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Abstract. Translationally invariant integro-differential equations are a com-
mon choice of model in neuroscience for describing the coarse-grained dynamics

of cortical tissue. Here we analyse the propagation of travelling wavefronts in

models of neural media that incorporate some form of modulation or random-
ness such that translational invariance is broken. We begin with a study of

neural architectures in which there is a periodic modulation of the neuronal

connections. Recent techniques from two-scale convergence analysis are used
to construct a homogenized model in the limit that the spatial modulation is

rapid compared with the scale of the long range connections. For the special

case that the neuronal firing rate is a Heaviside we calculate the speed of a
travelling homogenized front exactly and find how the wave speed changes as

a function of the amplitude of the modulation. For this special case we further

show how to obtain more accurate results about wave speed and the condi-
tions for propagation failure by using an interface dynamics approach that

circumvents the requirement of fast modulation. Next we turn our attention
to forms of disorder that arise via the variation of firing rate properties across

the tissue. To model this we draw parameters of the firing rate function from
a distribution with prescribed spatial correlations and analyse the correspond-
ing fluctuations in the wave speed. Finally we consider generalisations of the

model to incorporate adaptation and stochastic forcing and show how recent

numerical techniques developed for stochastic partial differential equations can
be used to determine the wave speed by minimising the L2 norm of a travelling

disordered activity profile against a fixed test function.
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1. Introduction. There is now a long history of the use of integro-differential
equations in modelling the coarse-grained activity of neural tissue, as reviewed
in [1]. Many current models are variations on the standard Wilson-Cowan [2, 3] or
Amari model [4, 5] and take the form

ut(x, t) = −u(x, t) +

∫ ∞
−∞

dyw(x, y)f(u(y, t)), (1)

Here, u(x, t) is interpreted as a neural field representing the local activity of a pop-
ulation of neurons at position x ∈ R (and generalisations of the model to higher
dimensions is straight-forward). The second term on the right represents the synap-
tic input, with f interpreted as the firing rate function. A common choice for this
is a smooth sigmoidal function of the form

f(u) =
1

1 + e−β(u−h)
, (2)

where β > 0 sets the gain and h the threshold. The strength of anatomical con-
nections between neurons at positions x and y is denoted w(x, y). These are often
assumed to be homogeneous so that w(x, y) = w(|x − y|) and the system becomes
translationally invariant. From a mathematical perspective this is particularly use-
ful for analysing travelling waves, which can be constructed as stationary profiles in
a co-moving frame. Indeed there is considerable interest in waves in neural tissue
since they underlie both natural and pathological neurobiological phenomena. An
example of the former is spreading excitation associated with sensory processing [6],
while waves in epilepsy are a classic example of the latter [7]. In the special case
that f is a Heaviside function then the dependence of wave velocity (and stability)
on the shape of the homogeneous connectivity can be analysed exactly (reviewed
in [1]). However, analogous results for heterogeneous systems are much harder to
come by and even the existence and uniqueness of solutions to (1) has only been
treated recently [8]. For the particular case that the connectivity has the form
w(x, y) = w(|x − y|)[1 + J(y/γ)] with J some periodic function, which models the
patchiness of connections seen in cortex, Bressloff [9] has shown how averaging
methods can be tailored to treat non-local neural models like (1) and allow for the
analysis of waves in the limit γ → 0. Moreover, he was able to obtain explicit
results for wave speeds and the conditions for propagation failure in the case of a
Heaviside firing rate. For this special case Schmidt et al. [10] and later Coombes
and Laing [11] were able to obtain improved results valid away from the limit γ = 0.
The analysis of waves in truly inhomogeneous (as opposed to periodically modu-
lated) neural media is a much harder problem, though one that will have a huge
bearing on our understanding of how waves propagate throughout the brain. To
date it appears that the only work in this area is that of Brackley and Turner,
who make extensive (though not exclusive) use of simulations to study the role of
inhomogeneities in connectivity [12] and fluctuations in the firing rate function [13]
on wave propagation. These are precisely the topics we address in this paper, as
well as laying a firmer foundation for the analysis of periodically modulated neural
fields.

