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Periodic forcing of a model sensory neuron
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We study the effects of sinusoidally modulating the current injected into a model sensory neuron from the
weakly electric fishApteronotus leptorhynchu$his neuron’s behavior is known to switch from quiescence to
periodic firing to bursting as the injected current is increased. The bifurcation separating periodic from bursting
behavior is a saddle-node bifurcation of periodic orbits, and it has been shown previously that there is “type-I
burst excitability” associated with this bifurcation, similar to the usual excitability associated with the transi-
tion from quiescence to periodic firing. Here we show numerically that sinusoidal modulation of the dc current
injected into the model neuron can switch it from periodic to burst firing, or vice versa, depending on the
frequency of modulation and the distance to the burst excitability threshold. This is explained by mapping
resonance tongues in parameter space. We also show that such a model neuron can undergo stochastic reso-
nance near the transition from periodic to burst firing, as a result of the burst excitability, regardless of the
location(soma or dendriteof the signal and noise. The novelty is that the “output event” is now a burst rather
than a single action potential, and the neuron returns to almost periodic firing between bursts, rather than to the
vicinity of a fixed point. Since the neuron under study is a sensory neuron that must encode signals with
varying temporal structure in the presence of considerable intrinsic noise, these aspects are of potential impor-
tance to electrosensory processing and also to other bursting neurons that have periodic input.
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[. INTRODUCTION least two approximately sinusoidal inputs that can be de-
tected by the electroreceptors and passed to the pyramidal
Bursting, in which a cell periodically switches from a cells that we model. There has also been recent interest in
guasi-steady state to a rapidly spiking state and back again, &ochastic biperiodic oscillations in paddlefish electrorecep-
an important and common form of behav[d—6]. Many of  tors[10], and some of our results may be applicable to that
the cells that do show bursting are deep within a network ofkituation.
other cells[2], and it is difficult to determine the nature of A six-variable ODE model of a pyramidal cell from.
their inputs. However, a particular bursting mechanism in deptorhynchus(henceforth referred to as a “ghostburster”
sensory neuron with a well-characterized input has recentljpas recently been developgd]. This model reproduced
been describef3,7]. This type of cell is a pyramidal cell in qualitatively, and to a large extent quantitatively, the behav-
the electrosensory lateral line lobELL) of the weakly elec- ior observed both in real pyramidal cells from the E[3]
tric fish, Apteronotus leptorhynchu$hese fish continuously and in a many-variable morphologically realistic mofl].
generate a weak electrical field known as the electric orgaDue to the small number of variables in the ghostburster
discharggEOD). The field permeates the fish’s environment, model, we can easily investigate how it reacts to time-
interacting with it, and is detectable by both the emitting fishvarying stimuli. A previous papdr2] investigated how the
and other nearby fish. The fish detect the field with electroreghostburster reacts to transient stimuli; in it, the concept of
ceptors on their skin, which then transmit information to the“type-l burst excitability” was presented. Briefly, burst ex-
pyramidal cells. Thus, these pyramidal cells are very close taitability is a generalization of “normal” excitabilityf1,5],
the start of the sensory pathway from the periphery to théut the “event” is a burst of action potentials rather than a
brain of the fish. single one, and the “rest state” that the system returns to
The amplitude of the EOD is approximately sinusoidalafter the event may be, for example, a periodic orbit, rather
and the frequency of a given fish is constant within the spethan an actual fixed point of the systeffyuiescence”).
cies range of 600—1200 Hz. The electroreceptors on a fish'with this knowledge of both the burst attractor and the ex-
skin can detect both the amplitude and phase of this quasistitable nature of the ghostburster system, we investigate the
nusoidal signal. These properties of the signal will be modi-effects of sinusoidal input to the ghostburster mdde!
fied by, e.g., a prey object, a rock, or another fig}9]. Also, The response of nonlinear systems, particularly oscilla-
a “beat” frequency occurs when two fish with different fre- tors, to periodic forcing is a much studied problem, and the
quencies meefthe beat frequency is equal to the differencework here can be thought of as a generalization of the results
between the frequencies of the two fisfihus, there are at for periodically forced oscillator§13—16 and periodically
forced excitable systen]4.7,18. A number of qualitatively
different types of bursting behavior have been observed and
*Electronic address: c.r.laing@massey.ac.nz analyzed[1,5,6], and it would be of interest to understand
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how these other systems respond to time-varying inputs. It is 40
likely that this information would also help in understanding 201
how coupled bursting systems behave, an area of recent in- < 0}
terest[19]. Here we choose to study the ghostburster, as itis E-20}
well characterized experimentally and has a clearly defined > 4o}
and relevant periodic input. —60f

