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Abstract “Equation-free modelling” is a recently-
developed technique for bridging the gap between detailed,
microscopic descriptions of systems and macroscopic de-
scriptions of their collective behaviour. It uses short, repeated
bursts of simulation of the microscopic dynamics to analyse
the effective macroscopic equations, even though such equa-
tions are not directly available for evaluation. This paper
demonstrates these techniques on a variety of networks of
model neurons, and discusses the advantages and limitations
of such an approach. New results include an understanding
of the effects of including gap junctions in a model capable
of sustaining spatially localised “bumps” of activity, and an
investigation of a network of coupled bursting neurons.
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1. Introduction

Many physical systems involve the interaction of many
“units”—particles, cells, molecules, random walkers, etc.—
and the equations governing the local dynamics of these units
and the interactions between them are often known in some
detail. Many of these systems have “emergent” macroscopic
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behaviour, such as a convective roll in a fluid heated from be-
low. Often, it is this behaviour that is of interest to us, rather
than the detailed behaviour of the many individual units (wa-
ter molecules, in this example). For some systems such as
fluid flow, we can construct approximate equations that gov-
ern the macroscopic dynamics and work directly with them,
ignoring the microscopic details. This is appropriate if we are
interested in phenomena that occur on much larger spatial
scales, and much longer time-scales, than those associated
with individual molecules.

However, for many systems of interest it is not possible
to derive such macroscopic equations. Equation-free (EF)
modelling, developed in the past few years by Kevrekidis
et al. (Gear et al., 2002; Kevrekidis et al., 2003; Makeev
et al., 2002; Möller et al., 2005; Runborg et al., 2002) is
a way of analysing the macroscopic equations for such a
system, even though the equations are not known explicitly,
by using short bursts of appropriately-initialised simulations
of the microscopic dynamics. Its success relies on there
being a separation of time-scales in the system, with the
macroscopic variables of interest changing on a much
longer time-scale than most of the microscopic variables.
It is computationally intensive, with repeated simulations of
often highly-detailed models on a microscopic level being
required; this makes them amenable to implementation
on parallel computers. The idea is similar to that of
approximate inertial manifolds in the analysis of partial
differential equations (Garcia-Archilla et al., 1998), where
the amplitudes of higher modes (which, for example, have
rapid spatial variation) are “slaved” to (or are functions of)
the amplitudes of a finite number of lower modes (which,
for example, have slow spatial variation). Thus a simulation
of the lower modes, together with knowledge of the slaving
relationship, is sufficient to give an accurate description of
the solutions of the whole PDE. For a broader overview
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of the problem of extracting macroscopic dynamics from a
microscopic description of a system, see Givon et al. (2004).

The ideas involving in EF modelling have previously been
implemented for a variety of different problems; for exam-
ple, a Lattice-Boltzmann implementation of the FitzHugh-
Nagumo PDE in one spatial dimension (Gear et al., 2002),
and kinetic Monte Carlo models of simple chemical reac-
tions on a surface (Makeev et al., 2002). The purpose of this
paper is to demonstrate in detail the EF modelling of sev-
eral different networks of model neurons. As will be seen,
some of the results could have been obtained by different
methods, but some new results that could not be obtained by
other methods will also be shown. The emphasis here is on
an exposition of the techniques rather than the novel results.

Neural systems are suitable for this type of analysis for
several reasons. One is that neural systems normally have
a wide range of time-scales, which is a crucial requirement
for the ideas discussed here to work. For example, spike
frequency adaptation normally occurs on a much longer
time-scale than the processes involved in the generation of
a single action potential. Another reason is the wide range
in the level of description of various neural systems, from
single ion channels to much larger ensembles of neurons
(Koch, 1999) and ultimately, brain regions. While a specific
system may be well understood at a particular level of de-
scription, it is often hard to integrate that system into a larger
one without making drastic simplifications. For example,
while a single neuron may be well-characterised in terms of
the ion channels involved in its action potential generation,
often that detail is thrown away when a network of such
neurons is studied, and only the frequency of firing for a
fixed input is considered. For the examples we study, we can
include as much detail as is known in the description of the
dynamics of individual neurons (keeping the single neuron
model in a “black box” to be simulated when necessary) but
we can still describe the behaviour of a network of neurons
in terms of a small number of macroscopic variables.

The structure of the paper is as follows. We now give a
brief introduction to EF modelling; much more detail can be
found elsewhere (Gear et al., 2002; Kevrekidis et al., 2003;
Makeev et al., 2002; Möller et al., 2005; Runborg et al.,
2002). In Section 2 we discuss a simple network of model
neurons, all-to-all coupled with slow excitatory coupling. In
Section 3 we study two populations that mutually inhibit one
another; this leads to bistability. In Section 4 we investigate a
system capable of supporting spatial patterns, while Section 5
discusses a network of bursting neurons, and in Section 6 we
study a noisy network. We conclude in Section 7.

1.1. Equation-free modelling

Consider numerical integration in time, or simulation, of a
complex system whose microscopic dynamics one knows

in detail. An example is a network of coupled neurons. Let
U be the macroscopic variable that one hopes describes the
system (for example, an average rate of firing), and let u be
the vector-valued variable describing the microscopic state
of the system (for example, a vector containing the voltages
and gating variables of all of the neurons in the network). u
is normally much higher-dimensional than U. We suppose
that there exists a function F(U) such that the dynamics of U
are given by the differential equation

dU

dt
= F(U ) (1)

We do not have an explicit formula for F(U) and cannot
evaluate it in the usual sense of a function evaluation, but we
assume that F(U) exists and is well-behaved (for example,
that it is differentiable). We also assume that U changes
slowly in time relative to the rate of change of most of the
components of u. Suppose that we want to make an Euler
step forward in time, from an initial condition U0, i.e. we
know the state of U now, and want to know it at a small time
h in the future. The formula is

U1 = U0 + hF(U0) (2)

where U1 is the value of U at time t = h, and h is the time-
step we have chosen. To evaluate F(U0) we initialise the
microscopic system (the full network) with an initial condi-
tion u0 that is consistent with U having the value U0. This is
done with a “lifting” operator, M, such that u0 = MU0. This
is a one-to-many operation, as there are generally an infinite
number of initial conditions for the microscopic system that
are consistent with U having a particular value. We typically
do this by choosing u0 from a conditional probability density
function p(u0|U0). We also have a “restricting” operator, m,
which extracts the value of U, given u, i.e. U = mu. This is
normally a many-to-one operator, and could be as simple as
taking an average. The operators M and m satisfy m M = I ,
the identity, so that lifting and then immediately restricting
should have no effect, within roundoff error.

We then run the microscopic system for a short amount
of time, δ. During this time the quickly-changing compo-
nents of u vary so that the probability density function of
u becomes “slaved” to (or determined by) the current value
of U (Kevrekidis et al., 2003). Let Uδ = mu|t=δ , i.e. the re-
striction of u after a time δ. We then run the microscopic
simulation for a further time �t . This time is long enough
for U to change appreciably, but not so long that nonlinear
effects appear in its behaviour, i.e. over the time interval
[δ, δ + �t], U should change approximately linearly with
time. We then use a simple forward difference

Uδ+�t − Uδ

�t
(3)
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as an approximation to

dU

dt

∣
∣
∣
∣
U=U0

(4)

i.e. as an approximation to F(U0). This process is shown
schematically in Fig. 1. We can then use this approximation
to step forward in time by an amount h, obtaining U1 from (2).
To continue the process we need F(U1), which is evaluated
in the same way as F(U0), and so on. Note that for some of
the models we investigate, the probability density function
used in lifting from U0 to u0 is known analytically, and the
timestep δ can be set to zero.

In order to reduce the variance in our estimate of F(U0)
we may want to do a number of “bursts” of computation,
each with the same value of U0 but with different (consis-
tent) values of u0, and then average the values of F(U0)
obtained from these different bursts to obtain a more ac-
curate value. This part of the simulation is easily paral-
lelisable, as each burst can be done on a separate proces-
sor, with no communication required between them except
at the end of the burst. In essence, we are numerically
averaging over the high-dimensional dynamics of the mi-
croscopic variables, in the same way that we would an-
alytically to explicitly derive an equation like (1) (if we
could).

