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Abstract. In this paper, we consider instabilities of localized solutions in
planar neural field firing rate models of Wilson–Cowan or Amari type. Impor-
tantly we show that angular perturbations can destabilize spatially localized
solutions. For a scalar model with Heaviside firing rate function, we calculate
symmetric one-bump and ring solutions explicitly and use an Evans function
approach to predict the point of instability and the shapes of the dominant
growing modes. Our predictions are shown to be in excellent agreement with
direct numerical simulations. Moreover, beyond the instability our simulations
demonstrate the emergence of multi-bump and labyrinthine patterns.

With the addition of spike-frequency adaptation, numerical simulations of the
resulting vector model show that it is possible for structures without rotational
symmetry, and in particular multi-bumps, to undergo an instability to a rotating
wave. We use a general argument, valid for smooth firing rate functions, to
establish the conditions necessary to generate such a rotational instability.
Numerical continuation of the rotating wave is used to quantify the emergent
angular velocity as a bifurcation parameter is varied. Wave stability is found via
the numerical evaluation of an associated eigenvalue problem.
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1. Introduction

The mammalian cortex is often regarded as a two dimensional (2D) sheet of densely
interconnected neurons, with interactions between neurons mediated by chemical synapses.
Much of the activity in developing and studying continuum models of such synaptically
interacting networks can be traced back to the seminal work of Wilson and Cowan [1, 2] and
Amari [3, 4]. The non-local nature of neuronal interactions (arising from long-range axonal
connections) means that the natural framework for developing such models has relied upon
integral or integro-differential equations. Moreover, by neglecting any spatial heterogeneity,
such non-local interactions have often been described using the notion of a spatial convolution of
the macroscopic state variable with a kernel chosen to mimic known anatomy. This macroscopic
state variable is typically interpreted as a mean firing rate, which is itself some function of
synaptic activity. For a recent review of the dynamics of neural field models, particularly in
1D see [5]. Of particular interest have been single population models with local excitation and
distal inhibition, mimicking the behaviour of interacting excitatory and inhibitory neural sub-
populations. This so-called Mexican hat connectivity is now known to underly the generation of
both spatially periodic [6]–[8] and spatially localized structures [9, 10]. Interestingly spatially
localized bumps of persistent activity have been linked to working memory (the temporary
storage of information within the brain) [11]–[13]. In many models of working memory,
transient stimuli are encoded by feature-selective persistent neural activity. Such stimuli are
imagined to induce the formation of a spatially localized bump of persistent activity (which
co-exists with a stable uniform state).

In comparison to the studies of 1D networks, far less is known about the behaviour of
spatially localized solutions in 2D. Relatively recently, however, Laing and Troy [14] have
developed partial differential equation (PDE) methods to study neural field equations in two
spatial dimensions. This has shed a great deal of light on the conditions for the existence
and stability of rotationally symmetric solutions, and in particular bump and ring structures.
The challenge is open to develop alternative techniques that can address identical issues for
models in the more general integral equation framework. In this paper, we take a step in this
direction. For a specific choice of Heaviside firing rate function, with thresholdh, we construct
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explicit examples of previously classified ring and bump solutions [15, 16]. Moreover, we show
how to treat stability to angular perturbations using a powerful Evans function approach [17].
Importantly this flags up how an extra spatial dimension can lead to fundamentally new solution
instabilities. In particular, we show that bump solutions may split into multiple spots under
variation of the threshold parameterh. Moreover, single and multiple rings are typically found
to be unstable. By direct numerical simulations of the full nonlinear integral model, we show
that our Evans function approach correctly predicts the number of resulting spots found beyond
an instability. In the presence of linear adaptation such non-rotationally symmetric states
have previously been observed to undergo bifurcations to rotating waves4. We show that the
underlying mechanism for this bifurcation can be traced to a second real eigenvalue of the
linearization crossing through zero (the first one persisting because of an underlying rotational
symmetry of the full model). In fact, we use this degeneracy of eigenvalues to define the
bifurcation condition for a rotational instability. Assuming the existence of a non-rotationally
symmetric solution we show that, for an arbitrary firing rate function, all such solutions undergo
a rotational instability at the same point in parameter space (irrespective of their detailed shape).
Once again the predictions of our analysis are shown to be in excellent agreement with the
results of direct numerical simulations. Moreover, numerical continuation of the rotating wave
is used to quantify the emergent angular velocity as a bifurcation parameter is varied. Wave
stability is found via the numerical evaluation of an associated eigenvalue problem.

In section2, we introduce the 2D scalar neural field model that we will study throughout
this paper. We focus on the construction of rotationally symmetric (bump and ring) solutions
in section3, and show how explicit solutions can be easily constructed when the firing rate
function is chosen to be a Heaviside. Furthermore, this restriction allows us to make precise
statements about solution stability using an Evans function approach. This same machinery for
predicting the onset of an instability is also used to predict the type of state that will emerge
beyond bifurcation (by considering the shape of the most unstable eigenmode). In section4,
we quantify the change in state as the system evolves from one unstable localized solution to
another stable one by computing an appropriate Lyapunov functional. Next, in section5, we
consider a commonly adopted description of neural adaptation, resulting in a vector model, and
show that this may cause a non-rotationally symmetric solution to go unstable in favour of a
stable rotating wave. Finally, in section6, we discuss natural extensions of the work presented
in this paper.

