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Periodic forcing of a model sensory neuron
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We study the effects of sinusoidally modulating the current injected into a model sensory neuron from the
weakly electric fishApteronotus leptorhynchus. This neuron’s behavior is known to switch from quiescence to
periodic firing to bursting as the injected current is increased. The bifurcation separating periodic from bursting
behavior is a saddle-node bifurcation of periodic orbits, and it has been shown previously that there is ‘‘type-I
burst excitability’’ associated with this bifurcation, similar to the usual excitability associated with the transi-
tion from quiescence to periodic firing. Here we show numerically that sinusoidal modulation of the dc current
injected into the model neuron can switch it from periodic to burst firing, or vice versa, depending on the
frequency of modulation and the distance to the burst excitability threshold. This is explained by mapping
resonance tongues in parameter space. We also show that such a model neuron can undergo stochastic reso-
nance near the transition from periodic to burst firing, as a result of the burst excitability, regardless of the
location~soma or dendrite! of the signal and noise. The novelty is that the ‘‘output event’’ is now a burst rather
than a single action potential, and the neuron returns to almost periodic firing between bursts, rather than to the
vicinity of a fixed point. Since the neuron under study is a sensory neuron that must encode signals with
varying temporal structure in the presence of considerable intrinsic noise, these aspects are of potential impor-
tance to electrosensory processing and also to other bursting neurons that have periodic input.

DOI: 10.1103/PhysRevE.67.051928 PACS number~s!: 87.19.La, 05.45.2a, 05.40.2a
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I. INTRODUCTION

Bursting, in which a cell periodically switches from
quasi-steady state to a rapidly spiking state and back aga
an important and common form of behavior@1–6#. Many of
the cells that do show bursting are deep within a network
other cells@2#, and it is difficult to determine the nature o
their inputs. However, a particular bursting mechanism i
sensory neuron with a well-characterized input has rece
been described@3,7#. This type of cell is a pyramidal cell in
the electrosensory lateral line lobe~ELL! of the weakly elec-
tric fish, Apteronotus leptorhynchus. These fish continuously
generate a weak electrical field known as the electric or
discharge~EOD!. The field permeates the fish’s environme
interacting with it, and is detectable by both the emitting fi
and other nearby fish. The fish detect the field with electro
ceptors on their skin, which then transmit information to t
pyramidal cells. Thus, these pyramidal cells are very clos
the start of the sensory pathway from the periphery to
brain of the fish.

The amplitude of the EOD is approximately sinusoid
and the frequency of a given fish is constant within the s
cies range of 600–1200 Hz. The electroreceptors on a fi
skin can detect both the amplitude and phase of this qua
nusoidal signal. These properties of the signal will be mo
fied by, e.g., a prey object, a rock, or another fish@8,9#. Also,
a ‘‘beat’’ frequency occurs when two fish with different fre
quencies meet~the beat frequency is equal to the differen
between the frequencies of the two fish!. Thus, there are a
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least two approximately sinusoidal inputs that can be
tected by the electroreceptors and passed to the pyram
cells that we model. There has also been recent interes
stochastic biperiodic oscillations in paddlefish electrorec
tors @10#, and some of our results may be applicable to t
situation.

A six-variable ODE model of a pyramidal cell fromA.
leptorhynchus~henceforth referred to as a ‘‘ghostburster!
has recently been developed@7#. This model reproduced
qualitatively, and to a large extent quantitatively, the beh
ior observed both in real pyramidal cells from the ELL@3#
and in a many-variable morphologically realistic model@11#.
Due to the small number of variables in the ghostburs
model, we can easily investigate how it reacts to tim
varying stimuli. A previous paper@12# investigated how the
ghostburster reacts to transient stimuli; in it, the concep
‘‘type-I burst excitability’’ was presented. Briefly, burst ex
citability is a generalization of ‘‘normal’’ excitability@1,5#,
but the ‘‘event’’ is a burst of action potentials rather than
single one, and the ‘‘rest state’’ that the system returns
after the event may be, for example, a periodic orbit, rat
than an actual fixed point of the system~‘‘quiescence’’!.
With this knowledge of both the burst attractor and the e
citable nature of the ghostburster system, we investigate
effects of sinusoidal input to the ghostburster model@7#.