The above is an example of numerical integration, or sim-
ulation, which, if repeated evaluations of the microscopic
system are required, may take longer than just integrating
the microscopic system for the required amount of time.
But other tasks such as finding fixed points of (1) (i.e. find-

Time

U

δ

∆ t 

Fig. 1. A schematic diagram showing the time δ, during which the fast
variables become “slaved” to the slow ones, and the time �t , during
which the change in U is determined. The thick line represents the true
evolution of U, while the jagged line represents the restriction mu from
one particular realisation of the microscopic dynamics. In this case, u
was not initialised with a value consistent with the true value of U(0),
hence the difference in initial conditions. See Section 1 for more detail.

ing zeros of F(U)), or following these fixed points as a pa-
rameter is varied, all require evaluation of F, which can be
done as outlined above. For some of these tasks, evaluation
of derivatives of F with respect to variables or parameters
are needed. These can be approximated through finite dif-
ferences, i.e. through running the microscopic system with
nearby initial conditions, or at slightly different parameter
values. It is this ability to simulate the microscopic system
at will with specific initial conditions (which is either very
difficult or impossible for a physical system) that is exploited
in the EF modelling paradigm.

2. One population, positive feedback

Here we demonstrate some of these ideas using a simple all-
to-all excitatorily coupled network of N integrate-and-fire
neural oscillators. The equations are

dVi

dt
= I − Vi −

∑

k

δ(t − tik) + S + wi (5)

τ
dsi

dt
= A

∑

k

δ(t − tik)(1 − si ) − si (6)

for i = 1, . . . N , where tik is the kth firing time of neuron i
(defined to be the times at which Vi reaches 1 from below),
S is the average of the si,

S ≡ 1

N

N
∑

i=1

si (7)

and the sums over k are over all past firing times. Vi is the
voltage of neuron i and lies in [0, 1), si is the strength of the
synapses leaving neuron i, I is a constant input current and
A controls the overall strength of synapses. The function δ(·)
is the Dirac delta function, used to reset the Vi to zero, and
increment the si upon firing. The variables wi are independent
Gaussian white noise terms, with properties

〈wi (t)〉 = 0 〈wi (t)wi (s)〉 = σ 2δ(t − s) (8)

for each i, where the angled brackets indicate averages. The
parameter σ controls the noise intensity. Noise was added to
this system to smooth out the function describing the firing
frequency of a single neuron as a function of its input cur-
rent, which is known not to be differentiable everywhere for
type I neurons, of which the integrate-and-fire neuron is an
example (Gerstner and Kistler, 2002). This enables continu-
ation algorithms, which rely on functions being sufficiently
differentiable, to be used, and also makes the model more
biologically realistic.
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To ensure a separation of timescales, τ is chosen to be 50,
which is large relative to the timescale of changes in voltage
(i.e. we have slow synapses). In the absence of coupling
(A = 0), each model neuron behaves like an independent
integrate-and-fire neuron, with a noisy input. When A is not
zero, the neurons are coupled through the average of the si.
Each time neuron i fires, si is increased by an amount A(1 −
si )/τ ; in between firing times si undergoes exponential decay
back to zero with time constant τ . For a range of values of
I, the system (5) and (6) is attracted to a state where all
neurons are firing approximately periodically and are not
synchronised.

For this system the vector u describing the microscopic
state of the network would be formed from all of the Vi and
si. Using the EF modelling approach, we assume that exact
values of all of these variables are not of interest, in terms of
describing the state of the network, Instead, the assumption
is that the single variable S characterises the dynamics of
the system, and that there is a single equation governing the
dynamics of S, say

d S

dt
= F(S; I ) (9)

Thus for this system, the macroscopic variable U is just S. It
should be stressed that it is an assumption that the behaviour
of the network (5) and (6) can be accurately described by (9).

In order to perform numerical bifurcation analysis of (9)
we need to be able to evaluate F(S; I) and its partial deriva-
tives with respect to both S and I. To evaluate F(S;I) we
run (5) and (6) for a short amount of time and monitor S
during that integration. The integration must be long enough
for S to change appreciably and for the Vi to redistribute (if
necessary) so that their probability density function is ap-
propriate for the current value of S (i.e. for the system to
“heal” (Gear et al., 2002)), but not so long that nonlinear
effects start to come into play, since nonlinear effects will
reduce the validity of the approximation (3). The correct in-
tegration time can be determined by running a number of
simulations and observing the different time-scales in the
dynamics. Alternatively, for a system like (5) and (6), we
can use the explicitly-given slow time-scale, τ , to choose the
integration time, setting it to, say, τ/2.

2.1. Initial conditions

The question of initial conditions must be addressed. From
a particular value of S we need to generate 2N initial condi-
tions, for the Vi and si. In principle, since S is the average of
the si, we could choose the si(0) from any distribution with
mean S. For simplicity, we choose si (0) = S for all i. (This
is one component of our lifting operator, M; the restricting
operator is just the averaging of the si.) Also in principle, the

Vi(0) could be chosen in any way from the interval [0, 1).
However, there are some points to be considered.

If all Vi (0) are chosen to be equal then the neurons will
start off synchronised, since all si (0) are equal to one another
as well. The nonzero noise intensity will break up this syn-
chronisation, but we need this to occur well before the end
of the short burst of simulation. A better choice would be to
take the Vi (0) from a uniform distribution over [0, 1). This
would remove the problem of synchronisation but it is still
not the best solution. A moment’s thought shows that during
periodic firing the Vi are not spread uniformly through the
interval [0, 1) but are more likely to be near 1 than near 0. In
fact, if σ = 0 (i.e. the noise intensity is zero), the probability
density function (PDF) for the Vi is p(Vi | I + S), where

p(Vi |I ) =
{ 1

B(I−Vi )
if I > 1

δ(Vi − I ) if I < 1
(10)

where B = log [I/(I − 1)]. When σ �= 0 it is also possible
to calculate the PDF for the Vi (Brunel and Hakim, 1999;
Fourcaud and Brunel, 2002)

p(Vi |I ) = 2 f0

σ
exp

(−(Vi − I )2

σ 2

)

×






∫ (1−I )/σ
−I/σ exp (s2) ds if Vi < 0

∫ (1−I )/σ
(Vi −I )/σ exp (s2) ds if Vi > 0

(11)

where f0 is the stationary firing rate:

f0 =
(√

π

∫ (1−I )/σ

−I/σ
exp

(

x2
)

[1 + erf(x)]dx

)−1

(12)

and erf is the error function. We will use the PDF given
by (10), rather than (11), for three reasons. Firstly, there are
difficulties with numerically implementing (11) when σ �= 0,
due to overflow errors. Secondly, the difference between
the PDFs (10) and (11) is only significant when I + S ≈ 1.
Thirdly, due to the difference in time-scales for the Vi and
si, as mentioned above, the initial conditions for the Vi are
largely irrelevant.

In Fig. 2 we show the effects of using different dis-
tributions of initial conditions, and also demonstrate how
we estimate F(S; I). We use a network of N = 200
neurons. Figure 2A shows a rastergram of 50 out of the
200 neurons, with the Vi (0) chosen from a uniform distri-
bution on [0, 1). (The si (0) were all taken equal to S(0).)
We see that there is an initial gap of approximately 1 time
unit in which very few neurons fire. Figure 2B shows S as
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Fig. 2. Demonstration of the effects of different probability den-
sity functions for the Vi (0), for the system (5) and (6). A: A raster-
gram showing the firing times of 50 out of 200 neurons (vertical
scale: neuron index). The Vi (0) were randomly chosen from a uni-
form distribution on [0, 1). B: S (the mean of the si) as a function of
time for the simulation in A. Also shown is the straight line (slope =
1.40 × 10−4) fitted to the second half of the simulation. C: Same as
A, but with the Vi (0) taken from the PDF (10). D: Same as B, but
for the simulation shown in C (slope = 1.17 × 10−4). Different re-
alisations give qualitatively similar results (not shown). Parameters
are S(0) = 0.165, I = 1. Other initial conditions are si (0) = S(0) for
i = 1, . . . , N .

a function of time for the simulation shown in Fig. 2A. The
small amount of synchrony induced by the initial conditions
appears as oscillations superimposed on the slow growth in
S, at the same frequency as that of the individual neurons. To
calculate F(S; I) we do a least-squares fit of a straight line
to S(t) for t ∈ [10, 20] and take the slope of that line. We do
this for Nav independent simulations and then average the re-
sults. Fitting a straight line and taking its slope as an estimate
of F(S(0); I), rather than simply using [S(20) − S(10)]/10,
resulted in a smaller variance for the estimates, hence its use.