In section 2 we introduce a rigorous equation for a homogenized model of periodi-
cally modulated neural media, making use of recent ideas from two-scale convergence
analysis. For a Heaviside firing rate we show how to calculate the speed of a trav-
elling front in this system. Next we show in section 3 that for this special case one
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can side-step the use of homogenization theory and develop an alternative pertur-
bative analysis which tracks the position of the wave interface with a greater degree
of accuracy. Numerical simulations are presented to highlight both the regime of
validity of the homogenization calculations and the improved performance of the
interface approach where they break down. We break translation invariance again
in section 4, though this time by treating the firing threshold as a random variable.
A theory that relates fluctuations in the threshold to fluctuations in wave speed
is developed and shown to be in excellent agreement with numerical simulations.
In this section we also treat the case of noise driven neural fields (generalised now
to include adaptation) and develop a numerical technique for the determination of
wave speed based on recent freezing techniques developed for the study of stochastic
partial differential equations. Finally in section 5 we discuss further challenges for
the study of waves in random neural media.

2. Homogenization for periodically modulated connectivities. To incor-
porate the known microstructure of visual cortex within a large-scale modelling
framework Bressloff has proposed the use of periodically modulated connectivity
kernels [9]. Moreover, if the variation on the micro scale is rapid compared with
that on the large scale then the use of homogenization techniques is appropriate.
Homogenization is traditionally associated with the study of partial differential
equations with rapidly oscillating coefficients, as done by Keener for models of car-
diac dynamics with rapidly varying spatial structure [14]. This technique, whereby
an equation with a highly oscillatory coefficient is replaced by one with a homo-
geneous (uniform) coefficient, has been extended to non-local neural field models
by Bressloff [9], who used formal perturbation techniques to derive a hierarchy of
expressions for determining wave-speeds. However, the actual homogenized model
(to which the perturbation theory would apply) was not explicitly discussed. In this
section we summarise some of the key ideas and steps from two-scale convergence
that allow one to construct the homogenized version of (1). As well as allowing for
connectivities that are periodically modulated, as treated in [9, 10, 11], we shall
also allow for ones that have a periodic modulation of their spatial scale. To be
more precise we consider kernels of the form

w(x, y) =
1

σ1(y/γ)
φ

(
|x− y|
σ2(y/γ)

)
. (3)

The functions σ1,2 are assumed to be strictly positive and smooth with period one,
i.e. σ1,2(y) = σ1,2(y + 1) for all y. The function φ is a scaling function which
by assumption is integrable. The parameter 0 < γ � 1 defines the period of the
microvariation. σ1 can be used to model a medium with a periodically modulated
connection strength, while σ2 can allow for modulation of some long range spatial
scale. For simplicity we shall set σ1 = σ2 = σ from now on (though stress that a full
analysis can be developed which treats these separately). The problem now consists
of deriving the limit equation as γ → 0 i.e. of homogenizing the model defined
by (1)–(3). It turns out that we can carry out this derivation in a rigorous and
efficient way by means of the two-scale convergence technique originally developed
by Nguetseng [15]. The homogenized model is given as

ut(x, y, t) = −u(x, y, t) +

∫ ∞
−∞

dx′
∫ 1

0

dy′w∗(x− x′, y − y′)f(u(x′, y′, t)), (4)
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where

w∗(x, y) =
1

σ(y)
φ

(
|x|
σ(y)

)
, (5)

and is independent of γ. Here y represents some fast variable that would typi-
cally occur in a solution expansion of the form u(x, t) = u0(x, t) + γu1(x, y, t) +
γ2u2(x, y, t) + O(γ3) with y = x/γ. In Appendix A we sketch the main ideas in
the derivation of (4). A notable feature of the homogenized model is that the effect
of the oscillatory synaptic footprint is stored in the spatial two-scale limit of the
connectivity kernel w.

In the next several sections of this paper we shall work with the concrete choice
w(x, y) = w∗(x− y, y/γ) where

φ(x) =
1

2
e−|x|, σ(y) = 1 + α sin(2πy). (6)

For α = 0 we recover a model that is translationally invariant, and as γ is decreased
toward zero we expect the homogenized model to become increasingly accurate. In
Fig. 1 we show a sequence of simulation results of the full (unhomogenized model)
for various values of α. This nicely highlights the ability of the model to support
travelling waves and the fact that they transition from a travelling to a pulsating
front (in which the wake has periodic spatial structure) with increasing α. Next
we show how the homogenized model can be explicitly analysed for the special case
that the firing rate is a Heaviside function and obtain a formula for the homogenized
front speed as a function of α.