A two-variable model of the bursting pyramidal cell stud- -89
ied here was presented in REZ0], along with an analysis of 0
its response to sinusoidal input currents. However, that 20
model was a caricature of the cell and only reproduced the
qualitative aspects of ghostbursting. The model studied here
is quantitatively correct with respect to time scales and volt-
age wave forms, and agrees well with the behavior seen in
experimentg 3] and much more complicated mod¢lkl].

Noise is ubiquitous in neural systems, and can result from 8 ) , , ,
the probabilistic nature of the opening and closing of ion %o 80 100 120 140 160
channels, or the stochastic nature of synaptic transmission,
among other thing$21]. The pyramidal cells under study
here are known to be intrisically noisy when unstimulated
[22]. The importance of the presence of noise in the nervous
system ofA. leptorhynchuss not clear, but we will look at
the generic features of the response of the ghostburster
model to both noise and noise combined with a periodic
signal. 9% 80 100 120 140 160

In Sec. Il, we introduce the ghostburster and summarize Time (ms)
its relevant features. Section Ill discusses the effects of sinu- . -
soidal inputs on the ghostburster model, and Sec. IV demon- FIG. 1. An example of “ghostbursting” for the model presented

trates th ist f stochasti inth del n Ref.[7]. The equations are given in the Appendix. Top, somatic
strates PT existence ot stochastic resonance In the moadel. 8Itage; middle, dendritic voltage; bottom, dendritic potassium in-
conclude in Sec. V.

activation (4). Each burst terminates with a short I& doublet

that is immediately followed by a long one. This occurg =70,

100, and 140 ms. DAPs are visible after most somatic action poten-

tials. Note the reduced height of the dendritic action potential at the
We now give a brief summary of the burst mechanismend of each burst. The injected current is9.5.

investigated in Ref[7]. The model equations are presented

in the Appendix, and details of the large model they are

derived from are in Ref.11]. Both the soma and dendrite of aple recovers, and another burst commences. Thus, a burst

the neuron were found to be capable of initiating action potonsists of a number of action potentials whose ISIs mono-

tentials, and a somatic action potential typically induced onically decrease, separated by a long ISI. See Fig. 1 for an
corresponding dendritic action potential via active baCk'example.

propagation down the dendriti_c tree. The dendritic_ action po- From the above description, we see that if the magnitude
tentials have a longer half-width than the somatic, and thex . . i rrent injected to a pyramidal cell is slowly in-

dendritic refractory period is thus longer than that of thecreased the cell changes from quiescéret firing action
somatic. Because of this difference, near the end of a den ! 9 q 9

dritic action potential some current flows from the dendriteF;Otemi"’1I$ to periodic firing of action potentials to bursting.