Figure 2C shows a rastergram for 50 out of the
200 neurons when the Vi (0) are chosen from the PDF given
by (10). The lack of any synchrony is clear in Fig. 2D,
where we plot S as a function of time for the simulation
in Fig. 2C. Any oscillations seen here are due to the noise
and the fact that we do not have an infinite number of asyn-
chronous neurons. Also shown in Fig. 2D is a least-squares
fit of a straight line to S, as in Fig. 2B. The slope of this
line differs from the slope in panel A by less than 20%.
It is clear that other choices in determining F(S; I) are pos-
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8
x 10

–4

S

F
(S

;I)

I=0.91
I=0.93
I=0.95

Fig. 3. The function F(S; I ) (Eq. (9)), as calculated from direct sim-
ulation of (5) and (6), for three different values of I. Macroscopic fixed
points occur when F(S; I ) = 0. We have used a network of N = 200
neurons, averaging over Nav = 30 realisations. Other parameters are
A = 0.4, τ = 50, σ = 0.0245.

sible. For example, one could fit a straight line over a dif-
ferent time interval, or use S(20) − S(0), or fit a quadratic
q(t) to S(t) and use q(20) − q(0), or any number of other
possibilities.

This figure also shows that S changes on a time scale much
slower than that of the Vi. Indeed, for this initial condition, the
simulation must be run for 200 time units before S appears
to saturate. This is expected, as each synaptic strength si

evolves with a time constant τ = 50.
In Fig. 3 we show F(S; I) as a function of S, calculated

as above, for three different values of I. We again used a
network of N = 200 neurons, and averaged Nav = 30 times.
We see that for I = 0.91, there is one stable fixed point very
close to S = 0 (it is stable, since F < 0 for S > 0). There
are three fixed points for I = 0.93 and only one, at a high
value of S, for I = 0.95. We can see that there are some
bifurcations of fixed points as I is varied. We now discuss
this.

2.2. Fixed points

Figure 4 shows the curve of macroscopic fixed points for (5)
and (6) as I is varied. These are fixed points of S, not of the
microscopic variables (the Vi and si). We have traced this
curve using pseudo-arclength continuation (Doedel et al.,
1991). Also shown in Fig. 4 are two curves that can be calcu-
lated analytically using a rate-based formulation, as we now
discuss.

Taking the average of the term
∑

k δ(t − tik) in Eq. 6
over an interval of length T, we obtain the number of times
that neuron i has fired during that interval, divided by T,
i.e. the average firing rate of that neuron during that time
interval. The neurons are identical, each receiving an ef-

Springer



10 J Comput Neurosci (2006) 20: 5–23
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0
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0.04
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0.1
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0.16

0.18

I

S

Fig. 4. The curve of macroscopic steady states of the integrate-
and-fire network (5) and (6) (points joined by a line). Parame-
ters are A = 0.4, τ = 50, σ = 0.0245. A network of N = 200 was
used, with averaging over Nav = 30 realisations. The dashed line
shows the fixed points of the rate-based noise-free case [Eq. (15),
with f given by (17)], while the solid line shows the solution
of the rate-based system [Eq. (15), with f given by (18)] with
σ = 0.0245.

fective input current of I + S. Thus each neuron will be
firing at a rate f (I + S), where f (I ) is the firing rate for a
single integrate-and-fire neuron with input I. Thus we can
approximate (6) by

τ
dsi

dt
= A f (I + S)(1 − si ) − si i = 1, . . . , N (13)

Taking the average of these N equations we obtain one equa-
tion for S:

τ
d S

dt
= A f (I + S)(1 − S) − S (14)

Fixed points satisfy

g(S, I ) = 0 (15)

where

g(S, I ) = A f (I + S)(1 − S) − S

τ
(16)

For a noise free neuron, i.e. when σ = 0,

f (I ) = f1(I ) ≡ H (I − 1)

(

log

[
I

I − 1

])−1

(17)

where H is the Heaviside function. When σ �= 0,

f (I ) = f2(I ) ≡
(√

π

∫ b

a
exp

(

x2
)

[1 + erf(x)]dx

)−1

(18)

where a ≡ −I/σ, b ≡ (1 − I )/σ , and erf is the error func-
tion (Fourcaud and Brunel, 2002).

Plotted in Fig. 4 are solutions of (15) where f(I) is given
by (17) (dashed line), and where f(I) is given by (18) (solid
line). We see that for S greater than about 0.1, the three
curves are close. However, below the turning point the curve
of macroscopic fixed points is much better approximated by
the curve for the rate-based model with the correct amount of
noise, in the sense of the curves being closer to one another.
The agreement between these curves is a useful confirmation
that the method is working. We now discuss the stability of
these fixed points.

2.3. Stability

The stability of a fixed point of (9) is given by the sign of
∂ F/∂S. A positive derivative indicates instability, whereas a
negative derivative indicates stability. A similar remark holds
for the rate-based Eq. (15). To find the partial derivative of
F(S; I) with respect to its arguments we use finite differences.
For example,

∂ F

∂S

∣
∣
∣
∣

S=S

≈ F(S + ε; I ) − F(S; I )

ε
(19)

and similarly for ∂ F/∂ I . In all following work we use a
value of ε = 0.01.

Figure 5 shows the stability of the fixed points found in
Fig. 4, as indicated by the sign of ∂ F/∂S. We see that the
upper and lower branches of fixed points are stable, while
the “middle” branch is unstable. Using only numerical sim-
ulation of (5) and (6) until an attractor was reached, only the
stable branches of this curve would have been found. It is
only by using the EF approach of assuming that an equation
describing all fixed points exists, and using short bursts of
appropriate simulation to find roots of it, that we can trace
out the unstable branch of macroscopic steady states and thus
join the stable branches to one another.

2.4. Following bifurcations

We see in Fig. 4 that there are two saddle-node bifurcations as
I is varied. These occur when the system has an eigenvalue of
zero, i.e. when ∂ F/∂S = 0. If we allow another parameter,
for example A, to vary, we can follow these bifurcations
in a two-dimensional parameter space. We need to follow
solutions of the system

F(S; I ; A) = 0 (20)

∂ F(S; I ; A)

∂S
= 0 (21)
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Fig. 5. Eigenvalues for the steady states shown in Fig. 4. Positive
values correspond to instability, negative to stability. The points joined
by a line are for macroscopic steady states of (5) and (6). The dashed
line shows the stability for the rate-based noise-free case, while the solid
line shows the stability for the rate-based system with σ = 0.0245.

where we have now explicitly included the dependence of F
on A. Following solutions to these equations requires more
averaging (i.e. a much larger value of Nav and/or N) to be
successful, since we need to numerically estimate second
derivatives of F during continuation, not just first derivatives
(Makeev et al., 2002).

Results are shown in Fig. 6, where we plot the curves of
saddle-node bifurcations [i.e. solutions of (20) and (21)] in
the (I, A) plane. Also shown is the corresponding curve for the
rate-based system (15) with f given by (18). For both systems,
the curves meet in a cusp as A is decreased. For values of
A below this point the system no longer has bistability for
any values of I. Note that for the deterministic rate-based
system, we expect the curve of saddle-node bifurcations to
persist down to A = 0, terminating at (I, A) = (1, 0) (Laing
and Longtin, 2003).

2.5. Remarks

– In this modelling a separation of time-scales was created
by choosing τ = 50. We have successfully followed the
curve of macroscopic fixed points of (5) and (6) using
the ideas outlined above for values of τ down to τ = 10,
indicating that such a drastic separation of time-scales is
not necessary, and can be relaxed somewhat. (Successfully
followed means that the curve of fixed points lies on top
of the curve calculated for τ = 50.)

– There is no necessity for N, the number of neurons, to be
greater than one, provided that Nav , the number of differ-
ent simulations whose results are averaged, is sufficiently
large. By running different simulations with different (ap-
propriate) initial conditions, we are still effectively sam-
pling the whole space of microscopic variables. Having a
larger N makes S more smooth, as it is the average of N

0.92 0.93 0.94 0.95 0.96
0.2

0.25

0.3

0.35

0.4

I

A

Fig. 6. Solid line: The curve of saddle-node bifurcations of macro-
scopic steady states of the integrate-and-fire network (5) and (6). A net-
work of N = 1000 neurons was used, with averaging over Nav = 50
realisations. Other parameters are τ = 50, σ = 0.0245. Dashed line:
The curve of saddle-node bifurcations for the rate-based system with
σ = 0.0245. Figure 4 shows a horizontal “slice” through this figure at
A = 0.4.

variables, which in turn reduces the value of Nav needed
to obtain a reliable estimate of d S/dt .