2. 2D neural field model

We consider a neural field model with synaptic activityu = u(r , t), r = (r, θ)(r ∈ R+,

θ ∈ [0,2π), t ∈ R+), governed by the integral equation

u = η ∗w⊗ f (u). (1)

Here, the symbol∗ represents a temporal convolution in the sense that

(η ∗ f )(r , t)=

∫ t

0
dsη(s) f (r , t − s), (2)

4 This was first observed numerically in unpublished work of Laing and Troy, and an original example may be
found athttp://www.math.pitt.edu/∼troy/.
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and⊗ represents a 2D spatial convolution such that

(w⊗ f )(r , t)=

∫
R2

dr ′w(r − r ′) f (r ′, t). (3)

The functionη(t) (with η(t)= 0 for t < 0) represents a synaptic filter, whilew(r) is a synaptic
footprint describing the anatomy of network connections. The functionf represents the firing
rate of a single neuron. The focus of our study will be on the existence and stability of time-
independent solutions, which satisfy

q(r)=

∫
R2

dr ′w(r − r ′) f (q(r ′)). (4)

Assuming that one can solve this nonlinear convolution equation for a spatially localized
solution, one is led naturally to the question of stability. To ascertain this, we linearize about
the time-independent solution by writingu(r , t)= q(r)+ u(r)eλt and expand to first order in
u(r) to obtain

u(r)= LT[η](λ)
∫
R2

dr ′w(r − r ′) f ′(q(r ′))u(r ′), (5)

where LT[η](λ) is the Laplace transform ofη(t):

LT[η](λ)=

∫
∞

0
dsη(s)e−λs. (6)

The solution of this eigenvalue problem can be used to determine the discrete spectrum and
hence whether the solution is stable (i.e. all eigenvalues reside in the left-hand complex plane).
In what follows, we make explicit progress in solving the integral equations (4) and (5) by
working withw(r)= w(r ), wherer = |r |. To begin with we focus on rotationally symmetric
solutions, and show how these may be obtained in closed form for the special case that the
firing rate function is a Heaviside function, i.e. withf (u)= H(u − h). Here the parameterh
is identified as a firing threshold andH(x)= 1 for x > 0 and is zero otherwise. Moreover,
we shall show that these solutions can undergo bifurcations to non-rotationally symmetric
states (typically multi-bumps) with variation of the threshold parameterh. We note that it may
also be possible to explicitly construct non-rotationally symmetric solutions with an osculating
boundary between firing and non-firing regions if we consider piecewise constant rotationally
symmetric synaptic (top-hat) kernels [18]. However, we shall not pursue this further here,
though later, in section5, we will consider the numerical construction (and continuation) of
non-rotationally symmetric multi-bump solutions.

3. Rotationally symmetric solutions

Rotationally symmetric solutions have the property thatq(r)= q(r ), and are a consequence
of choosing a rotationally symmetric kernel. The stability of such solutions can be found by
constructing the associated Evans function. Evans functions were first developed to study the
stability of travelling waves in PDEs [19]. In essence the Evans function is an analytic tool
whose zeros correspond to eigenvalues of the linearized problem obtained after considering
perturbations around a localized solution. Moreover, the order of the zero and the multiplicity
of the eigenvalue match. For examples of the use of Evans functions in systems with nonlocal
interactions see [17, 20, 21].
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3.1. Bump solutions

The first rotationally symmetric solution that we consider is a so-called one-bump solution
described by the simple conditionq(r ) > h for r < a and q(r ) < h for r > a. Hence,
from (4)

q(r )=

∫ 2π

0

∫ a

0
w(|r − r ′

|)r ′dr ′dθ. (7)

This is readily evaluated using a 2D Fourier transform (equivalent to a Hankel transform) of
w(r), which we write in the form

w(r )=

∫
∞

0
w̃(k)J0(rk)k dk. (8)

HereJν(x) is the Bessel function of the first kind, of orderν and

w̃(k)=

∫
R2

eik · rw(r)dr . (9)

Following [22, 23] it may then be shown that substitution of (8) into (7) gives

q(r )= 2πa
∫

∞

0
w̃(k)J0(rk)J1(ak)dk. (10)