The response of nonlinear systems, particularly osci
tors, to periodic forcing is a much studied problem, and
work here can be thought of as a generalization of the res
for periodically forced oscillators@13–16# and periodically
forced excitable systems@17,18#. A number of qualitatively
different types of bursting behavior have been observed
analyzed@1,5,6#, and it would be of interest to understan
©2003 The American Physical Society28-1
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C. R. LAING AND A. LONGTIN PHYSICAL REVIEW E 67, 051928 ~2003!
how these other systems respond to time-varying inputs.
likely that this information would also help in understandi
how coupled bursting systems behave, an area of recen
terest@19#. Here we choose to study the ghostburster, as
well characterized experimentally and has a clearly defi
and relevant periodic input.

A two-variable model of the bursting pyramidal cell stu
ied here was presented in Ref.@20#, along with an analysis o
its response to sinusoidal input currents. However, t
model was a caricature of the cell and only reproduced
qualitative aspects of ghostbursting. The model studied h
is quantitatively correct with respect to time scales and v
age wave forms, and agrees well with the behavior see
experiments@3# and much more complicated models@11#.

Noise is ubiquitous in neural systems, and can result fr
the probabilistic nature of the opening and closing of i
channels, or the stochastic nature of synaptic transmiss
among other things@21#. The pyramidal cells under stud
here are known to be intrisically noisy when unstimulat
@22#. The importance of the presence of noise in the nerv
system ofA. leptorhynchusis not clear, but we will look at
the generic features of the response of the ghostbu
model to both noise and noise combined with a perio
signal.

In Sec. II, we introduce the ghostburster and summa
its relevant features. Section III discusses the effects of s
soidal inputs on the ghostburster model, and Sec. IV dem
strates the existence of stochastic resonance in the mode
conclude in Sec. V.

II. GHOSTBURSTER MODEL

We now give a brief summary of the burst mechani
investigated in Ref.@7#. The model equations are present
in the Appendix, and details of the large model they a
derived from are in Ref.@11#. Both the soma and dendrite o
the neuron were found to be capable of initiating action
tentials, and a somatic action potential typically induced
corresponding dendritic action potential via active ba
propagation down the dendritic tree. The dendritic action
tentials have a longer half-width than the somatic, and
dendritic refractory period is thus longer than that of t
somatic. Because of this difference, near the end of a d
dritic action potential some current flows from the dendr
to the soma, causing a depolarizing afterpotential~DAP! to
appear after the corresponding somatic action potential.

For small dc current injections to the soma, the cell fi
periodically, with dendritic action potentials tracking the s
matic ones. However, for larger current injections, the d
dritic potassium inactivation gating variable (pd , see the Ap-
pendix! cannot fully recover between action potentials, a
this variable gradually decreases during the course of a n
ber of action potentials, leading to a broadening of dendr
action potentials, an increase in the DAP size, and a s
increase in firing frequency. This continues until a soma
interspike interval~ISI! is smaller than the refractory perio
of the dendrite, and the dendrite no longer fires an ac
potential in response to a somatic one. This results in a l
ISI, during which the dendritic potassium inactivation va
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able recovers, and another burst commences. Thus, a
consists of a number of action potentials whose ISIs mo
tonically decrease, separated by a long ISI. See Fig. 1 fo
example.

From the above description, we see that if the magnitu
of a dc current injected to a pyramidal cell is slowly in
creased, the cell changes from quiescent~not firing action
potentials! to periodic firing of action potentials to bursting
This is shown in Fig. 2. This ordering is in contrast wi
many other burst mechanisms, where the sequence is o
quiescent→ bursting→ periodic firing, as the injected cur
rent is increased@5,23,24#.

The threshold between periodic and bursting behavio
very important if these neurons are thought of as being
volved in feature detection~i.e., encoding up- or down-
strokes of the electric field amplitude@25,26#!, since the in-
formation from other cells will likely be manifested as
change in input current to a pyramidal cell, which may th
cause a change from periodic firing to bursting or vice ver
Lisman @4# has also proposed that bursts rather than ac
potentials could be the fundamental unit of information, a
burst combined with synaptic facilitation may be far mo
reliable than a single action potential, for example.

FIG. 1. An example of ‘‘ghostbursting’’ for the model presente
in Ref. @7#. The equations are given in the Appendix. Top, soma
voltage; middle, dendritic voltage; bottom, dendritic potassium
activation (pd). Each burst terminates with a short ISI~a doublet!
that is immediately followed by a long one. This occurs att'70,
100, and 140 ms. DAPs are visible after most somatic action po
tials. Note the reduced height of the dendritic action potential at
end of each burst. The injected current isI 59.5.
8-2
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III. SINUSOIDAL INPUT

We now investigate the effects of sinusoidally modulati
the somatic input current to the ghostburster, replacingI in
Eq. ~A1! with I b1I modsin(2pft), where I b is the constant
component of the current,I mod is the amplitude of the modu
lation, andf is the frequency of modulation. We are main
interested in whether varyingI mod andf can cause the mode
to switch from periodic firing to bursting or vice versa.

