n=9, forcing at (7,2)
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Figure 8: Log—log plot of the error as a function of the number of floating point
operations needed to integrate the reduced system of equations for a time of 0.1s.
“+7 is the flat Galerkin, “0” is for integration on the AIM, while “x” refers to the

post—processed case.
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Figure 7: Ratios of spectral components in Figure 6. a. shows the ratio b:a in Figure 6,
i.e. 6 mode:full calculation, while b. shows the ratio c:a in Figure 6, i.e. post—processed

from 6 modes to all remaining:full calculation.
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Figure 6: Spectral analysis of a.) full calculation, shown in Figure 5 a., b.) 6 mode
truncation, c.) post—processed solution integrated on 6 modes and lifed to all remain-

ing modes. The (1,1) mode is furthest away and the (4,4) mode closest.
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Figure 5: a.) Shell at ¢ = 9.25 periods after starting from rest. Forcing is at node
(2,2) and n = 4. b.) Difference between solution in a. and that calculated using a
flat 6 mode truncation. c.) Difference between post—processed solution integrated on
6 modes and lifted to all remaining modes and that calculated using a flat 6 mode
truncation, using same scale as b. (The surfaces are generated by two passes of the
Matlab [17] function interp2 with bicubic interpolation on the original data to aid

visualisation.)
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n=9, forcing at (2,1)
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Figure 4: A log-log plot of the error (Ly norm in space at ¢t=0.1s) as a function of
the real part of the eigenvalues of B for a system with n =9 and forcing of pf(t) =
10000 sin (800¢) at node (2,1). The crosses are a flat Galerkin truncation, squares are
post—processed Galerkin and circles are calculations on the inertial manifold. The
straight lines are least squares fits and have slopes —0.7111, —1.0199 and —1.0056,

respectively.
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Figure 3: Partial set of eigenvalues (19) of the linearisation of the von Karman equa-
tions (7)-(8) about the rest state for n = 9; other parameters are as in Section 5.

There are more real eigenvalues that are more negative than those shown.
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Figure 2: Schematic diagram of the cartesian grid we lay over the shell.
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(1)

Figure 1: Schematic diagram of cylindrical panel with point forcing of f(¢). All side

lengths are assumed to be equal.
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& Conclusion

We have demonstrated an application of the ideas of post—processed Galerkin methods
to the large set of ordinary differential equations resulting from a semi-discrete finite
difference approximation to the von Karman equations that govern the vibrations of
thin shells. We have shown that post—processing gives results of similar accuracy to
those obtained from a nonlinear Galerkin method yet only requires a similar amount
of computational power to that used for a flat Galerkin of lower order and is thus more
efficient than both the flat Galerkin and nonlinear Galerkin methods. We believe that
post—processing of this form is a useful technique and will be of use in the many areas

for which the numerical solution of partial differential equations is necessary.
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is given by H™'X, provided H is invertible (generically, it will be, as the M(k)-
tuples are chosen randomly). A is determined by evaluating 4([0; 0; 0], 7 /(2w)). This
procedure can then be repeated for each component of (22). The disadvantage of
this method is that the side length of H goes as [M(k)]® and inverting H becomes
impractical for M (k) greater than about 20.

The other method involves numerical differentiation where we use the approximate

formulae
Of(lar---aa)) _ J(050])
O f(fr-wd) , S05060]) = ([050]) ~ f([050) vy
8:@8% (52
() F([0260) = 27((0 6 0)
azl’i 252

and similarly for the third partial derivatives, where ¢ is small and [0 3 0 (]5 0] is a
vector with n entries, all of which are zero except for ¢th and jth, which are equal
to 6. These approximate formulae can be used to isolate the coefficients ay,... ,¢222
in (25), while the technique mentioned above can be used to extract the values of A.
This method has the advantage that it does not use large amounts of RAM, but it

does require more calls to (16) than the first method discussed.