Using the fact thatf ′(u)= δ(r − a)/|q′(a)| means that (5) reduces to

u(r, θ)=
aLT[η](λ)

|q′(a)|

∫ 2π

0
w(|r − a′

|)u(a, θ ′)dθ ′, (11)

wherea′
= (a, θ ′). We look for solutions of the formu(r, θ)= um(r )eimθ , wherem ∈ Z. In this

case, the radial component of the eigenfunction satisfies

um(r )

um(a)
=

aLT[η](λ)

|q′(a)|

∫ 2π

0
cos(mθ)w

(√
r 2 + a2 − 2ra cosθ

)
dθ, (12)

where we have exploited the fact that
∫ 2π

0 w(|r − a′
|)sin(mθ)dθ = 0. Hence, radial perturbations

away from the border of the bump are completely determined by the perturbation at the bump
edge (wherer = a). Settingr = a in (12) generates an implicit expression for the discrete
spectrumλ= λm, whereλm is the solution to

Em(λ)≡ LT[η](λ)−1
−µm = 0, (13)

with µm ∈ R given by

µm =
2a

|q′(a)|

∫ π

0
w(2a sinθ) cos(2mθ)dθ. (14)

We interpretEm(λ) as a family of Evans functions for the 2D one-bump. The zeros of the Evans
function determine the location of the point spectrum and can be used to determine solution
stability (the essential spectrum being confined to the left-hand complex plane). It can be shown
that (i) the Evans function is only real-valued if the eigenvalue parameterλ is real, (ii) the
complex numberλ is an eigenvalue of (5) if and only if Em(λ)= 0, and (iii) the algebraic
multiplicity of an eigenvalue is exactly equal to the order of the zero of the Evans function [17].
Also, from rotation invariance,E1(0)= 0. The condition for stability is thus that Re(λm) < 0 for
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Figure 1. Bump radiusa as a function of thresholdh, for weight kernelsw(r )=

E(r )− E(βr )/γ with β = 0.5 and γ = 3,4 and 5 (for which
∫
R2 w(|r |)dr is

positive, zero, and negative respectively). In each case, narrow and wide bumps
may coexist, but the narrow (lower) branch is always unstable (dotted lines). As
h decreases along the wide (upper) branches the stable bump (solid lines) loses
stability with dominant modem = 2 (solid circles), thenm = 3 (triangles), then
m = 4 (squares), etc. Note that forh< hD the bump solution on the brancha+

has adimple. The point whereh = hD on the upper branch is indicated by the
open circle, and coincides with the change of stability whenγ = 4.

all m. Although it is hard to find closed form expressions forλm it is a simple matter to obtain
them numerically.

An evaluation of the bump solution (7) in closed form is typically only possible for special
choices ofw(r ). In fact it is easier to choose forms ofw̃(k) (the 2D Fourier transform ofw(r))
that allow the use of known integral formulae involving products of Bessel functions. From
the analysis of 1D stationary solutions [4] we would expect to obtain bump solutions for a
rotationally symmetric kernel of the formw(r )= e−r

− e−r/2/4. Since this 2D Mexican hat
function does not have a simple Hankel transform we make use of the approximation

1

2π
e−r

≈
2

3π
(K0(r )− K0(2r ))≡ E(r ), (15)

whereKν(x) is the modified Bessel function of the second kind of orderν. For computational
simplicity we now work with the explicit choicew(r )= E(r )− E(βr )/γ . Hereβ < 1 and
γ > 1 gives the typical Mexican hat profile. In this case

∫
R2 w(|r |)dr = (γβ2

− 1)/(2πγβ2).
Hence, the kernel isbalancedwhenγ = 1/β2 so that

∫
R2 w(|r |)dr = 0. Using the fact that the

Hankel transform ofK0(pr) is Hp(k)= (k2 + p2)−1 we may write

w̃(k)=
2

3π

{
H1(k)− H2(k)+

H2β(k)

γ
−

Hβ(k)

γ

}
. (16)
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Figure 2. A plot of λ0 (solid line), λ2 (dashed line) andλ3 (dot-dashed line)
along the existence curve for bumps withγ = 4 (see figure1). We note that
λ1 = 0 for all points on the curvea = a(h). Hence, although solutions ona+ are
stable to rotationally symmetric perturbations (λ0 < 0), ath = hD solutions lose
stability to perturbations of the formu2(r ) cos(2θ), and for smallerh mode 3
perturbations become dominant (solid triangle, corresponding to the similarly
marked point on theγ = 4 branch of figure1).

Substitution into (10) leads to integrals of the form∫
∞

0

J0(rk)J1(ak)

k2 + p2
dk ≡ L p(a, r ). (17)

Integrals of this type are given by [23, 24]

L p(a, r )=


1

p
I1(pa)K0(pr) r > a,

1

ap2
−

1

p
I0(pr)K1(pa) r < a,

(18)

whereIν(x) is the modified Bessel function of the first kind, of orderν. Using the above allows
us to compute (10) asq(r )= q(r ; a), with

q(r ; a)=
4a

3

(
L1(a, r )− L2(a, r )+

L2β(a, r )

γ
−

Lβ(a, r )

γ

)
. (19)

The bump radius is determined by the conditionq(a)= h. In figure1, we plot the bump radius
as a function of firing threshold forβ = 0.5 and three choices ofγ so that

