculation of the 30, 000 values of ν1, is

not relevant, as the dynamics of ν1 will be different in each of these new bursts, due to the stochastic

nature of the firing times of all input neurons.

For each value of ν1 we have run 5000 such bursts. The means of the 5000 values of µ(ν1) and D(ν1)

are shown in Fig. 15. In comparison with Fig. 12 we see that the error bars are much more uniform over

ν1, and smaller in general. We can repeat the calculations above to find the potential and switching

times from these new estimates, and they give very similar results (not shown).

We can also vary parameters and see how the networks’ dynamics change. The results of varying σ are

shown in Figs. 16 and 17. Here we ran simulations at 20 equally-spaced values of σ, each of duration 750

seconds, and for each simulation, performed the analysis described above, i.e. used 3000 equally spaced

snapshots to generate values of ν1, then use the Nyström formula on 30,000 data points. We processed

these 30,000 values to get estimates of µ(ν1) on a grid of ν1 values. At each value of σ we fit a cubic
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Fig. 15 Estimates of the functions µ(ν1) (a) and D(ν1) (b) resulting from initialising the network at specific values of

ν1 (see text).

µ(ν1) = b3ν
3
1 +b2ν

2
1 +b1ν1+b0 to these data points. The coefficients b3, . . . b0 are shown in Fig. 16, along

with a straight line fit through them, defining the linear functions b3(σ), . . . b0(σ). From the symmetry

of the problem we expect b2 and b0 to be approximately zero, and for b3 and b1 to have some dependence

on σ, and that is what is seen. Figure 17 shows the real roots of b3(σ)ν
3
1 + b2(σ)ν

2
1 + b1(σ)ν1 + b0(σ) at

the 20 different values of σ used, and we see that the system undergoes a perturbed pitchfork bifurcation

as σ is increased. Note that at each value of σ we used only the data from the corresponding simulation

for the data-mining.

We have demonstrated that, for the parameter values considered, the network can be well-described

by a stochastic differential equation for a single variable. As in Sec. 3, the correctness of this assumption

may change as parameters are varied, and should be checked. The stochastic differential equation derived

is much quicker to simulate than the full network and could thus form a “module” for simulating the
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and solid line) and b1 (red squares and dashed line). (b): b2 (magenta stars and solid line) and b0 (black diamonds and

dashed line).

0.1 0.12 0.14 0.16 0.18 0.2
−1.5

−1

−0.5

0

0.5

1

1.5

σ

ν 1

Fig. 17 Real roots of b3(σ)ν31 + b2(σ)ν21 + b1(σ)ν1 + b0(σ) as a function of σ, where the dependence of the coefficients is

linear, as shown in Fig. 16. This shows a perturbed pitchfork bifurcation; enforcing b2 = b0 = 0 would result in a perfect

pitchfork bifurcation.
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dynamics of this small network within a larger simulation, to be “called” when necessary. By following

roots of µ(ν1) as σ is varied (Fig. 17) we have uncovered a pitchfork bifurcation which lies behind the

cessation of switching that occurs as σ increases.

5 Summary

We have studied a simple well-known network of neurons whose connectivities undergo STDP, in two

parameter regimes. In the first we observed that the distribution of connection strengths evolved on a

much slower time-scale than any of the explicit time-scales in the model. This separation of time-scales

suggested that projective integration could be used to speed up simulations of the network. We showed

this to be accurate, expanding the inverse of the cumulative distribution function of the connection

strengths in (a small number of) orthogonal polynomials. The coefficients of these polynomials provide

a low-dimensional description of the system, and their evolution can be calculated using conventional

algorithms for numerical integration. In principle we could also follow (stable and unstable) fixed points

of the equations describing the evolution of these coefficients as parameters are varied, detecting bifur-

cations. In the second regime we uncovered, using data-mining, a good observable and demonstrated

its relation to a physically meaningful variable (the difference between the means of the two popula-

tions). We showed that the network’s dynamics could be well-described by a single stochastic differential

equation for this single variable and demonstrated the estimation of the functions in this equation. This

stochastic differential equation is much faster to simulate than the full network whose behaviour it repli-

cates. We also followed fixed points of the “deterministic” part of this stochastic differential equation,

showing that a pitchfork bifurcation occurs as a parameter is varied.

The model we studied was simple in the sense that it was only the strengths of connections from

the excitatory inputs that were modified by STDP. The dynamics of the inputs (their firing times)

were unchanged by this evolution, as there were no connections from the integrate-and-fire neuron

back to them. This will not generally be the case, and more complex dynamics are expected from fully

connected networks, as has been observed by several authors [12,40]. In such networks, data-mining may

be essential to determine a low-dimensional description of the network dynamics (if this exists), and

current data-mining techniques may well need to be extended to deal with data measured from dynamic

networks. We note that STDP is but one form of synaptic plasticity (and the version presented here is

not the only formulation of STDP [1,26,2]) — another example is homeostatic plasticity, which acts to

promote stable network behaviour [51,23]. If this form of plasticity is slow relative to the dynamics of

individual neurons, the techniques presented here could be used to study such slow dynamics.

We studied a neuronal network in which the dynamics of synaptic strengths played a crucial role in

determining the network’s behaviour. However, the equation-free approach is quite general and flexible,

and we believe that it will be useful in the study of other complex networks of neurons whose macroscopic

behaviour appears to be quite simple [34,14,46].
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