7 Efficiency

In this section we compare the efficiency of the three different methods. In Figure 8
we show a log—log plot of the error (defined in the same way as in section 5) as a
function of the number of floating point operations required to integrate the reduced
system of equations for 0.1 seconds starting from rest for the three different schemes.
We used the Matlab [17] (Version 5) procedure ode45 with default settings for the
integration and the forcing was again 10000 sin (800¢), but this time at node (7,2).
The 10 data points for the flat Galerkin method correspond to the first 10 modes.
While it is hard to discern a clear difference in the efficiencies of the flat Galerkin as
opposed to the calculations on the AIM, it is clear that there is a difference between
the calculations on the AIM and the post—processed solution, the post—processing
providing greater accuracy for a given amount of CPU time. This is in agreement

with results of other workers using spectral methods [7].
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functional form of (22) and (23) — for the von Karman equations they are both cubic
polynomials in the components of y; and linear in f(¢). For our first method, let us

set k =1, assume that M (1) = 2 and that we are trying to find (22). Write

Uy
h =
Ug

We know that the first component of (22) can be written
2 2 2 2 2 2
Uy = Z a;u; + Z Z b jusu; + Z Z Z i jrtithug + Asin (wt) (25)
i=1 i=1 j=i i=1 j=i k=j
There are P = [M(k)]?/6 + [M(k)]* + 11M(k)/6 unknown coefficients a1, ... , ¢z
in (25), so if we choose P random M (k)-tuples [ui(s)---uprry(s)] for s =1,..., P
and create a matrix, H (for P = 9 in this case) which can be thought of as a

generalisation of a Vandermonde matrix [19]

ur(1) wa(l) wi(l) w(Dua(l) wi(l) wi(l) wi(Dus(1) wi(Duz(l) wp(1)
ui(2) wa(2) wi(2) w(ua(2) w3(2) wi(2) wiua(2) wi(2ui(2) ua(2)

ur(P) ua(P) ui(P) wi(P)us(P) u3(P) ui(P) ui(P)us(P) ui(P)uz(P) u3(P)

and a vector

i ([u(P); 0;0],0)
where 4 is the first component of (22) as calculated numerically via (20), then the
vector of coefficients

ay

(D)

51,2
52,2
11,1

C1,1,2

C1,2,2

€222
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be thought of as showing the “fine structure” that we have lost by using only the
first 6 modes. Figure 5 c. shows the difference between the solution obtained by
post—processing the data from the integration on the first 6 modes and that obtained
by using a 6 mode truncation and can be thought of as showing the fine structure
that has been recovered using the post—processing. Note the similarity with b., and
that b. and c. have the same scale.

In Figure 6 we show a “spectral analysis” of the full solution, the solution obtained
through a 6 mode truncation, and the post—processed solution. Assuming that the
plate is on the unit square and the displacement at the grid points is given by z, the
quantities we have calculated are

0. |trapz{trapz{zsin (i7z)sin (j7y)}}|
"7 trapz{trapz{sin? (irz)sin® (jry)}}

where the arguments of the trapz are evaluated at the grid points calculated (not
the ones introduced by the interpolation) and trapz is the Matlab [17] function for
approximate integration using the trapezoidal method. We can think of 8, ; as giving
the amount of the mode sin (¢7z)sin (y7y) in 2.

Figure 6 a. shows 6 for the full solution from Figure 5 a. Figure 6 b. shows 4
for the solution from the 6 mode truncation. Note that 6 is very small (although
non—zero) away from the first 6 modes. Figure 6 c. shows 6 for the post—processed
solution. Note the similarity with a.

Figure 7 shows this information more clearly. Here we have shown the ratios of
corresponding values of # for the 6 mode truncation and the true solution (a.), and
the post—processed values and the true solution (b.). We see that in a. the ratios for
the first 6 modes are close to 1 while the other ratios are close to 0, whereas in b. all

ratios are close to 1.

6 Extraction of the reduced system

The issue of explicitly extracting the Galerkin truncation (22) and the approximate
inertial manifold (23) from the full system (16) arises. In principle, equation (20)
can be calculated symbolically using a package such as Maple [16] and equations (22)
and (23) easily extracted, but we have found that this approach rapidly uses up all
available RAM on a moderate sized work—station.