∫
R2 w(|r |)dr is

negative (γβ2
− 1< 0), zero (γβ2

− 1 = 0), and positive (γβ2
− 1> 0). In each case, there are

two branches of solution. Moreover, on the upper branch we can distinguish two qualitatively
different shapes of solution; one withq′′(0) < 0 for h> hD and the other withq′′(0) > 0 for
h< hD. We shall refer to the latter as adimpled solution. Typical shapes for dimpled and
non-dimpled solutions are shown in the insets of figure1. Also, on the upper branch of figure1
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Figure 3. Top: a plot of the one-bump solution and its evolution following
a perturbation with a linear combination ofm = 2 and 3 modes, withh =

0.09< hD = 0.094. Bottom: the shape of the eigenfunctionu2(r ) cos(2θ) on
the brancha+ when h = hD = 0.094, and the corresponding deviation of the
solution (forh = 0.09) from the unstable stationary bump (u(r , t)− q(r)), which
should reflect the shape of the eigenfunction. Forh< hD, a one-bump solution
is predicted to be unstable with modem = 2, and the simulations agree with this
prediction. The other parameters area = 3.867,β = 0.5 andγ = 4.

we have plotted the point at whichq′′(0)= 0, defining the transition from dimpled to non-
dimpled solutions ath = hD.

We now consider the possibility of instabilities on these branches of bump solutions,
with an exponential synaptic time courseη(t)= αe−αt H(t). In this case LT[η](λ)−1

= 1 +λ/α.
Without loss of generality, in this section, we now setα = 1. The condition for stability is simply
thatλm < 0 for all m, whereλm = −1 +µm. In figure2, we plotλ0, λ2 andλ3 along theγ = 4
solution branch of figure1 (λ1 is identically zero by rotation invariance). This shows that the
lower brancha = a− is unstable even to rotationally symmetric perturbations (m = 0), and that
the upper brancha+ is stable to such perturbations (sinceλ0 < 0 ona+). In addition, ona+ there
is a loss of stability ash decreases, first, ath = hD = 0.094 to perturbations withm = 2, and
then to perturbations withm = 3. In theγ = 4 case,λ2 crosses through zero precisely at the
point h = hD on a+, signalling the fact that dimple solutions are unstable. However, changes in
stability do not coincide with the transition to dimple bumps when

∫
R2 w(|r |)dr 6= 0 (e.g. for

γ = 3 andγ = 5, as illustrated in figure1).
From the shape of the eigenfunctionu2(r ) cos 2θ , plotted in figure3, we would expect

the bump to go unstable in favour of a double bump solution ash is decreased throughhD.
Indeed direct numerical simulations confirm this prediction, and figure3 shows the emergent
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Figure 4. Repeated splitting of a bump solution. For these parameters (h =

0.0149,a = 3.1, β = 0.5 andγ = 3) analysis of the Evans function predicts an
instability with fastest growing modem = 2.

state ath just less thanhD, when a one-bump solution is perturbed with a linear combination of
the modesu2(r ) cos 2θ andu3(r ) cos 3θ (showing thatm = 2 modes are amplified andm = 3
modes are suppressed at bifurcation). Calculations of the Evans function forγ = 3 also indicate
such instabilities, but as indicated in figure1, mode 2 instabilities develop even for non-dimpled
bumps. In this case, direct numerical simulations show an initial single bump splitting in two,
and then splitting twice more to yield eight bumps (see figure4).

Simulation for the balanced kernel (withβ = 0.5 andγ = 4) when the dominant mode is
predicted to bem = 3, leads, as expected, to the emergence of a pattern with three-fold rotational
symmetry (figure5). In addition, the solution continues to develop a complex labyrinthine
pattern throughout the domain.

3.2. Ring solutions

In a similar fashion as for one-bump solutions, we may construct ring solutions which satisfy
q(r )> h only for r ∈ D ⊆ (0,∞). Assumingq(∞) < h we can write a one-ring solution in the
form

q(r )= q(r ; r2)− q(r ; r1), (20)

with r2 > r1 > 0. The description of the ring is completed with the simultaneous solution of the
equationsq(r1)= h = q(r2).
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Figure 5. A mode three instability of a bump solution leads to a labyrinthine
pattern throughout the domain. The parameters wereh = 0.05, β = 0.5, and
γ = 4 (corresponding to a bump radius ofa = 6.4). Analysis of the Evans
function predicts an instability with fastest growing modem = 3.