2.1. Travelling front. Here we seek travelling wave solutions of the homogenized
model (4). Introducing a co-moving frame ξ = x − ct, with c > 0, we see that
solutions of the form u(x, y, t) = q(x− ct) (independent of y) satisfy

− cdq

dξ
= −q +

∫ ∞
−∞

dx′
∫ 1

0

dy′w∗(x′, y′)f(q(ξ − x′)), (7)

where we have used the fact that the kernel is periodic in y with w∗(x, y) = w∗(x, y+
1). For the case that f(u) = H(u−h), where H is a Heaviside function, we see that
travelling front solutions with q > h for ξ < 0 and q < h for ξ > 0 are given by

− cdq

dξ
= −q +

∫ ∞
ξ

dx′W (x′), W (x) =

∫ 1

0

dyw∗(x, y). (8)

This can be integrated to give

q(ξ) =
1

c

∫ ∞
0

dξ′e−ξ
′/cG(ξ′ + ξ), G(ξ) =

∫ ∞
ξ

dx′W (x′). (9)

The wave speed is determined from the condition q(0) = h. For ξ > 0, and using (6),
we find

G(ξ) =
1

2

∫ 1

0

dye−ξ/σ(y). (10)

Hence, from (9) with ξ = 0, the speed is determined by

h =
1

2
− 1

2

∫ 1

0

dy
c

σ(y) + c
, α < 1. (11)
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Figure 1. Simulations of (1)-(6) for (top to bottom) α = 0, 0.1,
0.5 and 0.9. u(x, t) is shown color-coded. Other parameters are
h = 0.3, β = 20 and γ = 5.

Since σ(y) = 1 +α sin(2πy) it is natural to perform a change of variable, z = e2πiy,
so that we may rewrite (11) in the form of a contour integral around the unit circle
in the complex plane as

κ = − c

2πα

∮
dz

(z − z+)(z − z−)
, κ = h− 1/2, (12)

where

αz± = −(1 + c)i± i
√

(1 + c)2 − α2. (13)
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Figure 2. A plot of c = c(α) for the case of a travelling front
calculated for a Heaviside firing rate with threshold h = 0.4 in the
homogenized model (solid line, red). Also shown are simulation re-
sults for γ = 2π (crosses, red) as well as a theoretical curve (dotted
line, magenta) obtained from an interface dynamics calculation.

For small α the only pole in the unit circle is z+ and we may use the calculus of
residues to show that

κ = − c

2
√

(1 + c)2 − α2
. (14)

Solving (14) for c gives

c = 2κ

{
−2κ+

√
1 + α2(4κ2 − 1)

4κ2 − 1

}
. (15)

A plot of c = c(α) is shown in Fig. 2. Corresponding wave profiles from (9) are
shown in Fig. 3. In the limit α → 0 we recover the result for the homogeneous
model (no modulation):

c =
1− 2h

2h
. (16)

As expected there is good agreement between the analysis of the homogenized model
and simulations of the full model only for small α. Also shown in this figure is
another theoretical curve, with better agreement over a larger range of α. The
derivation of this curve side-steps the need for homogenization theory, though is
only valid in the special case that f(u) = H(u− h). We explain this result next.

3. Beyond homogenization. Following ideas recently developed in [11] for the
study of periodically modulated weight kernels of the form w(x, y) = φ(|x−y|)σ(y/γ),
we seek to describe the properties of fronts in terms of the behavior at the interface
which separates high activity from low. If the front is not pulsating (which is the
case in the absence of period modulation) then in a travelling wave frame (of the
same speed as the wave) the rising edge of the front may be identified with a single
(travelling wave) co-ordinate. For a pulsating front this point is no longer stationary
in time and instead oscillates. We now show how to derive the dynamics for this
interface between high and low activity states.
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Figure 3. Wave fronts (solid lines) in the co-moving frame for
c = 0.1 (left) and c = 2 (right), with α = 0.9. Dashed curves are
the fronts in the homogeneous model for the same wave speeds.