A more practical approach is to calculate (20) numerically and then use one of

two methods to extract (22) and (23) from it. Both methods rely on knowing the
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(ur, v and E are the relevant values for steel). We have compared the solutions at
a time of 0.1 seconds (corresponding to approximately 13 forcing cycles), having
started from rest. Integration has been done with the Matlab [17] (Version 5) routine
ode23 with default settings. For the post—processing and the calculations on the
approximate inertial manifold (AIM) we have “lifted” the solution up onto the all the
remaining modes, i.e. we have taken m = 5 in (24) for all values of k. The results
of Garcia-Archilla et al. [7] suggest taking m = k* for some 1 < a < 2, with the
exact value depending on the PDE being studied, but for these calculations we chose
m = 7. Note that we have not shown results from all possible values of k£ in Figure 4,
only the lowest ones, as for higher values we no longer have enough modes to lift up
to and scaling results for convergence rates are no longer likely to be valid.

In Figure 4 we have defined the error as the Ly norm in space of the difference be-
tween the solution at t=0.1s calculated using all the modes and the solution at {=0.1s
calculated (and then possibly post—processed) using a smaller number of modes. The
theory of Jones et al. [10] shows that the error should be inversely proportional to the
real part of the kth eigenvalue, where k is the level of truncation, and hence a log—log
plot of error as a function of the real part of the eigenvalues of B should produce a
straight line. The main point to notice is that the post—processed solution has a sim-
ilar accuracy as the calculations on the AIM, and that these are significantly better
than a flat Galerkin. Note also the different slopes of the best—fit straight lines. The
results of Jones et al. [10] suggest that for solutions with low smoothness (such as
those generated by our point forcing), the NLG method converges faster than the FG
(as well as having better accuracy for a given number of modes). This is confirmed
in Figure 4, where the slopes of best—fit lines for the PPG and NLG are —1.0199 and
—1.0056, respectively, compared with —0.7111 for the FG.

We now give a simple example demonstrating how the post—processing works.
Figure 5 a. shows the displacement of the shell 9.25 periods after starting from
rest, where the forcing is pf(¢t) = 10000sin (800¢) at node (2,2) and n = 4. For
n =4, n = 16, i.e. there are 16 distinct modes, all of which have complex eigenvalues
associated with them. The 16 eigenvectors are similar to the 16 spectral Galerkin
modes sin (rz)sin (xy),... ,sin (4rz)sin (47y). We have chosen to integrate on the
first 6 modes and post—-process the remaining 10.

Figure 5 b. shows the difference between the “true” solution in a. and the result

of integrating on the first 6 modes (i.e. a flat Galerkin projection). This Figure can
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We make an analogy with the PDE by assuming that there is a graph relating the
asymptotic behaviour of the higher modes (yi,» for & < m < n) to the behaviour of

the lower modes (yi), i.e. there exists a @ ,, such that

Yem = Prm(yr)

Again, in analogy with the construction for the PDE, we take a first approximation

to @y, CI)?m defined as

Yk = @ (Ut) = —(Trom) ™ Thom ([y£; 05 0], 1) (23)

Thus the evolution on the approximate inertial manifold is given by the system

gk = (Tr)yr + Te(lyr; —(Tem) ™ Trom ([ys; 05 0], 2); 0], 1) (24)

with the solution reconstructed as v ~ y, + CI)?m(yk). The post—processing approach
consists of solving (22) and then reconstructing the solution as v ~ yr + @5, (yz).
Note that since Ty, is block diagonal, it is trivial to invert.

Two advantages of using a finite—difference approach as opposed to a spectral
method are that for finite-difference, the domain need not be regular and also that
the eigenfunctions of the differential operator L need not be found analytically. The
“eigenfunctions” are instead the eigenvectors of B (the z;s) which are determined
numerically from the semi-discrete system (16).

Note that the construction above is very similar to the construction of a centre
manifold for an ODE — see, e.g. [21]. Also, the idea of constructing an inertial
manifold for a large set of ODEs derived from a finite difference scheme is not new

and was discussed in, e.g. [6].