In particular, the results obtained for N = 1 are those
that would be obtained if we had a network of N identical
neurons that were perfectly synchronised during the entire
burst of simulation. We return to this point in Section 7.

– We also note that during the averaging we are perform-
ing, we are actually simultaneously averaging over initial
conditions for the Vi and over realisations of the Gaussian
white noise in (5).

– As can be seen, there are a number of quantities that must
be chosen, e.g. the number of bursts to be averaged over
(Nav), and the lengths of the bursts. An element of trial and
error may be involved in choosing these and it is possible
that certain choices will cause the algorithms to break
down. Verification of results through different means (for
example, numerical simulation) may be prudent.

3. Two mutually inhibiting populations

We now discuss a more complicated network of two distinct
populations of identical model integrate-and-fire neurons,
each population inhibiting the other through the averaged
synaptic activity.

3.1. The model

The equations are

dV 1
i

dt
= I 1 − V 1

i −
∑

k

δ(t − t1
ik) − S2 + w1

i (22)
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dV 2
i

dt
= I 2 − V 2

i −
∑

k

δ(t − t2
ik) − S1 + w2

i (23)

τ
ds1

i

dt
= A

∑

k

δ(t − t1
ik)(1 − s1

i ) − s1
i (24)

τ
ds2

i

dt
= A

∑

k

δ(t − t2
ik)(1 − s2

i ) − s2
i (25)

for = 1, . . . , N , where the superscripts identify the popula-
tion,

S p = 1

N

N
∑

i=1

s p
i (26)

and the other terms have the same meanings as in the previous
example. Note that all of the Gaussian white noise terms are
independent.

For a fixed I 1 = I 2 > 1 and A small, both populations
will fire at the same rate. But for A large enough it is possi-
ble for one population to fire strongly, completely suppress-
ing the other in a “winner takes all” scenario. If I 1 = I 2,
this system is symmetric with respect to interchanging the
populations, and we expect this symmetry to manifest it-
self in terms of the possible bifurcations that can occur.
We again take τ = 50 to provide a separation of time
scales.

Our assumption is that the dynamics are governed by the
equations

d S1

dt
= F(S1, S2; A) (27)

d S2

dt
= F(S2, S1; A) (28)

where the same function F is used, due to the symmetry. We
investigate these equations in the same way as in the previous
section. To evaluate F(S1, S2; A), we initialise each s1

i (0) =
S1 and s2

i (0) = S2, and initialise the V 1
i (0) using the PDF

p(V 1
i |I 1 − S2) and the V 2

i (0) using the PDF p(V 2
i |I 2 − S1),

where p is given by (10). We then integrate for 20 time
units and fit a straight line to S1(t) for 10 < t < 20 and
take its slope—this is our estimate of F(S1, S2; A). Fitting
another straight line to S2 over the same time interval gives
us an estimate of F(S2, S1; A). This procedure is repeated
Nav times with different initial conditions for the voltages
and different Gaussian white noise terms, and the results are
averaged.

3.2. Rate equations

In a similar way to that in the previous section, we can write
approximate rate equations for the system (22)–(25), under
the assumptions that we have an infinite number of perfectly
asynchronous neurons. The equations we obtain are

τ
d S1

dt
= A f (I 1 − S2)(1 − S1) − S1 (29)

τ
d S2

dt
= A f (I 2 − S1)(1 − S2) − S2 (30)

where f(I) is the firing frequency of a neuron with
input current I. We use the function given by (18),
with the same value of σ as that used in the simu-
lations of (22)–(25). From (29) and (30) we see that
when S1 = S2, both of these values are given by the
roots of

A f (I − S)(1 − S) − S = 0 (31)

whereas when S1 �= S2, all fixed points of (29) and (30) can
be found by finding the roots of

A f

(

I − A f (I − S)

1 + A f (I − S)

)

(1 − S) − S = 0 (32)

where I 1 = I 2 = I . The stability of these fixed points is
determined by the eigenvalues of the Jacobian of (29) and
(30), evaluated at the fixed points.

3.3. Numerical results

Numerical results are shown in Fig. 7, where we
vary A, the strength of inhibition between the two networks,
keeping I 1 = I 2. For low values of A we have only one
steady state, for which S1 = S2. This is a stable state. As A
is increased this symmetric state becomes unstable through
a subcritical pitchfork bifurcation. Two unstable branches
of steady states on which S1 �= S2 are created in this bi-
furcation. These are destroyed in saddle-node bifurcations
with stable branches of steady states which exist for large A.
In these stable states, one network is firing and completely
suppressing the other. Figure 7 shows results from both the
analysis of (27) and (28), and of (29) and (30).

3.4. Forced symmetry-breaking

As mentioned, the system (22)–(25) has a reflectional sym-
metry involving the interchange of the two populations. This
underlies the pitchfork bifurcation seen in Fig. 7. We can
easily destroy this symmetry by making the two populations
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Fig. 7. Steady states for a pair of mutually inhibiting populations.
The system is symmetric with respect to interchanging S1 and S2.
Circles and crosses joined by lines indicate macroscopic steady states
of (22)–(25). Circles indicate stable states and crosses unstable, as
determined by the sign of the most positive eigenvalues of the Ja-
cobian of (27) and (28). Along the “central” branch, S1 = S2, while
along the other branches S1 �= S2. We used two networks of N = 1000
neurons each, averaging over Nav = 50 realisations. Solid lines are sta-
ble fixed points of (29) and (30) while dashed lines are unstable fixed
points of these equations. Other parameters are I 1 = I 2 = 1.2, τ = 50,

σ = 0.0245.

non-identical. This will generically break the pitchfork bi-
furcation into two saddle-node bifurcations, and move apart
the pairs of curves that are superimposed on one another in
Fig. 7. This is shown in Fig. 8, where we have set I 1 = 1.198
and I 2 = 1.2 in both (22), (23) and (29), (30). Although not
indicated in Fig. 8, the stability of the branches is as expected
from Fig. 7: the fixed point for which S1 and S2 are almost
equal is stable for small A and unstable for large A, and a sta-
ble and unstable solution are annihilated at each saddle-node
bifurcation.

4. A spatially extended system

We now consider the problem of pattern formation in a
spatially-extended neural system. There has been much re-
cent interest in these problems, one area of interest being the
formation of “bumps”—spatially-localised patches of active
neurons (Compte et al., 2000; Gutkin et al., 2001; Laing and
Chow, 2001; Laing et al., 2002). These are thought to be
involved in working memory tasks and orientation tuning
in the visual system. Work has been done on rate models,
where the variable of interest is the average firing rates of the
neurons (Laing et al., 2002), and also spiking neuron models
(Compte et al., 2000; Gutkin et al., 2001; Laing and Chow,
2001). When studying a rate model one implicitly assumes
that the neurons fire asynchronously, and that it is only their
firing rate that is relevant. Spiking models are more realistic,
but it is normally impossible to study unstable macroscopic
states such as unstable bumps in these systems. However, we
will now demonstrate how to do so, under the assumption
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Fig. 8. Forced symmetry breaking. (a): macroscopic steady states
of (22)–(25) with I 1 = 1.198 and I 2 = 1.2. Squares are S1, stars are
S2. Two networks of N = 200 were used, with averaging over Nav = 30
realisations. (b): Fixed points of (29), (30), with f given by (18), and
I 1 = 1.198 and I 2 = 1.2. The dashed line is S1; the solid line, S2.
Stability is discussed in the text. Other parameters are as in Fig. 7.

that there is a separation of time-scales in the system. This
will enable us to get a better picture of the bifurcations that
such systems can undergo.

4.1. The model

The model we study is the following network of integrate-
and-fire neurons.

dVi

dt
= I − Vi + 2π

N

N
∑

j=1

Ji j s j −
∑

k

δ(t − tik) + wi (33)

τ
dsi

dt
= A

∑

k

δ(t − tik)(1 − si ) − si (34)

where the wi are the usual (uncorrelated) Gaussian white
noise terms and

Ji j = J

(
2π |i − j |

N

)

(35)

where J is a difference of Gaussians:

J (x) = 5.25

√

0.6

π
exp

(−0.6x2)

− 5

√

0.5

π
exp

(−0.5x2) (36)
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Fig. 9. Left: The coupling function Ji j (35) and (36) for j = 30, N =
60. Right: A stable stationary bump solution of (33) and (34) at I = 0.9.
Other parameters are A = 5, τ = 50, σ = 0.0245.