Figure 3 shows the effects of this form of modulation a
function of bothI b andf for the ghostburster~A1!–~A6!. The
color indicates the reciprocal of the minimum ISI measu

FIG. 2. A plot of instantaneous firing frequency~reciprocal of
each interspike interval! as a function of input current to the som
I, for the ODE model presented in Ref.@7#. The cell moves from
quiescence to periodic firing atI'5.7, and from periodic firing to
bursting atI'8.5. In Ref.@7# it was determined that the two cor
responding bifurcations are a saddle-node bifurcation on a ci
and a saddle-node bifurcation of periodic orbits, respectively.
each value ofI, all ISIs within a 500 ms window after transients ha
died down were used. The equations are given in the Appendix

FIG. 3. Modification of burst threshold in model~A1!–~A6! by
sinusoidal forcing. The input current isI b11.5sin(2pft), wheref is
the frequency of forcing~plotted horizontally!. The color indicates
the maximum instantaneous firing frequency in Hz~reciprocal of
the instantaneous ISI! during 250 ms. In the absence of forcing, th
periodic or bursting transition occurs atI b'8.5 ~see Fig. 2!.
05192
a

d

during a 250 ms period. The darkest colors indicate that
cell is bursting, as we are detecting the high-frequency ‘‘do
blet’’ that signifies the end of a burst~see Fig. 1!. A number
of features are apparent: from Fig. 2 we see that with
modulation, the periodic to burst threshold is atI b'8.5, so
modulation can push the apparent threshold to either hig
I b values~e.g., forf near 120 Hz! or lower I b values~e.g., for
f ,50 Hz!.

Much of Fig. 3 can be understood by remembering t
below burst threshold, the cell fires periodically, i.e., it is
oscillator. Entrainment of oscillators to an external forci
frequency has been well studied@14,15,13,16#. It is known
that regions of parameter space can exist in which the
quencies of the driving and driven oscillators have a sim
ratio, e.g., 2:3. These regions are known as ‘‘Arno
tongues,’’ and are labeled by the ratio of the driving to driv
frequencies, in its simplest form. The most prominent in F
3 is the 1:1 tongue, stretching from (f ,I b)'(70,7) to
'(150,9.5). ~The tongue stretches down and to the rig
because asI b is increased, the frequency of the oscillat
increases, see Fig. 2.! The 2:1 tongue can also be seen, t
minating at (f ,I b)'(260,8.6). In this region, the neuro
fires one action potential on every second forcing cycle, i
the ratio of driving to driven frequencies is 2:1. Furth
tongues are seen in the top left corner of Fig. 3.

The observation that some Arnold tongues cross
periodic to burst threshold in the unforced system (I b58.5)
is similar to the results of Yoshinoet al. @18# who studied the
Arnold tongue structures in a periodically forced system th
when the amplitude of forcing was zero, could be either
citable from a quiescent state or oscillating periodica
They found that as the parameter controlling the excitable→
oscillatory transition was varied across the boundary fo
fixed amplitude of periodic forcing, the Arnold tongue stru
ture was continuous. We also see this. In Fig. 3, ifI b is
increased through 8.5 forf 5110 Hz, the system remains i
the 1:1 locked state, firing periodically, even though the u
forced dynamics (I mod50) have changed from periodic fir
ing to bursting. In other words, periodic stimulation at 1
Hz postpones the onset of bursting.

Figure 4 shows the Arnold tongues in the more us
amplitude/frequency of forcing space, and demonstrates
the bursting behavior modifies the tongues. In Fig. 4,
(I b58), the 1:1 tongue is seen starting at (f ,I mod)
'(100,0) and the 2:1 tongue~where there is one action po
tential for every two forcing cycles! starts at (f ,I mod)
'(200,0). Thinner tongues are seen, as well as bursting
f less than about 80 Hz. Thus, bursting is induced for su
ciently slow and strong forcing. This can be understood
resulting from the modulation being so slow that it is effe
tively constant over time intervals on the order of the du
tion of a burst. Thus, if the modulation amplitude is stro
enough, at least one burst will be induced during part of e
forcing cycle. Figure 4, bottom, hasI b58.7, so that for
I mod50, the cell is bursting. Despite this, sufficiently stron
forcing at sufficiently high frequencies can suppress bu
ing. The tongue with edges at (f ,I mod)'(95,3) and (120,3)
is the 1:1 tongue.