5 Numerical results

In this section we show some numerical results regarding the finite difference model
discussed above. In Figure 4 we compare the accuracy of the three methods — flat
Galerkin (FG), post—processed Galerkin (PPG) and the nonlinear Galerkin method
(NLG). We have chosen n = 9 in this example, with forcing at node (2,1) with
pf(t) = 10000sin (800¢). Other constants have the values

p o6 e el B | h | R
78.5 kg/m? | 7071 Ns/m | $/(167%) | 0.3 | 2.1 x 10" N/m? | 0.01 m | 8.333 m
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for y = 1,...,n, where m(y) is the dimensionality of the eigenspace corresponding
to the eigenvalues represented by C';. With this definition, the dynamics obtained by
restricting (20) to the first j modes is given by the time evolution of the first M(j)
components of v. Note that M(n) = 2n?.

By analogy with a PDE, we say that a k—mode Galerkin truncation of (20) is
the system that results when we set vary+1,... ,vm(y) to zero, leaving an M(k)-
dimensional system of ODEs. To allow us to use the ideas of approximate inertial

manifolds, let us write

1 UM (k)+1
Va2 vM(k)+2
Yr = _ and  Ypm, =
UM (k) UM (m)
so that
Yk
U= Yk,m
ym,n
Also, let us write
¢y 0 - 0 CM(k)+1 0 0
0 Cy --- 0 0 C 0
T, = ' ‘2 | ‘ and Tk,m _ M(‘k)+2
0 0 - Cup 0 0 o Oy

and let T'y(v,t) be the first M(k) components of I'(v,t) and I'y,(v,t) be the
[M (k) + 1]th to [M(m)]|th components. Thus we can write (20) as

Yk
y.k,m

Ym,n

(Ye)ye + Tr([yrs Yem; Yl 1)
(Yt )Yk + Uhom ([YE; Yo Y], 1)
(Tmm)ymm + me([?ﬂc; Yk,m ymm]v t)

and a k-mode Galerkin truncation of (20) is the system

Ye = (Tr)yr + Di([yx; 05 0], 2) (22)

12



We want to split our variable u into a slowing contracting component and a quickly
contracting component in the same way that we did for the PDE where we projected
onto the space spanned by the first few modes and then onto the complement of
that space. This is simply done by performing a linear coordinate change on u
so that the Jacobian of the resulting dynamical system is block diagonal. Let the
(complex) eigenvector of B corresponding to the eigenvalue —p; + iw; be z; and the

real eigenvector of B corresponding to the real eigenvalue —p; be z; and form the

matrix
7= ( Re(z1) ‘ Im(z) ‘ 29 ‘ ‘Re(zk) ‘]m(zk) ‘ ‘ZW . ‘Zn )
using the ordering and structure given by (17). Defining the variable v by u = Zv we
have
1}:Z_lu:(Z_IBZ)U—I—Z_IH(Zv,t)EC’v—l—F(v,t) (20)
where
c, 0 - 0
0 C, 0
C = ‘ ) (21)
0o 0 --- C,

and the (s are either 2 x 2 blocks:

o ws
O] — ( p] J ) ,
e
corresponding to the complex eigenvalues —p; £ w;, or

Ce = —pi

corresponding to the real eigenvalue —pi, and the “0”s in (21) represent zero matrices
of the appropriate size, 1.e. C' is block diagonal.

To make notation easier we introduce a function M, defined on a subset of the inte-
gers, which contains information about whether eigenvalues of B are real or complex.

It is defined iteratively as

M(j) =M@ —1)+m(j), M(0)=0,

11



For any reasonable value of n, (16) is a high—-dimensional system (of dimension 2n?)
which is impractical to study in any depth. This is the motivation behind trying
to use some of the ideas relating to approximate inertial manifolds that have been
developed for infinite-dimensional PDEs to help us in our study of (16).