This coupling function is shown in Fig. 9 (left). We think
of the neurons as lying on a ring of circumference 2π ; their
position could correlate with a feature that they are tuned
for, e.g. orientation. We again take τ = 50, so there is a
separation of time scales between the si and the Vi. It is well-
known that systems like (33) and (34) can support “bump”
solutions, in which only a fraction of the neurons are firing
(Laing and Chow, 2001). An example of such a bump state
is shown in Fig. 9 (right).

4.2. Representation and implementation

For this system, there are a variety of ways of representing
the macroscopic solutions. First note that the problem is
spatially homogeneous, so we can assume that the bump is
even about x = π , where x is the distance around the ring,
with 0 ≤ x < 2π . We choose the first two coefficients of an
even Fourier series representation of the si, where we are
thinking of the index i as a discrete spatial variable. We thus
represent our bump as

S(x) = b0 + b1 cos x (37)

We suppose that there are functions F1 and F2 such that the
dynamics of b0 and b1 are governed by

db0

dt
= F1(b0, b1) (38)

db1

dt
= F2(b0, b1) (39)

and that these can faithfully represent the dynamics of bumps
in (33) and (34). See below for discussion about our choice
of macroscopic variables.

Our restricting operator m takes the values {si } and gen-
erates b0 and b1 via

b0 = 1

N

N
∑

i=1

si and b1 = 2

N

N
∑

i=1

si cos

(
2π i

N

)

(40)

(This is just the first two terms of a discrete cosine trans-
form of the si.) Our lifting operator M generates initial con-
ditions {si (0)} from b0 and b1 in the obvious way:

si (0) = b0 + b1 cos

(
2π i

N

)

i = 1, . . . , N (41)

For simplicity we do not include any random components in
the {si (0)}, although it would be consistent to add a random
number from a distribution with mean zero to each si (0), for
example.

The initial conditions for the Vi are generated in a similar
way to that in earlier sections. Given the set {si (0)}, for each
neuron we calculate the initial effective drive current:

Ii = I + 2π

N

N
∑

j=1

Ji j s j (0) i = 1, . . . , N (42)

We then choose each Vi (0) from the PDF p(Vi (0)|Ii ), where
p is given by (10).

We estimate F1(b0(0), b1(0)) and F2(b0(0), b1(0)) in the
usual way. Given values of b0(0) and b1(0), lift them to initial
conditions using Eq. (41) and generate the Vi (0) as above,
run the system (33) and (34) for 20 time steps, generating
b0(t) and b1(t) using the time-dependent versions of (40),
then do a least-squares fit to find the slopes of b0(t) and b1(t)
as functions of time over the time interval [10, 20]. These
are our estimates of F1(b0(0), b1(0)) and F2(b0(0), b1(0)),
respectively. Actually, Nav simulations are run in parallel,
with different initial conditions for the Vi and different real-
isations of the white noise, and the si (t) are then averaged
over realisations before b0(t) and b1(t) are generated and the
slopes are fit. Another possibility would be to find the slopes
for each realisation, and then average these slopes.

4.3. Results

In Fig. 10 we show the Fourier coefficients b0 and b1 as
functions of I for the parameter values A = 5, N = 60, τ =
50, σ = 0.0245. We average over Nav = 50 realisations.
Two branches are shown. One, for which b1 = 0, represents
the spatially-uniform state, and forms an “S” shaped curve
in the top panel. The other branch (on which b1 �= 0) rep-
resents the bump state, and is both created and destroyed in
subcritical pitchfork bifurcations from the spatially-uniform
state. This is a pitchfork bifurcation in our system because
we have “pinned” the bump by forcing it to be even about
x = π , thus destroying the continuum of solutions that ex-
ists, parametrised by the angular position of the maximum.
Only one half of the family of bumps is represented in Fig. 10
(bottom): the family for which b1 < 0. These have their max-
imum at x = π . The other half of the family, which have their
maximum at x = 0 and which have b1 > 0, can be obtained
by reflecting the curve in Fig. 10 (bottom) about the I axis.
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Fig. 10. b0 (top) and b1 (bottom) as functions of I, for macroscopic
steady states of the model (33) and (34). Circles indicate stable solu-
tions while crosses indicate unstable. The “S”-shaped curve in the top
panel corresponds to spatially uniform states, for which b1 = 0. The
“Z”-shaped curve corresponds to bump solutions, for which b1 �= 0.
Bump solutions are created/destroyed in pitchfork bifurcations from
the spatially uniform state at I ≈ 0.87 and I ≈ 0.94 (where the curve
in the bottom panel touches the I axis). Only one branch of bump so-
lutions created/destroyed in the pitchfork bifurcations (the branch for
which b1 < 0) is shown. The other branch can be obtained by reflecting
the curve in the bottom panel about the I axis. See text for more details.

Stability is also indicated in Fig. 10. This is determined
by examining the eigenvalues of the 2 × 2 Jacobian of the
associated differential equations for b0 and b1, at the steady
states. On the “middle” branch of the spatially-uniform state,
both of these eigenvalues are positive. On all other unstable
branches, one eigenvalue is positive and the other negative.
When following the spatially-uniform state through a pitch-
fork bifurcation, the eigenvector corresponding to the zero
eigenvalue has a large entry in the b1 component and a very
small entry in the b0 component, indicating that the insta-
bility acts to break the spatial uniformity. Note that there
are regions of both bistability and tristability, between the
“all-off” state, the bump state, and the “all-on” state.

By tracing out the unstable branches, we have been able
to piece together the stable branches, which are the only
branches we would have observed using straight-forward
numerical integration.

4.4. A rate model

As with some previous examples, we can derive an effective
rate model whose dynamics should closely mimic those of
the spiking neural network (33) and (34). The sum over j in

Eq. (33) is the discretised version of the convolution of J and
S, where J is the continuous function (36). Thus, moving to a
spatial continuum, the effective drive to a neuron at position
x is I + (J ∗ S)(x), where the convolution of J and S is given
by

(J ∗ S)(x) =
∫ 2π

0
J (x − y)S(y) dy (43)

Replacing the sum of delta functions in (34) by the firing
rate f, where f is given by (18), we obtain the nonlocal PDE

τ
∂S(x, t)

∂t
= A f [I + (J ∗ S)(x)][1 − S(x, t)] − S(x, t)

(44)

Writing S as the Fourier series (37), we can find the differ-
ential equations that b0 and b1 obey:

τ
db0

dt
= A(1 − b0)

2π

∫ 2π

0
f (g(x)) dx

− Ab1

2π

∫ 2π

0
f (g(x)) cos (x) dx − b0 (45)

τ
db1

dt
= A(1 − b0)

π

∫ 2π

0
f (g(x)) cos (x) dx

− Ab1

π

∫ 2π

0
f (g(x)) cos2 (x) dx − b1 (46)

where

g(x) = I + µb0 + νb1 cos x (47)

and

µ =
∫ 2π

0
J (y) dy and ν =

∫ 2π

0
J (y) cos y dy (48)

Note that the manifold defined by b1 = 0 is invariant, and on
this manifold the dynamics of b0 are given by

τ
db0

dt
= A f (I + µb0) (1 − b0) − b0 (49)

Comparing this with Eq. (14), which is derived for a ho-
mogeneous population with positive feedback, we see the
similarities, and also the importance of the quantity µ, equal
to 2π times the mean of J. Fixed points of (49) are shown
with a dashed line in Fig. 11 (top).

In Fig. 11 we show fixed points of (45) and (46) as I
is varied, for both the bump state and the spatially-uniform
state. We see very good agreement with the results obtained
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Fig. 11. b0 (top) and b1 (bottom) as functions of I, at steady states of
the system (45) and (46). The dashed line corresponds to the spatially
uniform state, while the solid line corresponds to the bump state. The
same pattern of bifurcations occurs as occurred in Fig. 10. Note that
the dashed curve describes the fixed points of (49). Parameters are
A = 5, τ = 50, σ = 0.0245, with J given by (36).

from the network of spiking neurons (Fig. 10). However, we
now discuss a situation in which it is not possible to derive an
equivalent rate formulation, for which EF modelling provides
information that could not be derived any other way.

4.5. Including gap junctions

Although much of the communication between neurons oc-
curs through synapses, there are often significant connections
via gap junctions (Chow and Kopell, 2000; Kopell and Er-
mentrout, 2004). To investigate the effects of including such
connections, we modify (33) and (34) to

dVi

dt
= I − Vi + κ(Vi+1 − 2Vi + Vi−1)

+2π

N

N
∑

j=1

Ji j s j −
∑

k

δ(t − tik) + wi (50)

τ
dsi

dt
= A

∑

k

δ(t − tik)(1 − si ) − si (51)

where κ > 0 is a measure of gap junction conductivity, and
V−1 ≡ VN and VN+1 ≡ V1. All other terms have their pre-
vious meanings. Including a term like this acts to keep the
voltages of neighbouring neurons more similar.