For some of the parameter values shown in Figs. 3 an
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r
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C. R. LAING AND A. LONGTIN PHYSICAL REVIEW E 67, 051928 ~2003!
system~A1!–~A6! with I being periodically modulated is
bistable. The two attractors are bursting behavior and p
odic firing that is frequency locked to the forcing. Only on
maximum frequency was calculated at each of the point
Figs. 3 and 4, and the bistability appears as the ‘‘speckles
light within dark regions and dark within light regions. Th
bistability was also found when the reduced model presen
in Ref. @20# was periodically forced, in the vicinity of the 1:
locked orbit. There it was found to arise from a subcritic
Hopf bifurcation of that orbit.

From Fig. 3, we see that the boundary between perio
and bursting behavior is deformed whenI modÞ0. It is de-
formed to lowerI b values for some frequencies and to high
I b values for other frequencies. This suggests that ifI mod is
suddenly switched from zero to a nonzero value, the neu
could be induced to switch from periodic firing to burstin
or vice versa, depending on the value ofI b and the forcing
frequency. Examples of both of these types of behaviors
shown in Figs. 5 and 6, where a sinusoidal modulation ofI is
applied for a few hundred milliseconds. In Fig. 5, the bur
ing is suppressed almost immediately and the neuron is
duced to fire at the same frequency as the forcing. In Fig
a high-frequency doublet occurs within 100 ms of the on
of forcing. We now examine the effects of including noise
the dynamics of the ghostburster.

IV. STOCHASTIC RESONANCE

Stochastic resonance is a well-known phenomenon
nonlinear dynamical systems@27,28#. Put simply, the addi-

FIG. 4. Arnold tongues in amplitude/frequency of forcing spa
for Eqs. ~A1!–~A6!. The input current isI b1I modsin(2pft). Top,
I b58; whenI mod50 the neuron is not bursting. Bottom,I b58.7;
whenI mod50 the neuron is bursting. The color indicates the ma
mum instantaneous firing frequency in Hz~reciprocal of the mini-
mum ISI!.
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tion of a small amount of noise to a system receiving a s
threshold signal may make the signal observable. When
noise is added, the signal is, by definition, unobservable,
if large amounts of noise are added, the signal is swampe
the noise. Thus, if the signal to noise ratio for a period
signal is plotted as a function of noise level, it will have
maximum at some intermediate intensity of noise. T
maximum may have some functional significance for
‘‘observer’’ of the system.

As seen in Fig. 2, the ghostburster~A1!–~A6! has two
current thresholds, i.e., there are two values ofI such that, if
I is transiently increased above these values, there is a q
tative change in the behavior of the system. The first thre
old, at I'5.6 involves a saddle node on a circle bifurcatio
i.e., excitable dynamics between a fixed point and perio
firing, so the system is capable of exhibiting stochastic re

-

FIG. 5. A transient sinusoidal modulation of the input curre
switches system~A1!–~A6! from bursting to periodic firing. Param
eters areI b59, I mod is 1.5 for 1200,t,1400, and the forcing
frequency is 125 Hz. Top,Vs andI 290; bottom,pd . Note that the
neuron is induced to fire at the same frequency as the forcing~1:1
locking!.

FIG. 6. A transient sinusoidal input switches system~A1!–~A6!
from periodic to burst firing. Parameters areI b58.3, I mod is 1.5 for
1200,t,1400, and the forcing frequency is 15 Hz. Top,Vs and
I 290; bottom,pd . One burst is induced, which terminates att
51300 ms.
8-4
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PERIODIC FORCING OF A MODEL SENSORY NEURON PHYSICAL REVIEW E67, 051928 ~2003!
nance near this threshold@28#. We now show that the ghost
burster can also show stochastic resonance near the per
→ burst threshold that occurs for larger bias currentI, pro-
vided that bursts are used to form the output signal, ra
than individual action potentials.

We include the effects of noise by adding a Gauss
white noise current termh(t) to the first ~current balance!
equation in~A1!–~A6!, where ^h(t)&50 and ^h(t)h(s)&
52Dd(t2s), so thatD is a measure of the noise intensit
This term is meant to mimic the fluctuations in ion chann
conductances, the effects of the probabilistic nature of s
aptic transmission, and the other sources of randomness
occur in neural systems@21#. The signal we use is a
10/(2p) Hz sinusoidal modulation of the current withI b
58.4 and I mod50.15, i.e., we haveI 58.410.15sin(10t).
This is quite a slow and weak modulation compared with
frequencies involved in the Arnold tongues~see Figs 3 and
4!. Note that whenD50 andI is as above the model neuro
does not burst; instead, the instantaneous firing rate is s
soidally modulated by the current.