We are trying to make an analogy between (16) and a generic PDE (1). Instead
of using the eigenfunctions of L as a basis for the space of solutions, we use the
numerically determined eigenvectors of the linearisation of (16) about the rest state

(the origin). To do this we write (16) as
= Bu+ H(u,t)

where B is the spatial Jacobian of G(u,t) evaluated at v = 0 and H(u,t) = G(u,t) —
Bu. For large enough n, the eigenvalues of B come in a mixture of complex conjugate

pairs and simple reals which we order according to their real parts, for example

{_pl iiwlv_p27"' ) Pk iiwk?"' )y T Pmy - 7_[)77} (17)

where 0 < p; < py < ... < p, and p1 < p,, l.e. not all the p;s are equal, and
n? < n < 2n% It is the presence of the visco—elastic damping (the term in (7) with
the coefficient 3;) that provides this ordering of the real parts of the eigenvalues, as
with only linear damping (the term in (7) with the coefficient 3) all of the real parts
of the eigenvalues are equal (see [3] for more details). For small n all eigenvalues
are complex. The eigenvectors (once converted back to displacements of the shell)
correspond to modes of vibration and are similar in appearance to the eigenfunctions

that would be used in a spectral Galerkin analysis of (7)-(8), viz.
w(x,y) = sin (arx)sin (bry) (18)

where a,b € Z*. Note that the eigenvalues of the linearisation of (7)-(8) about the

rest state corresponding to the eigenfunction (18) are

£(a,b) +i/Q%(a,b) — £2(a, b)
2

AMa,b) =

(19)

where

_OEBTE I e = T EIVD
z ’ NG

The eigenvalues given by (19) with real part closest to zero are shown in Figure 3 for

¢(a, b)

n = 9 and other parameters as in Section 5. These agree well with the numerically

determined eigenvalues of B for the same parameter values.
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now vectors representing their discretisations over all grid points. The application
of (8)-(11) provides only n? + 8n + 12 equations, so we use a second approximation
to the boundary condition
52
¢ _y
dxdy

at all 4 corners, wviz.

[$ij + bis1je1 — i1, — bij]/(62)° =0

to make up the last 4 equations, where one diagonal of the square of points to which
this formula is applied always points from the corner point in towards the centre of
the plate. Because of the nature of the boundary conditions, A is not invertible,
having co-rank 4 if n is odd and 3 if n is even. Because of this, we use singular
value decomposition [19] to solve (15). The solution we obtain has some arbitrary
constants in it, the number being equal to the co-rank of A, but this does not matter
as we need only the second spatial derivatives of ¢ for (7) and taking these derivatives
removes the constants.

Having solved (15) for ¢ as a function of w we substitute this into (7) and write
down the equations of motion for w at each of the n? internal grid points, which
we label wq,wy, ..., w,2, making use of the boundary conditions on w (12)-(14).
However, (7) contains the second derivative of w with respect to time, and it is easier
to work with a system containing only first derivatives. Because of this, we define a

new variable u such that
[Ug,Ug, ... up2| = [wr, w2, ... ,w,2]
and
d
[Un2y1, Up2ggy - v vy Ugp2| = E[wl’ Wy e W2
We now have a system of 2n? first-order differential equations which we write as
= G(u,t) (16)
(Note that the first n? of these equations are particularly simple, being

Ui = Up2y; 1= 1,...n%)



The boundary conditions corresponding to simply—supported edges are

0%

8—y2:0 at z=0,a (9)
92

a—;ﬁ:O at y=20,a (10)
92
a;E(;by:() at y=0,a;2=0,a (11)
0*w

8;’5:0 at z=0,a (12)
0*w

abéz at y=20,a (13)
¥

w=0 at y=0,a;2=0,a (14)

where a is the side length of the panel. (We set ¢ =Im and do not refer to it again.)
In order to implement a finite—difference scheme we lay a regular cartesian grid
over the domain, as shown in Figure 2, and approximate the spatial derivatives using

standard central difference formulae:

V477Z)i,j ~ [2077[)2,] - 8(77Z)2+1,] —I— ¢i—l,j —|— 77/)2»7]-_1 _I_ ?7/}2.7]._}_1)

+ 2(¢i_17j_1 + 77Z}Z'—L]‘-H + 77Z}i—|—1,j—1 + 77[)24.17]'_}_1)

+ ica; t Yira; + Yijo2 + Y]/ (62)!
%
a—yQ y ~ W)m’—l - Q@Z}i,j + ¢i,j+1]/(5$)2

0]
0%
9.2 ~ (o1 — 24 + iy ]/ (62)°
Az |,
agjay . ~ t+1,5+1 =1,5-1 i+1,7—1 i—1,7+1 X

where §z is the grid spacing. We define the integer n by saying that there are n?

internal points in the plate. This implies that there are 4n + 4 boundary points and
a total of (n +4)* = n? + 8n + 16 grid points, of which 4n 4 12 are “ghost points”
lying éx further out than the boundary of the plate. We choose the point of forcing,
(z,9y), to be one of the grid points.