In Fig. 12 we show results of the same form as those
in Fig. 10, but for (50), (51) with κ = 0.5. Including gap
junctions in this way simultaneously decreases the size of
the interval of I values for which the system can support a
stable bump and shifts this interval to higher values of I. We
further demonstrate this in Fig. 13 where we trace the four
saddle-node bifurcations in Figs. 10 and 12 as κ is varied.
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Fig. 12. b0 (top) and b1 (bottom) as functions of I, at steady
states of (50) and (51) with κ = 0.5. Circles indicate stable solutions
while crosses indicate unstable. Parameters are N = 200, τ = 50, A =
5, σ = 0.0245. We used the coupling function given in (35) and (36),
and averaged over Nav = 100 realisations. Compare with Fig. 10 and
note the different axes.
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Fig. 13. Curves of saddle-node bifurcations of the spatially-uniform
state (“SU”) and the bump state (“bump”) for (50) and (51). Figures 10
and 12 are vertical slices through this diagram at κ = 0 and κ = 0.5,
respectively.
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The inclusion of the term involving voltage differences
in (50) means that deriving a rate model description of (50)
and (51) [such as that in Section 4.4 for the system (33) and
(34)] is not possible. Thus, as far as we are aware, these
results are novel and could not be derived any other way.
This demonstrates one of the limitations of rate models.
Note that from the EF point of view, macroscopic stationary
states of (50) and (51) are just as easy to analyse as those
of (33) and (34). Indeed, further levels of complexity could
be included and the model neurons in (33) could be replaced
by models that are as realistic as one would like, and the
process repeated.

4.6. Discussion

An obvious question relates to the appropriateness of rep-
resenting a bump, an example of which is shown in Fig. 9
(right), by just the first two components of a Fourier series.
The main justification for this is that we are specifically in-
terested in bump solutions which have only one maximum
on the domain. Previous work on models of this type shows
that they can typically support only one bump, and extensive
numerical simulation for the system (33) and (34) suggests
that this is also the case here (not shown). This is an ex-
ample of choosing the macroscopic variables (b0 and b1) so
that questions of interest can be answered. In this case, the
question is: what bifurcations are responsible for the creation
and destruction of single bump solutions? If, for example,
we were interested in two-bump solutions, for which there
are two disjoint intervals on which neurons are active (Laing
and Troy, 2003), we would clearly need more terms in our
Fourier series (37) to be able to accurately describe these
solutions.

As an aside, it is easy to show that if the coupling func-
tion J (x) can be represented exactly by a finite Fourier series
with m + 1 terms (i.e. the last term being cm cos (mx)), then
including more than m + 1 terms in our Fourier representa-
tion of S (Eq. (37)) will not change the bifurcation structure.
This can be seen by calculating the convolution between J
and S that occurs in Eq. (44).

Several authors have recently discussed the mechanisms
by which bumps of the form studied here can lose stability
through synchronisation of the neurons by either a transient
external stimulus being applied (Gutkin et al., 2001), or by
speeding up the synapses to make the neurons more syn-
chronous (Compte et al., 2000; Laing and Chow, 2001). Un-
fortunately, it seems that the EF approach will not be useful
in studying these bifurcations, since by definition, they occur
in the parameter regime (fast synapses) where the method is
not valid. However, one could use these ideas to study a sys-
tem like that of Compte et al. (2000) which includes both fast
and slow synapses and investigate, for example, the effects
of changing the strength of the fast synapses.

5. Bursting neurons

The neuron model used in the previous sections was the
integrate-and-fire model, a simple example of a type I neu-
ron (Gerstner and Kistler, 2002). For a fixed input current,
one of these model neurons fires at a well-defined frequency,
and that frequency is a continuous function of the input cur-
rent. This allows us to derive rate models, for which we
characterise a single neuron by a function giving the firing
frequency in terms of the input current. However, many neu-
rons do not fire periodically when stimulated with a constant
input but instead fire bursts of action potentials (Doiron et al.,
2002; Izhikevich, 2000). For these neurons, such a charac-
terisation is not appropriate, and it may not be possible to
derive a rate-based approximation.

In this section we analyse a network of model “ghostburst-
ing” neurons (Doiron et al., 2002), coupled with slow excita-
tory synapses. These neurons are found in the electrosensory
lateral line lobe of the weakly electric fish Apteronotus lep-
torhynchus and are thought to be involved in electrosensory
processing (Doiron et al., 2002). Although these cells re-
ceive input from the outside world via electroreceptors, the
majority of their input is via feedback loops (Berman and
Maler, 1999). We have coupled them with synapses having a
time-constant of 100 msec, where the longest time-constant
associated with the intrinsic neuron dynamics is 5 msec. The
equations are given in Appendix A, along with a discussion
of the implementation of initial conditions.

The behaviour of a single isolated ghostbursting neu-
ron [Eqs. (59)–(64) with A = 0] as the input current, I,
is varied is shown in Fig. 14. The top panel shows the
instantaneous firing frequencies (i.e. reciprocals of the in-
terspike intervals) over a period of 400 msec, for differ-
ent values of I. There are three different types of firing
behaviour: (i) periodic firing (5.6 < I < 8.6), (ii) bursting
(8.6 < I < 18.6) and (iii) “doublet” firing (18.6 < I ), in
which the interspike intervals are alternately short and long
(Doiron et al., 2002). Note that there are many bifurcations
as I is varied in the bursting regime. The bottom panel shows
the average firing frequency as a function of I. The non-
smoothness of this curve is due to the bifurcations that oc-
cur as I is varied, and the curve does not become smoother
if the averaging is over more than 400 msec (data not
shown).

The results for the coupled system [Eqs. (59)–(65) with
A = 0.2] are shown in Fig. 15, where we plot Q, the average
synaptic strength, as a function of the input current to the
neuron somas (all equal). As expected, the excitatory nature
of the coupling causes bistability to occur, with stable firing
now possible at values of I below the threshold for the onset
of firing in an isolated neuron (I ≈ 5.6). (Quiescence is also
stable for these values of I.) With reference to Fig. 14, we
can divide the curve in Fig. 15 into three sections, depending
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Fig. 14. A: Instantaneous firing frequencies during an interval of 400
msec, as a function of I, for a single ghostbursting neuron [Eqs. (59)–
(64) with A = 0]. B: Mean firing frequency. Transients have been
eliminated.
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Fig. 15. Average synaptic strength, Q, as a function of input current,
I, for a network of excitatorily coupled ghostbursting neurons (59)–
(65). Crosses indicate periodic firing, a solid line bursting, and circles
indicate where each neuron is firing “doublets”. The upper branch
(Q > 0.4) is stable, which the lower branch (Q < 0.4) is unstable.
Coupling strength is A = 0.2, and we use a network of N = 15 neurons,
averaging Nav = 10 times.

on whether the neurons are firing periodically, bursting, or
firing doublets. We see that on the stable branch, the neurons
are either bursting or firing doublets, while on the unstable
branch they are either bursting or firing periodically.

The curve in Fig. 15 is relatively smooth, in comparison
with the curve in Fig. 14 (B), presumably because coupling
the neurons in this all-to-all fashion and measuring an aver-

age quantity “smears out” the fine structure seen in Fig. 14.
While knowing the details of the fine structure may be of
interest when one is analysing the behaviour of an individual
neuron, it could be argued that the behaviour shown in Fig. 15
is a more appropriate representation of the macroscopic fixed
points of the coupled system.

To attempt to derive a macroscopic equation governing
the behaviour of this system, one could take the equation for
the evolution of the slow variables (65)

100
dqi

dt
= σ (V i

s )(1 − qi ) − qi (52)

and replace it by

100
d Q

dt
= f (I, Q)(1 − Q) − Q (53)

where

f (I, Q) = lim
T →∞

1

T

∫ T

0
σ (Vs(t)) dt (54)

and Vs(t) is taken from an isolated neuron (Eqs. (59)–(65))
with input I and Q set to Q. Zeroes of (53) would then
presumably be close to those plotted in Fig. 15. Near the
onset of periodic firing f has a stereotypical shape, and the
method of Ermentrout (Ermentrout, 1994) could be used,
i.e., we could find an explicit formula for f, valid over
some region in parameter space. However, in general (and
particularly for a bursting neuron) f (I, Q) can be deter-
mined only by extensive numerical simulation and, as seen
in Fig. 14 (B), the average firing frequency is not neces-
sarily a smooth function of I and Q, and thus could not be
accurately approximated by, for example, a low-order poly-
nomial. Also, (53) is only valid if the neurons are iden-
tical. If the neurons all had different values of the con-
ductance gDr,d , for example, it is known that the bifur-
cations that they undergo as I is increased would differ
(Doiron et al., 2002), and the function f (I, Q) would then
have to be calculated for each neuron separately and averaged
to give an equation like (53).