to the soma, causing a depolarizing afterpoter@AP) to This is shown in Fig. 2. This ordering is in contrast_with
appear after the corresponding somatic action potential. many other burst_mecham_sm; v_v_here the Sequence IS often
For small dc current injections to the soma, the cell firesduiescent— bursting— periodic firing, as the injected cur-
periodically, with dendritic action potentials tracking the so-fent is increasefb,23,24.
matic ones. However, for larger current injections, the den- The threshold between periodic and bursting behavior is
dritic potassium inactivation gating variablp4, see the Ap- Very important if these neurons are thought of as being in-
pendix cannot fully recover between action potentials, andvolved in feature detectiorti.e., encoding up- or down-
this variable gradually decreases during the course of a nunstrokes of the electric field amplitud@5,26), since the in-
ber of action potentials, leading to a broadening of dendritidormation from other cells will likely be manifested as a
action potentials, an increase in the DAP size, and a slowhange in input current to a pyramidal cell, which may then
increase in firing frequency. This continues until a somaticcause a change from periodic firing to bursting or vice versa.
interspike intervallSl) is smaller than the refractory period Lisman[4] has also proposed that bursts rather than action
of the dendrite, and the dendrite no longer fires an actiopotentials could be the fundamental unit of information, as a
potential in response to a somatic one. This results in a longurst combined with synaptic facilitation may be far more
ISI, during which the dendritic potassium inactivation vari- reliable than a single action potential, for example.

80 100 120 140 160

Il. GHOSTBURSTER MODEL
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700 ‘ ‘ - ‘ ‘ during a 250 ms period. The darkest colors indicate that the
it cell is bursting, as we are detecting the high-frequency “dou-
600y blet” that signifies the end of a burésee Fig. 1. A number
of features are apparent: from Fig. 2 we see that without
ASOO’ modulation, the periodic to burst threshold isl g#=8.5, so
T modulation can push the apparent threshold to either higher
400}
& I, values(e.qg., forf near 120 Hxor lowerl,, values(e.g., for
%300- f<50 H2.
2 Much of Fig. 3 can be understood by remembering that
200} below burst threshold, the cell fires periodically, i.e., it is an
oscillator. Entrainment of oscillators to an external forcing
100} frequency has been well studi¢tl4,15,13,16 It is known
that regions of parameter space can exist in which the fre-

quencies of the driving and driven oscillators have a simple
ratio, e.g., 2:3. These regions are known as “Arnold
tongues,” and are labeled by the ratio of the driving to driven
frequencies, in its simplest form. The most prominent in Fig.
3 is the 1:1 tongue, stretching fromf,(,)~(70,7) to
quiescence to periodic firing &t=5.7, and from periodic firing to ;(150,9.5). (T_he_ tongue stretches down and to the_ right
ecause a$, is increased, the frequency of the oscillator

bursting atl=~8.5. In Ref.[7] it was determined that the two cor- . Fig.)2The 21 t Iso b ¢
responding bifurcations are a saddle-node bifurcation on a circle/1Cr€ases, See Fig. € 2.1 tongue can also be seen, ter-

and a saddle-node bifurcation of periodic orbits, respectively. Fornjinating at _¢,Ib)~(26_0,8.6). In this region, _the neurqn
each value of, all ISIs within a 500 ms window after transients had [I'€S One action potential on every second forcing cycle, i.e.,

died down were used. The equations are given in the Appendix. the ratio of driving to driven frequencies .is 2:1. Further
tongues are seen in the top left corner of Fig. 3.

1. SINUSOIDAL INPUT The observation that some Arnold tongues cross the
periodic to burst threshold in the unforced systdip=8.5)

We now investigate the effects of sinusoidally modulatingjs similar to the results of Yoshinet al.[18] who studied the
the somatic input current to the ghostburster, repla¢iny  Arnold tongue structures in a periodically forced system that,
Eq. (A1) with Ip+1yoasin(2nft), wherely is the constant \yhen the amplitude of forcing was zero, could be either ex-
component of the currenit,,o4 is the amplitude of the modu- cjtable from a quiescent state or oscillating periodically.
lation, andf is the frequency of modulation. We are mainly They found that as the parameter controlling the excitable
interested in whether varying,,q andf can cause the model oscillatory transition was varied across the boundary for a
to switch from periodic firing to bursting or vice versa. fixed amplitude of periodic forcing, the Arnold tongue struc-

Figure 3 shows the effects of this form of modulation as afyre was continuous. We also see this. In Fig. 3| fis
function of bothl, andf for the ghostburstefA1)—(A6). The  jncreased through 8.5 fdr=110 Hz, the system remains in
color indicates the reciprocal of the minimum ISI measuredhe 1:1 locked state, firing periodically, even though the un-
forced dynamics|(,,,q=0) have changed from periodic fir-
ing to bursting. In other words, periodic stimulation at 100
Hz postpones the onset of bursting.