In contrast with normal excitability, where the ‘‘event’’ i
an action potential, the event in burst excitability is a bu
@12#, which is easily detected for model~A1!–~A6! by moni-
toring ISIs, since a burst always terminates in a hig
frequency doublet.~In Ref. @12#, the response of the ghos
burster to transient, steplike inputs was examined; here
examine the response to continuous sinusoidal modulat
of the input current.! In practice, the end of a burst could b
detected by a facilitating synapse@29# that would preferen-
tially transmit the last few action potentials that occur
quick succession@4#. To quantify stochastic resonance in th
ghostburster, we detect all ISIs less than 4 ms and record
time t i of the second action potential of the ISI. In a simil
way to that done in@20# for a ‘‘toy’’ model of the ghost-
burster, we form an output signal consisting ofd functions at
times t i :

f ~ t !5(
i

d~ t2t i !, ~1!

where the sum is over all such times during a finite-tim
simulation. Passingf (t) through a Hanning window define
over the length of the simulation,T, and taking the Fourier
transform, we have

F~v!5
1

2 (
i

eivt iF12cosS 2pt i

T D G ~2!

and the power spectrum off (t) is uF(v)u2.
Typical spectra for three different noise intensities a

shown in Fig. 7. It is clear that the power at the drivin
frequency,f 510/(2p) Hz, increases and then decreases
D is increased, and that the background noise inten
monotonically increases asD is increased.

The signal to noise ratio as a function ofD is shown in
Fig. 8. The signal strength was defined to be the power d
sity at the forcing frequency@ f 510/(2p) Hz# and the noise
strength was defined to be the average of the power in
two bands 7,2p f ,9 and 11,2p f ,13. ~The spectra are
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essentially flat with no obvious peaks for 5,2p f ,9.9 and
10.1,2p f ,15, not shown.! Five simulations of 200 s eac
were used to calculate the values shown in Fig. 8. T
clearly confirms the results suggested by Fig. 7 and sh
that system~A1!–~A6! can demonstrate stochastic resonan
near the periodic or bursting boundary, provided that
‘‘output signal’’ is taken to be a burst. If, instead, all actio
potentials are used to form a signal@i.e., thet i in Eq. ~1! are
the occurrence times of every action potential#, the signal to
noise ratio decreases monotonically as noise intensity is
creased~not shown!.

Thus, we have shown that if a burst is regarded as
fundamental unit of information@4#, as opposed to an actio
potential, the model of a sensory neuron studied here is
pable of undergoing stochastic resonance. This complem
the results presented in Ref.@12#, where it was shown that a

FIG. 7. Power spectra from Eq.~2! for three different values of
D for the ghostburster, Eqs.~A1!–~A6!. The driving frequency was
f 510/(2p) Hz. Five independent realizations of 200 s each ha
been averaged to obtain each spectrum.

FIG. 8. Signal to noise ratio~defined in the text! as a function of
noise intensityD for the ghostburster, Eqs.~A1!–~A6!. The dashed
lines indicate61 standard deviation. Five independent realizatio
of 200 s each for each value ofD chosen were used to calculate th
SNR.
8-5
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C. R. LAING AND A. LONGTIN PHYSICAL REVIEW E 67, 051928 ~2003!
transient increase in synaptic input to such a model neu
could be robustly signaled by the production of a burst.

The results presented here are for an input signal
noise added to the soma only. Biophysically, however, inp
to a neuron are thought of as coming via the dendrites. A
it is not clear what relative contribution do the soma a
dendrite make to the overall level of noise in a neuron. Th
it would be interesting to see whether stochastic resona
occurs in the ghostburster when the signal is injected to
dendrite and noise appears in either the soma or dendrite
investigated these possibilities and found that stocha
resonance does occur, regardless of the location~soma or
dendrite! of the injected signal and the noise term~not
shown!.