The first step is to solve (8) for ¢ as a function of w. We do this by rewriting (8)

as

A¢ = f(w) (15)

where A is a (n+4) x (n+4) matrix obtained by applying the discretisation of (8) at
the internal points and applying the boundary conditions (9)-(11), and ¢ and w are
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8). The model we study is shown schematically in Figure 1. It is part of a cylindrical
panel with radius R, forced at the point (z,y) with the function f(%).

We should mention the paper by Foale et al. [3], which contains results similar to
those presented here. Foale et al. studied a finite-difference model of a panel similar
to that shown in Figure 1, the main difference being that their panel was axially
forced on the boundaries rather than at a point. This may seem a minor difference,
but it is thought that the efficiency of the nonlinear Galerkin method as opposed
to the flat Galerkin method depends on (among other things) the smoothness of
solutions of the PDE, which in turn depends on the smoothness of forcing [10]. Foale
et al. [3] concluded that a nonlinear Galerkin method provided little advantage over
a flat Galerkin method, but we feel that this was due to the very smooth solutions
they obtained which was a result of the axial forcing they used.

Another approach to the study of the dynamics of such a shell is the standard
spectral Galerkin method [1, 18], and there has also been some recent work on localised
buckling in cylindrical shells using ideas relating to homoclinic orbits [11, 12], although
these techniques can only be used in the quasistatic case.

The equations governing the motion of the plate are the von Karman equations:

0*w Jw 0
4 p p 4
DV w—l—,u—at2 —I—B—at —I—ﬂQ—atV w =

aZw anb n @2w 82¢ _9 82711 82¢
dz? dy* ~ Oy? 0x*  Oxdy Oxdy
v 20 e ()

BN 15 = 9w\’ Fwdw 1w (8)
Eh — \0zdy dx? dy? R Ox?

where w is the normal displacement of the shell (positive inwards), ¢ is time, ¢ is the
in—plane Airy stress function, g is the mass per unit area, 3 is the coefficient of linear
damping, (3, is the visco—elastic damping coefficient, h is the thickness of the shell, £
is Young’s modulus, R is the radius of the panel, V* is the biharmonic operator and

ER?

D=—"_
12(1 — 1?2

is the flexural rigidity of the panel, where v is Poisson’s ratio.



In practice, () is the projection onto an infinite-dimensional space, so a truncation

of it must be used. Thus we define

0} (P) = LH{Qrmf — Qum[ R(p)]}

where Qg = I — Py — P, and m > k. Equation (4) now becomes

dv

d—tk + Lvg + Pk[R(vk + L_I{Qk,mf - ka[R(vk)]})] = Pkf (5)

and we reconstruct the solution as u ~ vy + q)i7m(vk).

We can think of (5) as an equation for the dynamics on the approximate inertial
manifold. The last term on the left side of (5) normally requires a lot of effort
to evaluate, and the question of the computational efficiency of integrating (5) as
opposed to a Galerkin projection onto s modes, where s > k, to obtain a desired
degree of accuracy is raised.

The work of Garcia-Archilla et al. [7, 8] on post—processing Galerkin methods
shows that it is sometimes possible to obtain the accuracy of a system like (5) with
no more effort than that involved in integrating a k—mode Galerkin system. The idea

is to integrate a k—mode Galerkin approximation:

% + Ly + P[R(ye)] = Prf (6)

and then when output is required, say at time T', “lift” this data up to the approximate
inertial manifold, i.e. write u(T') ~ yx(T') + @ . (yx(T)). Garcia-Archilla et al. [7, 8]
showed that this is often as accurate as the solution vk(T)+CI)}€7m(vk(T)) obtained from
integrating (5), but has the advantage that the system (6) is simpler to integrate. The
lifting of the solution onto the approximate inertial manifold need only be carried out
when output is required, rather than at every time-step in the numerical integration,
as is the case when integrating (5).