To calculate the Evans function for ring solutions we proceed in exactly the same fashion
as in section3.1. It is straightforward to show that the radial component of the eigenfunction
satisfies

um(r )

LT[η](λ)
=

2∑
j =1

A j (r,m, λ)u j , (21)

where

Ai (r,m, λ)=
r i

|q′(r i )|

∫ 2π

0
cos(mφ)w

(√
r 2 + r 2

i − 2rr i cosφ

)
dφ. (22)

Hence, radial perturbations are completely determined by the perturbation at the points(r1, r2).
Demanding that the perturbations atr j be non-trivial generates a family of Evans functions

Em(λ)=
∣∣LT[η](λ)−1I2 −Am(λ)

∣∣ , (23)

whereI2 is the 2× 2 identity matrix andAm(λ) is a 2× 2 matrix with components [Am(λ)] i j =

A j (r i ,m, λ), i, j = 1,2.
As for the one-bump, we find that there are regions of parameter space where two ring

solutions can co-exist. Figure6 shows the existence of ring solutions ash varies forβ = 0.5 and
four values ofγ in the weight kernelw(r )= E(r )− E(βr )/γ . Examples of co-existing ring
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Figure 6. Existence and stability of ring solutions ash varies. Each curve shows
the inner ring radiusr1 for the indicated value ofγ , where the weight kernel
is w(r )= E(r )− E(βr )/γ with β = 0.5. In each case small and large rings
may coexist, but calculations of the Evans function show that the small (lower)
branch is always unstable (dotted lines). Ash decreases along the larger (upper)
branches the stable ring (solid lines) loses stability with dominant mode= 2
(solid circles), then 3 (triangles), then 4 (squares), etc. Note that the ring solution
develops a ‘dimple’ (i.e.q′′(0) < 0) at the points indicated by an open circle, but
this does not necessarily coincide with the change of stability.

solutions are plotted (in profile) in the figure. A direct examination of the eigenspectrum (by
tracing the zeros of the Evans function) shows that the lower branch of rings is always unstable
to mode 0 perturbations. The upper branch is always stable to such rotationally symmetric
perturbations, but forγ < 4 a sequence of instabilities has the fastest growing mode number
increasing ash decreases. In figure7, we show an example where we plot the zero contours
of ReEm(λ) and ImEm(λ), in the(ν, ω) plane, where we decomposeλ= ν + iω. The points at
which the two curves cross define zeros ofEm(λ) and hence eigenvalues. This plot shows that
(for the given threshold) there is an instability with a fastest growing mode ofm = 5.

In figure8, we show a 2D plot of an unstable ring solution, and the emergent structure of
five bumps seen beyond instability. To explore the dependence of mode selection on the choice
of threshold we plot in figure9 the values of the dominant eigenvalues of modesm = 0, . . . ,8,
with different choices of threshold value. It can be seen that ash decreases the dominant
mode increases from 4 to 7. Figure10 shows the mode 7 pattern that emerges from the ring
with h = 0.0534, as predicted by our stability analysis. We note that results similar to those
presented in figures8–10 were previously presented in [14], though in this work stability was
found by numerical integration of the linearized equation, and did not utilize an Evans function
approach.

It is also interesting to note that instabilities of axisymmetric ring solutions and their
destabilization into spots has also been observed in the 2D Gray–Scott model. Here a method
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Figure 7. The zero contours ofEm(λ) (m = 0, . . . ,8) in the complex plane for
the ring solution withh = 0.0549 andγ = 3 shown in figure6. Eigenvalues are
found where contours cross. The value ofλ above each subplot shows the value
of the dominant eigenvalue for themth mode. Clearly modem = 5 is dominant.

to determine the number of resulting spots (multi-bumps) has also been developed, though this
requires the solution of a nonlocal eigenvalue problem [25].

4. Lyapunov function

As observed in previous work of Laing and Troy [14], instabilities of localized structures can
ultimately lead to the generation of multi-bump solutions where a finite number of bumps self-
organize, sometimes into regular symmetric structures (such as in figures8 and10). We now
show that this self-organization is directly linked to the minimization of a Lyapunov function.
For simplicity let us again consider an exponential synapseη(t)= αe−αt H(t) so that we may
re-write (1) in the integro-differential form

1

α

∂u(r , t)
∂t

= −u(r , t)+
∫

dr ′w(|r − r ′
|) f (u(r ′, t)). (24)
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Figure 8. A plot of the emergent structure seen in direct numerical solutions after
perturbing a ring solution with a linear combination of modes 0,1,2, . . . ,8.
The parameters correspond to figure7, and mode 5 is dominant, as expected:
h = 0.0549,r1 = 7.0, r2 = 8.63,β = 0.5 andγ = 3.

The natural generalization of the Hopfield Lyapunov function [26] for discrete networks to
continuous networks can be written [27]

E[u] = −
1

2

∫
dr
∫

dr ′w(|r − r ′
|) f (u(r , t)) f (u(r ′, t))+

∫
dr
∫ u(r ,t)

0
ds f ′(s)s. (25)

For the choice of a Heaviside firing rate functionf (u)= H(u − h) this reduces to

E[u] = −
1

2

∫
dr
∫

dr ′w(|r − r ′
|)H(u(r , t)− h)H(u(r ′, t)− h)+ h

∫
dr H(u(r , t)− h).