In a co-moving frame the model (1) takes the form u = u(ξ, t) where ξ = x− c0t
for some fixed c0 and

− c0uξ + ut = −u+ ψ, (17)

where

ψ(ξ, t) =

∫ ∞
−∞

dyw(ξ + c0t, y)f(u(y − c0t, t)). (18)

We define a moving interface (level set) according to

u(ξ0(t), t) = h, (19)

for some constant h. Here we are assuming that there is only one point on the
interface (though in principle we could consider a set of points). Differentiation
of (19) gives an exact expression for the velocity of the interface in the form

ξ̇0 = −ut
uξ

∣∣∣∣
ξ=ξ0(t)

. (20)

Focusing now on the case of a Heaviside firing rate with f(u) = H(u − h) means
that for a pulsating front solution with u > h for ξ < ξ0 (18) takes the simple form

ψ(ξ, t) =

∫ ξ0+c0t

−∞
dyw(ξ + c0t, y). (21)

3.1. Perturbation analysis. We now consider the case of small α and expand
w(x, y) using (6), as

w(x, y) ' φ(x− y)[1 + α(|x− y| − 1) sin(2πy/γ)]. (22)

For α = 0 there is a travelling front q(ξ) given by the solution of

− c0
dq

dξ
= −q + ψ, ψ(ξ) =

∫ ∞
ξ

dyφ(y), (23)

where the speed c0 is determined by q(0) = h. For small α we assume that the slope
of the travelling front varies sufficiently slowly so that we may make the convenient
approximation uξ|ξ=ξ0(t) = qξ|ξ=0. In this case we have, using equations (17)
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and (23), that

ut|ξ=ξ0(t) =

∫ ξ0+c0t

−∞
dyw(ξ0 + c0t, y)−

∫ ∞
0

dyφ(y), (24)

uξ|ξ=ξ0(t) =
1

c0

(
h−

∫ ∞
0

dyφ(y)

)
. (25)

Substitution of equations (24) and (25) into equation (20) gives

ξ̇0 = αc0

∫∞
0

dyφ(y)(|y| − 1) sin(2π(ξ0 + c0t− y)/γ)

h−
∫∞

0
dyφ(y)

. (26)

Performing the integrals in (26) we find that the time-dependent speed of the front
is given by c0(1 + αa(ξ0, t)) where c0 = (1− 2h)/(2h) and

a(ξ0, t) = A sin

[
2π

γ
(ξ0 + c0t)− φ

]
, (27)

with

A =
1

1− 2h

2π/γ

1 + (2π/γ)2
, tanφ =

π

γ

(2π/γ)2 − 1

(2π/γ)2
. (28)

Pulsating fronts are T -periodic solutions of the non-autonomous ordinary differen-
tial equation (26) with ξ0(t) = ξ0(t+ T ). Introducing x0 = ξ0 + c0t with x0 ∈ [0, γ]
we may solve for the trajectory using∫ x0

0

dx

1 + αA sin(2πx/γ − φ)
= c0t. (29)

Using a half angle substitution we may evaluate this to give

c0t =
γ

π

1

a
tan−1 z

a

∣∣∣z0(t)+αA

z0(0)+αA
, a2 = 1− α2A2, (30)

where z0(t) = tan[(2πx0(t)/γ − φ)/2] and x0(0) = 0. A periodic pulsating front
with speed c = γ/T can be found by demanding that γ = x0(T ). Substitution of
this condition into (30) shows that the speed of the pulsating front is given by

c = c0
√

1− α2A2. (31)

Hence, a propagating wave is only supported if |α| < 1/|A|. We note that the wave
speed has a minimum when γ = 2π.