We also investigated the behavior of the ghostburste
the vicinity of the periodic to burst threshold with noise a
plied to the soma but no periodic input signal. In analo
with other excitable systems, if the input current was h
just below the threshold and noise was added, we might
pect to see coherence resonance@30# as the noise intensity
was increased, again using a burst as the output ‘‘sign
The bursts would be irregular at low noise intensity, mo
regular at medium intensity, and irregular again at high no
intensity. However, we did not observe this. One possi
explanation is that, even in the noise-free system, bursts
not have a well-defined duration~see Fig. 1!, and thus there
is not a characteristic time scale that can be ‘‘uncovered’’
the noise. In fact, the bursting is chaotic@7#, which is thought
to invalidate general descriptions of coherence resona
@30#. Another contributing factor may be that after one bu
~in the noise-free case!, the system does not necessarily ha
to return directly to the periodic state; it may instead unde
one or more further bursts before returning to the perio
state, as was demonstrated in Ref.@12#.

Another possibility would be to observe autonomous s
chastic resonance@31,32#, where the height of a particula
peak in the output spectrum reaches a maximum at s
intermediate noise intensity. However, we did not obse
this either, probably as a result of the factors mention
above.

V. CONCLUSION

We have studied the response of a particular model n
ron to sinusoidal modulations of its input current. In the a
sence of modulation, this particular neuron has a w
defined current threshold between periodic and burst fir
Modulations move this threshold, either increasing or
creasing it, depending on the frequency of modulation.

Because of the bifurcation involved in the threshold a
the flow of orbits in phase space, the model neuron sh
type-I burst excitability at this boundary@12#. This implies
that if a subthreshold modulation of the current is appli
together with some type of noise, the system should sh
stochastic resonance. We demonstrated that it does, once
recognized that the output signal involves a burst rather t
an individual action potential.

The particular neuron modeled here is a sensory neuro
the weakly electric fishA. leptorhynchus, and is close to the
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periphery of the fish. There are at least two sources of p
odic input to these cells—the fish’s own electric organ d
charge, and the beat frequency created when two fish
close to one another. Thus, it is of interest to understand h
these cells react to such inputs.

More generally, there are many types of bursting neuro
these are often classified in terms of the bifurcations
volved in the transition between quiescence and periodic
ing and the transition between periodic firing and quiesce
@1#. They are found in many different parts of the nervo
systems of many different species@2#. The response of oscil
lators and excitable systems to periodic forcing has b
much studied@14–16,13,18,17#, and a natural generalizatio
of this is the study of the response of bursting systems
periodic forcing. The study presented here, although by
means complete and only involving one model, is a first s
in that direction.
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APPENDIX: GHOSTBURSTER EQUATIONS

We present here the governing differential equations
the model neuron studied in this paper. The model consist
two isopotential compartments, representing the soma
dendrite of the neuron, diffusively coupled through voltag
The equations, previously presented in@7#, are

C
dVs

dt
5I 2gNa,s@m`,s~Vs!#

2~h02ns!~Vs2VNa!

2gdr,sns
2~Vs2VK!2gL~Vs2VL!2

gc

k
~Vs2Vd!,

~A1!

dns

dt
5

n`,s~Vs!2ns

0.39
, ~A2!

C
dVd

dt
52gNa,d@m`,d~Vd!#2hd~Vd2VNa!2gdr,dnd

2pd~Vd

2VK!2gL~Vd2VL!2
gc

12k
~Vd2Vs!, ~A3!

dhd

dt
5h`,d~Vd!2hd , ~A4!

dnd

dt
5

n`,d~Vd!2nd

0.9
, ~A5!

dpd

dt
5

p`,d~Vd!2pd

5
. ~A6!
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Time is measured in milliseconds and voltages are meas
in millivolts. Subscriptss and d refer to somatic and den
dritic variables, respectively.m andh are activation and in-
activation of Na1, respectively, andn and p are activation
and inactivation of K1, respectively. Parameter values a
C51mF/cm2, gNa,s555, h051, VNa540, gdr,s520,
VK5288.5, gL50.18, VL5270, gc50.4, k50.4,
gNa,d55, gdr,d515. Conductances are measured
v

t.

-

r,

J,

05192
edmS/cm2, I is the input current,gc is the coupling conduc-
tance, andk is the ratio of the somatic area to the total ar
of the cell. Other functions arem`,s(V)51/$11exp@2(V
140)/3#%, n`,s(V)51/$11exp@2(V140)/3#%, m`,d(V)
51/$11exp@2(V140)/5#%, h`,d(V)51/$11exp@(V152)/
5]%, n`,d(V)51/$11exp@2(V140)/5#%, p`,d(V)51/$1
1exp@(V165)/6#%. For details and derivation of these equ
tions, see Refs.@7,11#.
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