We now estimate the relative costs of deriving a func-
tion like f (I, Q) versus doing the computations to pro-
duce Fig. 15. Suppose that we estimate f (I, Q) on a
100 × 100 grid in the (I, Q) plane and then interpo-
late between these data points. We could simulate for
1 s at each point, meaning that T in (54) is at most 1 s
(we discard transients). This is equivalent to simulating one
neuron for 10,000 s. Alternatively, there are about 50 data
points in Fig. 15, each of which took nine “bursts” of simu-
lation to obtain (three Newton steps per point, each of which
took three bursts to estimate two partial derivatives). We used
15 neurons, averaging 10 times, with bursts being 100 ms
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long, resulting in effectively simulating one neuron for 6,750
s. Although obviously these numbers can be varied and do
not represent the total cost they still indicate that for a system
like this, without an analytic f –I curve for each neuron, the
EF approach can compete with more traditional methods,
particularly if the system is heterogeneous.

In terms of implementation, there is little difference be-
tween the network of bursting neurons studied here and the
network of integrate-and-fire neurons studied in Section 2—
it is only the complexity of the individual neuron model
that has changed. Thus this method could easily be extended
to networks of very detailed model neurons (for example,
those of Doiron et al., 2001) with, for example, less-ordered
connectivities.

Although this example is not particularly biologically re-
alistic, since in practice the positive feedback is faster than
that modelled here, it does demonstrate that the ideas put
forward here can be used with realistic models that incorpo-
rate ion channel dynamics, rather than just integrate-and-fire
models. It also demonstrates how to initialise the “fast” vari-
ables in the microscopic description when an explicit proba-
bility density function for them is not known (see Appendix).

6. A noisy network

In this section we discuss a network of coupled excitatory and
inhibitory neurons that could be used to store a single bit of
information, i.e. it is bistable for some range of parameters,
as is the network in Section 2. We use integrate-and-fire neu-
rons, as in Sections 2–4, but now all of the neurons are subject
to high levels of noise, in the form of randomly occurring
synaptic events. We include heterogeneity in the excitatory
population, and assume that the excitatory synapses are slow
and inhibitory ones fast. The system can be thought of as de-
scribing spatially uniform states of previous working mem-
ory models (Compte et al., 2000; Gutkin et al., 2001). The
high levels of noise and the fact that the inhibitory synapses
are not slow precludes the derivation of a rate equation for
this model.

6.1. The model

We have Ne excitatory neurons and Ni inhibitory, with cou-
pling both within and between populations. The equations
are

dV j
e

dt
= I + σ j − V j

e + gee(Ee − V j
e )(Se + ν j

e (t))

+ gie(Ei − V j
e )(Si + ν

j
i (t)) −

∑

k

δ(t − t jk
e )

(55)

τe
ds j

e

dt
= A

∑

k

δ(t − t jk
e )(1 − s j

e ) − s j
e (56)

dV m
i

dt
= Ii − V m

i + gei (Ee − V m
i )(Se + νm

e (t))

+ gii (Ei − V m
i )(Si + νm

i (t)) −
∑

n

δ(t − tmn
i )

(57)

τi
dsm

i

dt
= A

∑

n

δ(t − tmn
i )(1 − sm

i ) − sm
i (58)

for j = 1, . . . , Ne and m = 1, . . . , Ni . The subscripts on
the variables and parameters label their type (excita-
tory/inhibitory), and the superscripts index them. t jk

e is the
kth firing time of the jth excitatory neuron, and similarly for
tmn
i . We have

Se = 1

Ne

Ne∑

j=1

s j
e Si = 1

Ni

Ni∑

m=1

sm
i

The functions νe/ i (t) (mimicking randomly occuring exci-
tatory/inhibitory synaptic activity) are formed from the sum
of pulses of the form 0.1e−t/2 (t > 0), whose arrival times
are chosen from a Poisson process whose mean rate is 0.2.
There are no correlations between arrival times for differ-
ent neurons, nor between random inhibitory and excitatory
input.

Reversal potentials are Ee = 1.4, Ei = 0.5. Other param-
eters are A = 0.3, τe = 30, τi = 1, Ii = 0.9, gee = 5, gei =
2, gie = 1. We vary gii . The heterogeneity in the excita-
tory population comes from choosing σ j = −0.1 + 0.2( j −
1)/(Ne − 1), i.e. the current offsets for the excitatory neu-
rons range uniformly from −0.1 to 0.1. We use Ne = 160
and Ni = 40, to model the approximate observed ratio of cell
types (Compte et al., 2000). Note that the excitatory synapses
are the only slow variables in the network, mimicking, for
example, NMDA-type transmission (Compte et al., 2000).

For this model, we assume that the macroscopic descrip-
tion of the system is given by d Se/dt = F(Se, I ), in the
usual way. To evaluate F(Ŝe, I ), we choose to initialise the
V j

e (0) and V m
i (0) from the distribution (10) with I = 1.1 (the

choice of this value of I was arbitrary), we set s j
e (0) = Ŝe for

each j, and we choose the sm
i (0) from a uniform distribution

between 0 and A. A more accurate lifting operator, M, could
be chosen, but the numerical results indicate that this one
is sufficient, and it is easy to implement. This confirms that
the initialisation of the fast variables need not be particularly
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Fig. 16. Steady state values of Se as a function of I for three different
values of gii , for the system (55)–(58). For each curve, the upper and
lower branches are stable, while the middle one is unstable. Parameters
are Ne = 160, Ni = 40 and we average over 20 realisations. Other
parameters are given in the text.

accurate, as their probability distribution is quickly slaved to
the dynamics of the slow variables.

6.2. Results and discussion

An example of the sort of results we can obtain is shown
in Fig. 16, where we plot the steady state values of Se (the
average strength of synaptic connections from the excitatory
population) as a function of I (the average current injected
into the excitatory population), for three different values of
the inhibitory-to-inhibitory conductance (gii ). We see that
increasing gii increases the range of values of I for which
the system is bistable, for the indicated values of the other
parameters. Note that this parameter, gii , directly affects only
the dynamics of some of the fast variables, in much the same
way that κ does in the model in Section 4.5. Of course, much
more can be determined about this network, in a similar way.

There are several reasons why a rate-based description of
this system cannot be analytically derived. One is the high
level of noise in the system, in the form of randomly arriving
synaptic input. This is of such a high intensity and form that
it is not meaningful to derive a firing rate function for an
uncoupled individual neuron such that given in (18) (which
is appropriate only when the noise appears as Gaussian white
noise). Another reason is that while the excitatory synapses
are slow the inhibitory ones are not. Thus it is not possible to
treat Si as approximately constant, so we cannot derive the
firing rate of an individual neuron as a function of Se and Si ,
as Ermentrout does (Ermentrout, 1994).

7. Conclusion and discussion

We have presented here some applications of “equation-
free” modelling to simple neural systems. For some of

the systems, we have recovered results that could have
been obtained more easily through the derivation of rate
equations, which provides a useful check of their success.
For other systems, we have found new behaviour that is
obtainable through these methods.

Similar work relating to the derivation of rate models
from spiking models has been done previously. Shriki et al.,
(2003) perform such a derivation without any assumption
of a separation of timescales. However, these authors have
to assume asynchronous firing, which we do not (see be-
low), and also that each neuron is well-described by an f–I
curve. This rules out the analysis of networks of bursting
neurons (such as those studied in Section 5), very noisy net-
works (such as in Section 6) and neurons whose intrinsic
dynamics are bistable (which we have not studied). In a sim-
ilar vein, Ermentrout (1994) showed that for type I neurons
(which have a continuous and single-valued f–I curve) cou-
pled by slow synapses, approximate differential equations
for the evolution of synaptic strengths could be derived. This
is essentially the same technique as we used to derive the
rate equations (14), (29) and (30). However, as Ermentrout
states, these ideas cannot be used when the neurons intrin-
sically burst. Also, his method still results in one equation
per neuron, which makes studying even moderately-sized
networks difficult (assuming that the neurons are not identi-
cal). In contrast, the EF approach assumes the existence of
a small number of relevant macroscopic variables, indepen-
dent of the network size, and copes well with heterogeneous,
bursting, and noisy networks.