Figure 4 shows the Arnold tongues in the more usual
amplitude/frequency of forcing space, and demonstrates how
the bursting behavior modifies the tongues. In Fig. 4, top
250 (I,=8), the 1:1 tongue is seen starting af,l{,9
~(100,0) and the 2:1 tongugvhere there is one action po-
200 tential for every two forcing cyclgsstarts at {,lnod
~(200,0). Thinner tongues are seen, as well as bursting for
150 f less than about 80 Hz. Thus, bursting is induced for suffi-
ciently slow and strong forcing. This can be understood as
100 resulting from the modulation being so slow that it is effec-

tively constant over time intervals on the order of the dura-
50 100 150 200 250 300 < tion of a burst. Thus, if the modulation amplitude is strong
BequEnEy(He) enough, at least one burst will be induced during part of each

FIG. 3. Modification of burst threshold in modeA1)—(A6) by ~ forcing cycle. Figure 4, bottom, hak,=8.7, so that for
sinusoidal forcing. The input current g+ 1.5sin(2rft), wherefis ~ mod=0, the cell is bursting. Despite this, sufficiently strong
the frequency of forcingplotted horizontally. The color indicates ~ forcing at sufficiently high frequencies can suppress burst-
the maximum instantaneous firing frequency in feciprocal of  ing. The tongue with edges at,(,,4~(95,3) and (120,3)
the instantaneous Istluring 250 ms. In the absence of forcing, the is the 1:1 tongue.
periodic or bursting transition occurs lf~8.5 (see Fig. 2 For some of the parameter values shown in Figs. 3 and 4,

FIG. 2. A plot of instantaneous firing frequenéseciprocal of
each interspike intervabs a function of input current to the soma,
I, for the ODE model presented in R¢¥]. The cell moves from

7 . - T T T T 400

350

7.5

300
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FIG. 5. A transient sinusoidal modulation of the input current
switches systernfAl)—(A6) from bursting to periodic firing. Param-
eters arel,=9, l0q IS 1.5 for 1206<t<1400, and the forcing
frequency is 125 Hz. Top/s andl —90; bottom,p,. Note that the
neuron is induced to fire at the same frequency as the foKdirig
locking).

50 100 _ 150 200 250 300 tion of a small amount of noise to a system receiving a sub-
Fisquancy, Hz) threshold signal may make the signal observable. When no

FIG. 4. Arnold tongues in amplitude/frequency of forcing space_nmse is added, the Slgnal is, by deflnltlon_, unobservable’ and
for Egs. (A1)—(A6). The input current i+ 1 . sin(2ft). Top, if Iarge_amounts of noise are added, t_he S|gnal is swamped_ by
I,=8; whenl,,s=0 the neuron is not bursting. Bottorh,=8.7; the noise. Thus, if the S|g_nal to noise ratio f_or a periodic
whenl ,,4=0 the neuron is bursting. The color indicates the maxi-Signal is plotted as a function of noise level, it will have a
mum instantaneous firing frequency in ¥eciprocal of the mini- Maximum at some intermediate intensity of noise. This
mum 1S)). maximum may have some functional significance for an

] _ o ~ “observer” of the system.
system(A1)—(A6) with | being periodically modulated is  As seen in Fig. 2, the ghostbursték1)—(A6) has two
bistable. The two attractors are bursting behavior and perigyrrent thresholds, i.e., there are two values sifich that, if
odic firing that is frequency locked to the forcing. Only one | s yransiently increased above these values, there is a quali-
maximum frequency was calculated at each of the points in,ye change in the behavior of the system. The first thresh-