(26)

In figure 11, we track the above Lyapunov function during the repeated splitting of a bump,
previously illustrated in figure4. Each splitting event is accompanied by a rapid decrease in the
Lyapunov function, which decreases as expected throughout this evolution. Figure12illustrates
the decrease in the Lyapunov function associated with an instability of a ring solution that gives
rise to a pattern of 7 spots. We have also checked that this Lyapunov function decreases in
a similar manner for all our simulations, including the development of labyrinthine patterns
(previously illustrated in figure5).
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Figure12, amongst others, shows how a rotationally symmetric state may destabilize in
favour of a non-rotationally symmetric solution. The natural question arises as to whether such
structures can undergo further instabilities. In the next section, we show that the addition of a
linear feedback term can destabilize such solutions in favour of rotating waves.

5. A model with spike frequency adaptation (SFA)

In real neuronal tissue, there are an abundance of metabolic processes whose combined effect
may be modelled in terms of local feedback mechanisms that modulate synaptic currents. Here,
we consider a vector model with simple linear feedback dynamics, often invoked as a description
of so-called SFA [28]. An additional phenomenological current is included on the right-hand
side of the scalar model (24), so that

1

α
∂tu(r , t)= −u(r , t)+

∫
R2

drw(|r − r ′
|) f (u(r ′, t))− ga(r , t), (27)

∂ta(r , t)= −a(r , t)+ u(r , t). (28)

This model is a special case of the original Wilson–Cowan model [1, 2], and has been
extensively studied in 1D with regard to travelling wave solutions [17, 29, 30], and in 2D with
regard to rotationally symmetric localized solutions [23] and spiral waves [31]. Here, however,
we study the effect of such linear adaptation on the stability of non-rotationally symmetric
states. This is motivated by unpublished numerical observations of Troy and Laing which have
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Figure 10. A series of plots showing the instability of a ring solution. Initial
conditions are the ring plus a linear combination of modesm = 0, . . . ,8. Mode
7 is predicted to be dominant, and the ring does evolve to a concentric set of 7
spots.h = 0.0534,r1 = 10.4, r2 = 12.1,β = 0.5 andγ = 3.

shown bifurcations to rotating waves. Using a general argument, based on work of Moskalenko
et al [32] for the rotational bifurcation of localized states in a three-component reaction-
diffusion system (with one activator and two inhibitors), we show, regardless of connectivity
pattern or choice of firing rate function, that as long as a non-rotationally symmetric solution
exists then it will destabilize to a rotating wave asg is increased throughgc = 1/α.

5.1. Rotational bifurcation

We begin by writing time-independent solutions of (27)–(28) asu(r , t)= q(r), where

q(r)=
1

1 +g

∫
R2

drw(|r − r ′
|) f (q(r ′)). (29)

Note that there is a one-to-one correspondence between steady states of the scalar model (1)
and the vector model (27)–(28) (up to a rescaling by 1 +g).

Linearizing about (29) gives

∂tψ(r , t)= L[ψ ]ψ, ψ =

(
u(r , t)
a(r , t)

)
, ψ =

(
q(r)
q(r)

)
, (30)
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where

L[ψ ] = M +αw⊗ f ′(q)

(
1 0
0 0

)
, M =

(
−α −αg
1 −1

)
. (31)

From invariance of the full system (under rotation and translation) there exists a Goldstone
modeψ0 = ∂θψ such that

Lψ0 = 0. (32)

One of the possible destabilizations ofψ occurs when one of the other modes exactly coincides
with ψ0 under parameter variation. Because of this parameter degeneracy a generalized
eigenfunctionψ1 of L appears:

Lψ1 = ψ0. (33)

The solvability condition for this equation leads to an equation defining the bifurcation point in
the form

〈ψ
†
0 | ψ0〉 = 0, (34)

where 〈·|·〉 denotes inner product andψ†
0 is the eigenfunction of the operatorL† with zero

eigenvalue. Here,L† is adjoint to, and has the same symmetry properties as,L. In the appendix
we show thatψ†

0 can be written in closed form as a linear transformation ofψ0. Because of this
relationship the inner product in equation (34) can easily be calculated, giving

0 = (αg− 1)
〈
f ′(q)(∂θq)

2
〉
. (35)

Hence, provided a non-rotationally symmetric solution of (27)–(28) exists, it will lose stability
asg increases throughgc = 1/α. Although we have not proven the existence of non-rotationally
symmetric solutions, this can be inferred from the numerical simulations in section3.2 (see
figures8 and10). In fact, the analysis above holds for both rotational and translational (drift)
instabilities, and the dynamics beyond the bifurcation point is determined by both translational
and rotational modes, as well as their interaction.