We have reviewed the theory of only spectral nonlinear Galerkin methods in this
section — similar ideas have also been applied to both finite element [14, 15] and finite
difference [20] schemes, although as far as we are aware, the idea of post-processing
has not been applied to a finite element scheme, and this is the first application to a

finite difference scheme.

4 Finite difference model of a panel

In this section we discuss one approach that combines the ideas of approximate inertial

manifolds and finite—difference numerical schemes for the von Karman equations (7-
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Defining p = Pru and ¢ = Qu and applying first P and then Q) to (1) we obtain

two coupled ODEs, the first finite-dimensional and the second infinite-dimensional:

Pt BRE 0] = R ¢
D Lot QR +a)] = Quf g

The traditional Galerkin method corresponds to setting ¢ = 0 in (2) and integrating
the resulting finite-dimensional system:

dyx
dt

We then approximate the true solution of (1) by u ~ yy.

+ Lyi + P[R(yx)] = Prf

The rationale behind the development of inertial manifolds is that if the attractor
of (1) is finite-dimensional, then it is reasonable to hypothesise that for some k there
exists a graph, ®;, such that on the attractor ¢ = ®4(p), i.e. on the attractor the
behaviour of all the higher modes is completely governed by the behaviour of a finite
number of the lower modes. If this is the case, then to determine the dynamics on

the attractor we substitute @ into (2) and integrate the equation

d
% + Lz + Pe[R(zr + @ (21))] = Pif,

reconstructing the solution as u = z, + @5 (zx).

It has been proven for some PDEs that such a graph ®; does exist. Finding
®; is another matter: in practice it may need to be approximated numerically. For
some PDEs it has not yet been possible to show the existence of an inertial manifold,
but the existence has been postulated of an approzimate inertial manifold (AIM),
®,,,, which captures the behaviour of the higher modes in terms of the lower modes,
although not exactly as in the case of an exact inertial manifold. In these cases we

integrate the equation

% + Ly + Pk[R(xk + q)app(xk))] = Pf (4)

and reconstruct the solution as v & xp + Pupp(xx). Although this will not exactly
capture the dynamics on the attractor, it is likely to do a better job than assuming
g =01in (2), as we do in the standard Galerkin method.

The question of finding ®,,, arises. A number of functions for ®,,, have been pro-
posed which have varying degrees of accuracy (see, for example, references in [7, 8]).

Here we use @, first defined by Foias et al. [5], which utilises (3) in its definition:
®i(p) = L7HQwS — Qr[R(p)]}

5



Conceptually, nonlinear Galerkin methods split the infinite-dimensional phase space
of the PDE into two complementary subspaces: a finite-dimensional one spanned by
“slowly” contracting modes, and its infinite-dimensional complement. The dynamics
in this infinite-dimensional space are then assumed to be “slaved” to the dynamics
in the finite-dimensional space via an inertial manifold. Many computation schemes
have been introduced where this slaving is used in the calculation of the dynamics.
Recently, work by Garcia-Archilla et al. [7, 8] has shown that it is often more effi-
cient to ignore the slaving when calculating the dynamics and only to use it when
output from the system is actually required — this technique has been called “post—
processing”.

Much of the work relating to nonlinear Galerkin methods has been presented
using spectral techniques. In this paper we make analogies between a large system of
ordinary differential equations derived from a semi-explicit finite-difference scheme
for the dynamics of a cylindrical panel forced at a point and a general PDE for which
nonlinear Galerkin and post—processing techniques have been developed. In contrast
with spectral methods, the finite-difference method we use can be applied to irregular
domains. Our results regarding convergence rates and efficiency are similar to those
obtained by other workers [7, 10] who have studied simpler PDEs using spectral
methods.

3 Spectral nonlinear Galerkin methods

In this section we review the theory of spectral nonlinear Galerkin and post—processing
methods with which we will later make analogies. For more details see [2, 4, 5, 7, 8,
9, 10].