Figs. 3 and 4, and the bistability appears as the “speckles” o Id, atl =~5.6 involves a saddle node on a circle bifurcation,

light within dark regions and dark within light regions. This ; . . . L
bistability was also found when the reduced model presente'fiie" excitable dynamics between a fixed point and periodic

in Ref.[20] was periodically forced, in the vicinity of the 1:1 iring, so the system is capable of exhibiting stochastic reso-
locked orbit. There it was found to arise from a subcritical
Hopf bifurcation of that orbit.

From Fig. 3, we see that the boundary between periodic
and bursting behavior is deformed whep,4#0. It is de-
formed to lowell , values for some frequencies and to higher
I, values for other frequencies. This suggests thaf,if; is
suddenly switched from zero to a nonzero value, the neuron  _1qg
could be induced to switch from periodic firing to bursting, B
or vice versa, depending on the valuelgfand the forcing 0.25
frequency. Examples of both of these types of behaviors are
shown in Figs. 5 and 6, where a sinusoidal modulatiohisf
applied for a few hundred milliseconds. In Fig. 5, the burst-  g%.15
ing is suppressed almost immediately and the neuron is in-

V_(mV), 1-90

00 1200 1300 1400 1500 1600

v . . 0.1
duced to fire at the same frequency as the forcing. In Fig. 6,

a high-frequency doublet occurs within 100 ms of the onset 00350 1200 1300 1200 1500 1600
of forcing. We now examine the effects of including noise in Time (ms)

the dynamics of the ghostburster.
y 9 FIG. 6. A transient sinusoidal input switches systgii)—(A6)

IV. STOCHASTIC RESONANCE from periodic to burst firing. Parameters age=8.3, | ;,0qis 1.5 for
1200<t< 1400, and the forcing frequency is 15 Hz. Tof, and
Stochastic resonance is a well-known phenomenon im—90; bottom,py. One burst is induced, which terminatestat
nonlinear dynamical systenj27,2g. Put simply, the addi- =1300 ms.
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nance near this threshof@8]. We now show that the ghost-
burster can also show stochastic resonance near the periodic 29[
— burst threshold that occurs for larger bias currerro-
vided that bursts are used to form the output signal, rather ~ 100f
than individual action potentials.
We include the effects of noise by adding a Gaussian 80r
white noise current termy(t) to the first(current balance
equation in(A1)—(A6), where(7(t))=0 and{7(t)7(s))
=2D4(t—s), so thatD is a measure of the noise intensity.
This term is meant to mimic the fluctuations in ion channel 40y
conductances, the effects of the probabilistic nature of syn-
aptic transmission, and the other sources of randomness that 20y
occur in neural system$21]. The signal we use is a

Power

10/(2m) Hz sinusoidal modulation of the current with, 05 95 10 05 - ;1
=8.4 andl ,,q=0.15, i.e., we have =8.4+0.15sin(10). onf(s™")

This is quite a slow and weak modulation compared with the .

frequencies involved in the Arnold tonguésee Figs 3 and FIG. 7. Power spectra from E) for three different values of