5.2. Numerical example

We consider the model (27)–(28) with

w(r )=

∫
∞

0

s J0(rs)

0.1 +(s2 − 1)2
ds, (36)

and f (u)= 0.4H(u − 0.25)exp [−0.1/(u − 0.25)2]. The coupling function (36) is plotted in
figure 13(a). The reason for using a coupling function of this form is that (36) has a Hankel
transform with a rational structure, namelyw̃(k)= 1/(0.1 +(k2

− 1)2). Taking the 2D spatial
Fourier transform of equation (27) (which we denote with the symbol FT) and rearranging
gives

[(k2
− 1)2 + 0.1]FT[u + ga+α−1∂tu] = FT[ f (u)]. (37)

After performing the inverse Fourier transform, we have the equivalent PDE model

[∇4 + 2∇2 + 1.1](u + ga+α−1∂tu)= f (u). (38)

Stationary solutions of (27) and (28) then satisfy

(1 +g)[∇4 + 2∇2 + 1.1]u = f (u), a = u. (39)
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Figure 13. (a) The coupling functionw(r ), given by (36). (b) A stationary three-
bump solution of (27) and (28). The domain has radius 25.

To study uniformly rotating solutions of (27) and (28), one replaces∂/∂t by −ω× ∂/∂θ , where
ω is the angular velocity. Rotating solutions then satisfy

[∇4 + 2∇2 + 1.1]

(
1−

ω

α

∂

∂θ
+ g

(
1−ω

∂

∂θ

)−1
)

u = f (u), (40)

a =

(
1−ω

∂

∂θ

)−1

u. (41)

The stability of a stationary solution,(û, â), is determined by the rightmost few eigenvalues of
the Jacobian

J1(û)=

(
−α +αK −1 f ′(û) −gα

1 −1

)
, (42)

whereK = ∇
4 + 2∇2 + 1.1. Similarly, the stability of a rotating solution,(ū, ā), is determined

by the rightmost few eigenvalues of the Jacobian

J2(ū)=

−α +ω
∂

∂θ
+αK −1 f ′(ū) −gα

1 ω
∂

∂θ
− 1

 . (43)
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Figure 14. Rotational instability of a three-bump solution. Top: the branch of
stationary solutions, and two representative branches of rotating solutions that
bifurcate from it whenα = 5 and whenα = 6. Middle: real part of the rightmost
few eigenvalues of the Jacobian forα = 5 (circles) andα = 6 (crosses). Bottom:
angular velocity as a function ofg for the rotating waves that appear whenα = 5
(solid) and whenα = 6 (dashed). Both branches are stable at their creation. Note
the different horizontal scales for the three panels.

Solutions of (39) and (40) are found numerically by discretizing the domain using polar
coordinates and then integrating (27) and (28) to either a steady state or rotating solution. We
then use pseudo-arclength continuation to follow solutions as parameters are varied. See [10,
14, 31] for more details on this approach.

In figure 13(b) we show a plot of a stationary non-rotationally symmetric three-bump
solution, calculated as described above forg = 0. As predicted, the solution in figure13(b)
begins to rotate asg is increased throughgc. Since our instability analysis predicts that the
rotational instability is degenerate with a translational mode simulations are done on a circular
domain with Neumann boundary conditions, so as to favour seeing a rotation (as opposed to a
drift). Our results from numerical continuation are shown in figure14. The top panel shows the
maximum ofu over the whole domain as a function ofg for a stationary three-bump solution.
We have chosen two different values ofα (α = 5 andα = 6) and computed the branches of
rotating waves that bifurcate from the stationary solution. These branches are also shown in
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Figure 15. Instability of a stationary three-bump solution of (27) and (28)
with coupling functionw(r ) given by (36), and firing rate functionf (u)=

0.4H(u − 0.25)exp[−0.1/(u − 0.25)2]. α = 5 andg is switched from 0.19 to
0.22 att = 10 and a small perturbation is applied. The three-bump solution starts
to rotate and translate, until it approaches the boundary and a regular pattern
spreads across the whole domain.

the top panel of figure14. Note that the rotating waves undergo saddle-node bifurcations asg
is increased; we do not follow the branches much beyond these bifurcations. We can see from
this panel that (for the parameter values used) ifα was smaller than about 4.5, we would not
see a transition from stationary to rotating three-bump solution asg was increased, since the
stationary solution would be destroyed in a saddle-node bifurcation beforeg reachedgc.

The middle panel shows the real part of the rightmost few eigenvalues of the JacobianJ1(û)
for both values ofα chosen, as a fuction ofg. A single real eigenvalue passes through zero as
g increases throughgc (=1/α). We have also checked that this occurs for several other values
of α (not shown). Note that there is always a zero eigenvalue as expected, due to the rotational
invariance of the system. The eigenfunction corresponding to the eigenvalue that passes through
zero (not shown) is proportional to∂û/∂θ , as expected.

The bottom panel of figure14 showsω as a function ofg for the two branches of rotating
solutions shown in the top panel. Evaluation of the eigenvalues ofJ2(ū) along these branches
shows that they are stable until the saddle-node bifurcations at highg (not shown). Finally,
figure15shows a series of snapshots showing the evolution of an unstable three-bump solution
which rotates and translates on a large domain, before it ultimately reaches the boundary of the
domain and induces the spread of a regular global pattern.
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6. Discussion

In this paper, we have shown the importance of considering angular perturbations in 2D neural
field models. In the simplest case of a bump solution and a Heaviside firing rate function, in
one space dimension the upper branch of bump solutions is always stable, yet in two space
dimensions we find, using the theory of Evans functions, that rotationally symmetric bump
solutions can lose stability to perturbations of the formum(r ) cos(mθ), with the dominant
mode depending on the model parameters. Typically we see an initial instability to mode
two perturbations as the firing thresholdh decreases below some critical value, followed by
a sequence in which the dominant mode number increases ash decreases. In the case of a
balanced weight kernel (i.e.