Let us write our PDE as

du
E-I—Lu—l—R(u):f (1)

where L is a linear spatial-differential operator, R(u) contains nonlinear terms, and f
is a forcing function. Assume that L has an infinite number of orthonormal eigenfunc-
tions {w;} spanning the Hilbert space H that our solution u lives in, with eigenvalues
{Ai} such that Lw; = M\w;, and let us order the A;s so that 0 < Re{A1} < Re{A;} <
Re{A3} < ... We define the finite-dimensional subspace Hj to be the span of the
first k eigenfunctions, i.e. H; = span{w;, wy,... ,wi}, Pr to be the projection onto

Hy, and (Qp = I — P, to be the projection onto the complement of Hy.
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1 General Introduction

It 1s known that the solutions of some dissipative nonlinear partial differential equa-
tions (PDEs) evolve to a compact set known as a global attractor. Various schemes
have been used for constructing finite systems of ordinary differential equations (ODEs)
that reproduce the asymptotic dynamics of the original infinite dimensional PDE —
one of the most well known being the Galerkin method. This method effectively ig-
nores the small spatial structure of a solution less than a certain size, concentrating
instead on the large scale structures.

During the past decade nonlinear Galerkin methods have been introduced which
attempt to use the finite dimensionality of the attractor of the PDE to incorporate
the influence of the small scale structures on the temporal evolution of the large scale
structures. This method has often been successful in producing a greater level of
accuracy when compared with a Galerkin method with the same spatial threshold,
but often at an increased computational cost, and when comparing accuracy achieved
for a given amount of computer time, it is not always clear that the nonlinear Galerkin
method has any advantage.

This dilemma has recently been overcome by the introduction of the post—process-
ed Galerkin method, where the influence of the small scale structures on the temporal
evolution of the large scale structures is ignored, leading to a computational cost
similar to that of an ordinary Galerkin method, until a computation is completed. At
this stage the computed solution is “post—processed” (at small computational cost)
to recover the small scale structure. This method is often (although not always) more
efficient than either the traditional Galerkin or nonlinear Galerkin methods.

We make analogies between a PDE to which these three methods can be applied
and a large set of ODEs derived from a finite difference scheme for computing the
vibrations of a nonlinear shell and come to a similar conclusion regarding the efficiency

of the post—processed Galerkin method.

2 Introduction

There has recently been much interest in the existence of inertial manifolds in classes
of dissipative nonlinear partial differential equations (PDEs). Nonlinear Galerkin
methods [13], which attempt to completely describe the dynamics on the attractor

of a PDE with a finite-dimensional dynamical system, have arisen from this theory.



Abstract

We present the results of a computational study of the post—processed Galerkin meth-
ods put forward by Garcia-Archilla et al. [7, 8] applied to the nonlinear von Karman
equations governing the dynamic response of a thin cylindrical panel periodically
forced by a transverse point load.

We spatially discretise the shell using finite differences to produce a large system of
ordinary differential equations. By analogy with spectral nonlinear Galerkin methods
we split this large system into a “slowly” contracting subsystem and a “quickly”
contracting subsystem. We then compare the accuracy and efficiency of (i) ignoring
the dynamics of the “quick” system (analogous to a traditional spectral Galerkin
truncation and sometimes referred to as “subspace dynamics” in the finite element
community when applied to numerical eigenvectors), (ii) slaving the dynamics of
the quick system to the slow system during numerical integration (analogous to a
nonlinear Galerkin method), and (iii) ignoring the influence of the dynamics of the
quick system on the evolution of the slow system until we require some output, when
we “lift” the variables from the slow system to the quick using the same slaving rule
as in (ii). This corresponds to the post—processing of Garcia-Archilla et al.

We find that method (iii) produces essentially the same accuracy at method (ii)
but requires only the computational power of method (i) and is thus more efficient
than either. In contrast with spectral methods, this type of finite difference technique
can be applied to irregularly—shaped domains. We feel that post—processing of this
form is a valuable method that can be implemented in computational schemes for a

wide variety of partial differential equations of practical importance.
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