4). Note that wherD =0 and| is as above the model neuron D for the ghostburster, EqsA1)—(A6). The driving frequency was
does not burst; instead, the instantaneous firing rate is sind=— 10/(27) Hz. Five independent realizations of 200 s each have
soidally modulated by the current. been averaged to obtain each spectrum.
In contrast with normal excitability, where the “event” is
an action potential, the event in burst excitability is a burstessentially flat with no obvious peaks forx27f<9.9 and
[12], which is easily detected for mod@\1)—(A6) by moni-  10.1<27f<15, not shown.Five simulations of 200 s each
toring ISls, since a burst always terminates in a high-were used to calculate the values shown in Fig. 8. This
frequency doublet(In Ref. [12], the response of the ghost- clearly confirms the results suggested by Fig. 7 and shows
burster to transient, steplike inputs was examined; here wthat systen{A1)—(A6) can demonstrate stochastic resonance
examine the response to continuous sinusoidal modulatiorsear the periodic or bursting boundary, provided that the
of the input currenj.In practice, the end of a burst could be “output signal” is taken to be a burst. If, instead, all action
detected by a facilitating synap$29] that would preferen- potentials are used to form a sigraée., thet; in Eq. (1) are
tially transmit the last few action potentials that occur inthe occurrence times of every action potertitie signal to
quick successiofd]. To quantify stochastic resonance in the noise ratio decreases monotonically as noise intensity is in-
ghostburster, we detect all ISIs less than 4 ms and record thereasednot shown.
time t; of the second action potential of the ISI. In a similar ~ Thus, we have shown that if a burst is regarded as the
way to that done irf20] for a “toy” model of the ghost- fundamental unit of informatiof4], as opposed to an action
burster, we form an output signal consistingdfiunctions at ~ potential, the model of a sensory neuron studied here is ca-
timest; : pable of undergoing stochastic resonance. This complements
the results presented in R¢L2], where it was shown that a

f(t>=2i S(t—t)), (1)

12

where the sum is over all such times during a finite-time
simulation. Passind(t) through a Hanning window defined
over the length of the simulatiof, and taking the Fourier

transform, we have
co§ —— 2

and the power spectrum @{t) is |F(w)|?.
Typical spectra for three different noise intensities are
shown in Fig. 7. It is clear that the power at the driving

F(w)= % }I‘, elet

frequency,f=10/(27) Hz, increases and then decreases as 0 . .
D is increased, and that the background noise intensity 107 107" 10° 10'
monotonically increases d3 is increased. D

The signal to noise ratio as a function Bfis shown in FIG. 8. Signal to noise ratitdefined in the textas a function of

Fig. 8. The signal strength was defined to be the power demyoise intensityD for the ghostburster, EqéA1)—(A6). The dashed
sity at the forcing frequenclyf = 10/(27) Hz] and the noise |ines indicatex1 standard deviation. Five independent realizations
strength was defined to be the average of the power in thef 200 s each for each value Bfchosen were used to calculate the
two bands K27f<9 and 1k 2#f<13. (The spectra are SNR.
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transient increase in synaptic input to such a model neuroperiphery of the fish. There are at least two sources of peri-
could be robustly signaled by the production of a burst.  odic input to these cells—the fish’s own electric organ dis-
The results presented here are for an input signal andharge, and the beat frequency created when two fish are
noise added to the soma only. Biophysically, however, inputglose to one another. Thus, it is of interest to understand how
to a neuron are thought of as coming via the dendrites. Alsahese cells react to such inputs.
it is not clear what relative contribution do the soma and More generally, there are many types of bursting neurons;
dendrite make to the overall level of noise in a neuron. Thusthese are often classified in terms of the bifurcations in-
it would be interesting to see whether stochastic resonanclved in the transition between quiescence and periodic fir-
occurs in the ghostburster when the signal is injected to theng and the transition between periodic firing and quiescence
dendrite and noise appears in either the soma or dendrite. W&]. They are found in many different parts of the nervous
investigated these possibilities and found that stochastisystems of many different specigd. The response of oscil-
resonance does occur, regardless of the locasmma or lators and excitable systems to periodic forcing has been
dendrite of the injected signal and the noise terfnot  much studied14-16,13,18,1]f and a natural generalization
shown). of this is the study of the response of bursting systems to
We also investigated the behavior of the ghostburster imperiodic forcing. The study presented here, although by no
the vicinity of the periodic to burst threshold with noise ap- means complete and only involving one model, is a first step
plied to the soma but no periodic input signal. In analogyin that direction.
with other excitable systems, if the input current was held

just below the threshold and noise was added, we might ex- ACKNOWLEDGMENTS
pect to see coherence resonah®@] as the noise intensity
was increased, again using a burst as the output “signal.” | thank Brent Doiron and Len Maler for useful conversa-