∫
R2 w(|r |)dr = 0), we find that the onset of a bump instability

occurs when the bump develops a centraldimple. However, the appearance of a dimple does not
necessarily coincide with onset of instability in the case of unbalanced kernels. In some cases
the predicted bump instability leads to the bump splitting in two, and the two-bump solution
that emerges splits once again, and so on. This feature is reminiscent of spot splitting in the
Gray–Scott reaction–diffusion system [33]. We also see the emergence of labyrinthine patterns
from a bump that is unstable to mode 3 perturbations (figure5), again a feature that has been
observed in reaction–diffusion systems [34].

Rotationally symmetric ring solutionsq(r ) are defined in terms of two threshold crossings,
whereq(r1)= q(r2)= h. The evolution of a radial perturbation of modem is determined by
the perturbation atr1 and r2, and calculation of the associated Evans function shows that a
lower branch of ring solutions is always unstable. On the upper branch instabilities develop with
dominant unstable mode varying withh. Direct numerical simulations agree with the predictions
of the stability analysis, with the dominant mode emerging from perturbations that combine
many modes, and patterns developing with a corresponding number of bumps arranged in a
circular fashion. Obviously it is also possible to construct other rotationally symmetric solutions,
limited only by the requirement to simultaneously solve multiple threshold crossing conditions.
It is also straightforward to generate a family of Evans functions that can be used to ascertain
stability. Such solutions can include hybrid solutions such as a single bump with surrounding
ring given byq(r )= q(r ; r1)+ q(r ; r4)− q(r ; r3), with q(r )> h for r ∈ [0, r1] ∪ [r 3, r4], and a
double-ring solutionq(r )= q(r ; r2)− q(r ; r1)+ q(r ; r4)− q(r ; r3), with r4 > r3 > r2 > r1 > 0
such thatq(r4)= q(r3)= q(r2)= q(r1)= h.

We have also shown that the evolution of solutions of the 2D neural field model (1),
initiated by instabilities of rotationally symmetric bump and ring solutions, correspond to the
decrease of an associated Lyapunov function [27]. Given the emergence of non-rotationally
symmetric solutions (e.g. 7 bumps on a circle, figure10), we found that such solutions
could themselves become unstable to rotational and/or translational perturbations, using a
Goldstone mode analysis. This technique is valid for arbitrary non-rotationally symmetric
solutions, irrespective of their detailed shape. A potential tool to study the evolution of intricate
structures such as the labyrinthine patterns seen here, is to formulate a description of the
dynamics of the interface (whereu(r , t)= h), along the lines described for reaction diffusion
equations in [34].

The techniques we have used are quite general and naturally apply to other homogeneous
neural field models. In particular recently developed models with nonlinear adaptation [29] and
nonlinear threshold accommodation [35] can be analysed. Further analysis of the properties of
localized states in such neural field models is useful in that it may shed light on the mechanism
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of short term working memory [10, 11], and suggest practical implementations of sensorimotor
loops for autonomous robot systems [36].

Appendix

Here, we show how to calculateψ†
0 in terms ofψ0. Starting from the definitions in equation (31),

we proceed by diagonalizingL in terms of the right eigenvectorsv± of the matrixM :

v± =

(
αg

−(α +λ±)

)
, (A.1)

where

λ± =
−(1 +α)±

√
(1−α)2 − 4αg

2
. (A.2)

Performing the transformation

ψ̃0 = P−1ψ0, P = [v+ v−], (A.3)

then gives the pair of equations

λ±φ± +χ±w⊗ f ′(q)[φ+ +φ−] = 0, (A.4)

with ψ̃0 = [φ+, φ−] and

χ± = ∓α
α +λ∓

λ+ − λ−

. (A.5)

Turning now to the adjoint operatorL†, we use the fact that

L†
= M† +α f ′(q)w⊗

(
1 0
0 0

)
. (A.6)

Again we proceed by diagonalizingL†, this time in terms of the right eigenvectorsw± of M†:

w± =

(
1

(α +λ±)

)
. (A.7)

In a similar fashion we find

λ±φ
†
±

+ χ± f ′(q)w⊗[φ†
+ + φ†

−
] = 0, (A.8)

with [φ†
+, φ

†
−] = R−1ψ

†
0 and R = [w+w−]. An inspection of (A.4) and (A.8) yields the

relationshipφ†
± = f ′(q)φ±, giving

ψ
†
0 = f ′(q)RP−1ψ0. (A.9)

Substitution of (A.9) into (34) gives equation (35) in section5.1.
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