A crucial requirement for the success of EF methods is
the separation of time-scales (although see the remark in
Section 2.5). Without this, by the time the fast variables have
become “slaved” (i.e. after the time δ in Fig. 1) the slow
variable(s) will have also changed significantly, so that a
linear approximation to their time derivative will no longer
be valid, and the method is no longer successful. We have
only considered slow synapses, but one hallmark of neural
systems is their wide range of time-scales, from the submil-
lisecond opening of ion channels to synaptic plasticity that
may occur over seconds or longer (Varela et al., 1997), and
the ideas presented here should be more widely applicable
than just to slow synapses. At a more technical level, for
the EF approach to work one must assume that there is a
low-dimensional macroscopic description of the state of the
system which is complete in the sense that the dynamics of
the variables in this description depend only on the values
of those variables, i.e. the system is closed (Makeev et al.,
2002). In practice this is difficult, if not impossible, to show,
but the usefulness of this method lies in the results that can
be obtained simply by applying the methods, without too
much concern for their justification.

One issue we have not addressed is the analysis of periodic
orbits. The ideas presented here can be used to follow both
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stable and unstable periodic orbits in the phase space of
the macroscopic variables (and detect their bifurcations) by
treating them as fixed points of a return map on a Poincaré
section. However, one must now consider the relationship
between the period of the periodic orbit and the intrinsic
time-scales of the underlying system. For example, it may be
necessary to “lift-evolve-restrict” the macroscopic variables
several times in succession in order to complete one period
of oscillation (Makeev et al., 2002).

Another issue not addressed here is synchronisation (al-
though see the remark in Section 2.5). It is well known that
populations of coupled model neurons can synchronise, and
such synchronisation is often thought to be important (Ger-
stner and Kistler, 2002). In the work discussed here we have
always assumed that the populations of neurons were not
synchronised, by choosing microscopic initial conditions for
each neuron from probability density functions of isolated
neurons. This, combined with short simulation times and the
addition of noise, ensured that our simulations accurately
described states of asynchronous firing. (In the bump states
discussed in Section 4, synchronous firing is not possible
(Laing and Chow, 2001).) However, we can still use the
ideas presented here even if neurons become synchronised
at the spike-to-spike level. In this case, we effectively have
a population of N = 1 neuron. As discussed at the end of
Section 2, this just means that we need to increase Nav in
order to obtain accurate estimates of the derivatives of the
slow variable(s). Conceptually, we can see that since our
macroscopic variables change on a slow time-scale relative
to interspike intervals, whether neurons are synchronised or
not on a spike-to-spike level will not affect the rate of change
of those variables.

Although we have largely studied stochastic systems here,
this is not a requirement for the EF method to work, as is
demonstrated in Section 5 where we study a small network
of deterministic bursting neurons. Adding noise to the neu-
ron models brings them closer to reality (Koch, 1999), and
has the added advantage of smoothing out some of the func-
tions that determine the curves of fixed points, making the
numerical work easier.

The ideas presented here have also been applied to
continuum models with heterogeneous domains (Runborg
et al., 2002), and it would be interesting to apply them to
neural field models of the form (44) with, for example, a
periodic spatial modulation of the current, I. Bressloff has
studied a similar situation in the context of travelling waves,
using homogenization and averaging (Bressloff, 2001), and
it would be interesting to compare the results of the two dif-
ferent approaches. Another area of interest would be to study
a spatially-extended system that is explicitly discrete (i.e. not
resulting from discretizing a continuous system) from the
point of view of there being an effective continuum descrip-
tion of, for example, travelling waves (Möller et al., 2005).

There is nothing in this type of analysis that restricts the
model neurons to be identical—indeed, the excitatory pop-
ulation in Section 6 is heterogeneous—or even of the same
type or described at the same level of complexity. In princi-
ple, neurons in different populations could be described with
different levels of complexity. For example, excitatory neu-
rons could be modelled using the Hodgkin-Huxley-type for-
malism, while inhibitory neurons could be of a more generic
nature, e.g. integrate-and-fire.

In summary, we have demonstrated for several neural
models a new technique for the analysis of systems for which
a microscopic description is available but for which macro-
scopic equations cannot or have not been derived. Many of
the results presented here could have been derived by using
a rate model description with much less computational ef-
fort. Specifically, the results derived using EF modelling in
Sections 2.3 and some of Section 4 were well-approximated
by results derived from a rate description. However, new re-
sults have been found (in Section 4.5 where we investigate
the effects of including gap junctions in a model for “bump”
formation, in Section 5 describing the coupled ghostbursters,
and in Section 6, where we study a noisy network with fast
inhibitory synapses). We believe that the ideas presented here
are widely applicable and will be valuable in bridging the
gap between detailed models of single neurons and a macro-
scopic “coarse” description of the dynamics of networks of
them.

Appendix A. Ghostbursting neuron model

We now give the equations for the network of “ghostbursting”
model neurons discussed in Section 5. The single neuron
model we use has been presented and analysed elsewhere
(Doiron et al., 2002). For a network of N all-to-all excitatorily
coupled neurons the equations are

C
dV i

s

dt
= I + gNa,sm2

∞,s(V i
s )(1 − ni

s)(VNa − V i
s )

+ gDr,s(ni
s)2(VK − V i

s ) + gc(V i
d − V i

s )/κ

+ gleak(Vl − V i
s ) (59)

τn,s
dni

s

dt
= n∞,s(V i

s ) − ni
s (60)

C
dV i

d

dt
= −AQ(V i

d − Ve) + gNa,dm2
∞,d (V i

d )hi
d

× (VNa − V i
d ) + gDr,d (ni

d )2 pi
d (VK − V i

d )

+ gc(V i
s − V i

d )/(1 − κ) + gleak(Vl − V i
d ) (61)

τh,d
dhi

d

dt
= h∞,d (V i

d ) − hi
d (62)
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τn,d
dni

d

dt
= n∞,d (V i

d ) − ni
d (63)

τp,d
dpi

d

dt
= p∞,d (V i

d ) − pi
d (64)

100
dqi

dt
= σ (V i

s )(1 − qi ) − qi (65)

for i = 1, . . . , N , where a subscript “s/d” denotes a so-
matic/dendritic variable, the superscript labels the neuron,
and

Q ≡ 1

N

N
∑

i=1

qi (66)

Parameters are gNa,s = 55, gDr,s = 20, gc = 1,

gleak = 0.18, gNa,d = 5, gDr,d = 15, (in units of mS/cm2)
τn,s = 0.39, τh,d = 1, τn,d = 0.9, τp,d = 5 (in units of ms),
VNa = 40 mV, VK = −88.5 mV, Vl = −70 mV, Ve = 0 mV,
C = 1µF/cm2. The feedback strength A is specified in the
text.

Functions are

m∞,s(V ) = {1 + exp [−(V + 40)/3]}−1 (67)

n∞,s(V ) = {1 + exp [−(V + 40)/3]}−1 (68)

m∞,d (V ) = {1 + exp [−(V + 40)/5]}−1 (69)

h∞,d (V ) = {1 + exp [(V + 52)/5]}−1 (70)

n∞,d (V ) = {1 + exp [−(V + 40)/5]}−1 (71)

p∞,d (V ) = {1 + exp [(V + 65)/6]}−1 (72)

σ (V ) = 5/{1 + exp [−(V + 20)/5]} (73)

The macroscopic variable is Q. To implement the mi-
croscopic initial conditions, we chose qi (0) = Q(0) for
i = 1, . . . , N . To choose the initial conditions for the other
variables, we first ran a simulation of an isolated neuron
for 70,000 time steps, during which I was linearly increased
from I = 7.75 to I = 18.25, thus sweeping through a range
of possible states in which a neuron could be. To initialise
N neurons we randomly choose N integers from a uniform
distribution on [1, 70,000], say k1, . . . , kN . The six initial
variables of the ith neuron, V i

s (0), ni
s(0), . . . , pi

d (0) are then
set to the state that the “test” neuron was in at the ki th
timestep of the sweep. The integers k1, . . . , kN are recho-
sen at the start of each simulation. In this way we hope to
initialise each neuron “close” to a state consistent with the
current value of Q.
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