The bursts would be irregular at low noise intensity, moretions regarding this work. This work was partially funded
regular at medium intensity, and irregular again at high noiséhrough OPREA and the Natural Sciences and Engineering
intensity. However, we did not observe this. One possibleResearch Council of Canada.

explanation is that, even in the noise-free system, bursts do

not have a well-defined duratidsee Fig. ], and thus there APPENDIX: GHOSTBURSTER EQUATIONS
is not a characteristic time scale that can be “uncovered” by _ _ . .
the noise. In fact, the bursting is chadfid, which is thought We present here the governing differential equations for

to invalidate general descriptions of coherence resonand&e model neuron studied in this paper. The model consists of
[30]. Another contributing factor may be that after one bursttwo isopotential compartments, representing the soma and
(in the noise-free casethe system does not necessarily havedendrite of the neuron, diffusively coupled through voltage.
to return directly to the periodic state; it may instead undergol he equations, previously presented ), are

one or more further bursts before returning to the periodic
state, as was demonstrated in Réf].

Another possibility would be to observe autonomous sto-
chastic resonancE31,32, where the height of a particular .
peak in the output spectrum reaches a maximum at some _ 2.\, _ _ VRNV
intermediate noise intensity. However, we did not observe Gar sNs(Vs= Vi) = gu(Vs= Vi) = 27 (Vs V),
this either, probably as a result of the factors mentioned

S

d
CW =1- gNa,s[moo,s(Vs)]z(hO_ Ns)(Vs—Vna)

above. (A)
dns nOO,s(Vs)_ns
V. CONCLUSION dt 039 (A2)
We have studied the response of a particular model neu- qv
ron to sinusoidal modulations of its input current. In the ab- ¢~ "9 _ — gnad Mo a(Va) 1hg(Va— Vi) — Gar aNaPa( Vg
sence of modulation, this particular neuron has a well-  dt
defined current threshold between periodic and burst firing.
Modu_latiqns move .this threshold, either increasing or de- _VK)_gL(Vd_VL)_%(Vd_VS)a (A3)
creasing it, depending on the frequency of modulation. K
Because of the bifurcation involved in the threshold and
the flow of orbits in phase space, the model neuron shows dhy
type-1 burst excitability at this boundaft2]. This implies Gt~ Ned(Va) ~ha, (A4)
that if a subthreshold modulation of the current is applied,
together with some type of noise, the system should show dng N 4(Vg)—ng
stochastic resonance. We demonstrated that it does, once it is W:’T, (A5)
recognized that the output signal involves a burst rather than ’
an individual action potential.
The particular neuron modeled here is a sensory neuron in % _ Pe,d(Va) — Py (A6)
the weakly electric fistA. leptorhynchusand is close to the dt 5 '
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Time is measured in milliseconds and voltages are measuregS/cn?, | is the input currentg, is the coupling conduc-

in millivolts. Subscriptss and d refer to somatic and den-
dritic variables, respectivelyn and h are activation and in-
activation of N&, respectively, andh and p are activation

and inactivation of K, respectively. Parameter values are =1/{1+ exgd —(V+40)/5]},

C=1uFlen?, gnas=55, ho=1, Vya=40, g4 s=20,
VK:_88.5, g|_2018, VL:_701 gC:O'41 K:O.4,
Onad=5, Jdrg=15. Conductances are measured

tance, ands is the ratio of the somatic area to the total area
of the cell. Other functions aren.. s(V)=1{1+exd—(V
+40)/3]}, . o(V)=1f1+exd—(V+40)/3]}, m. 4(V)
h. (V) =141+exd(V+52)/
51}, n.o(V)=1{1+exd—(V+40)/5]}, p.q(V)=141
+exd(V+65)/6]}. For details and derivation of these equa-

intions, see Refd.7,11].
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