A plot of the wave speed as a function of the spatial scale γ is shown in Fig. 4. We
see good agreement between the theoretical prediction from the interface dynamics
approach and direct numerical simulations. Indeed this is much better than would
be predicted from the analysis of the homogenized model, since in that case the
speed is independent of γ. Although our analysis in this case is restricted to small
α we have not had to make any assumptions about the scale of periodic modulation
as determined by the parameter γ. In contrast a homogenization analysis would
require both small α and a periodic modulation that occurs on a smaller length-
scale than the correlation length of φ(x) (which is set to unity here). Returning
to Fig. 2, the dotted magenta line shown there, which agrees well with simulation
results, is calculated using (31).
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Figure 4. Wave speed as determined from an interface dynamics
analysis when h = 0.4. The horizontal line (red) shows the speed in
the unmodulated case where α = 0. The three sets of data points
(measured from simulations) and the solid lines (calculated from
(31)) correspond to α = 0.05, α = 0.1 and α = 0.2 (upper to lower,
respectively).

4. Disordered neural fields. Until now we have only discussed systems with
periodic modulation as opposed to true disorder. A general theory for the analysis of
arbitrary inhomogeneous connectivities is clearly a challenge and to date has mostly
been investigated using numerical simulations. However, it is worth pointing out
that time-independent solutions of (1) with f(u) = H(u− h) may allow for further
investigation since they are simply given by

U(x) =

∫
Ω

dyw(x, y), Ω = {x | U(x) > h}. (32)

For example, a pinned front defined by U(x) > h for x < η and U(x) ≤ h otherwise,
is given by

U(x) =

∫ η

−∞
dyw(x, y), (33)

with η determined by the condition U(η) = h. Moreover (following arguments
in [11]), U(x) is stable if λ < 0 where

λ = −1 +
w(η, η)

|U ′(η)|
. (34)

Interestingly, for Heaviside firing rates, Brackley and Turner [12] have shown nu-
merically that neural field models with random inhomogeneous connectivities can
support coherent fluctuating time-dependent states when the inhomogeneity has
an appropriate power-law scaling. Another natural way to generate fluctuations in
neural field dynamics is to allow parameters of the model to fluctuate in both space
and time, allow parameter heterogenity (say in the parameters prescribing the firing
rate function) and also allow for stochastic forcing. We now treat each of these in
turn.
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Figure 5. Mean (left) and scaled variance (right) of the wave front
speed as a function of the threshold. 〈δh(x)2〉x = 1.35× 10−5.

4.1. Threshold fluctuation. For a Heaviside firing rate function Brackley and
Turner [13] have considered temporal correlations in a fluctuating threshold (taken
to be a Gaussian random variable). Using a mixture of numerics and analysis
they investigated how temporal correlations in the threshold affected the shape and
speed of wave fronts. Here we pursue a similar analysis, focusing on a homogenous
kernel with w(x, y) = φ(x− y), and analyse the effects of spatial correlations in the
threshold. The firing threshold h(x) is chosen to fluctuate around a mean value h,
such that h(x) = h+ δh(x) where

〈δh(x)〉x = 0, 〈δh(x), δh(x+ y)〉x = aνe−|y|/ν/2. (35)

Choosing large ν and small a gives a small slowly varying fluctuation in the firing
threshold about a mean value h. In the absence of any fluctuations (a = 0) the
speed of the front is given by (16). Now, considering δh� 1, we expand (16) as

c =
1− 2h

2h
+

1

2h

∞∑
n=1

(
−δh
h

)n
. (36)

From this we may calculate the average speed as

〈c〉 =
1− 2h

2h
+

1

2h

∞∑
n=1

(2n− 1)!!
〈δh2〉n

h
2n (37)

where !! denotes double factorial. The centered variance can also be found as

〈(c− 〈c〉)2〉 =
1

4h
2

(
〈δh2〉
h

2 + 8
〈δh2〉2

h
4 + 69

〈δh2〉3

h
6 + . . .

)
. (38)

Plots of 〈c〉 and 〈(c−〈c〉)2〉/〈c〉2 are shown in Fig. 5 using the formulas above as well
as data from direct numerical simulations (where the wave speed is determined from
simulation data simply by recording where a front crosses the mean firing threshold
at every time step). We see that there is very good agreement between the small
perturbation analysis and direct simulations of the model. This suggests that to a
first approximation we may (for a given realisation of the threshold function) write

c(x) =
1− 2h(x)

2h(x)
. (39)

A plot of a realisation of h(x) as well as the corresponding prediction from (39)
and results from simulations are shown in Fig. 6, highlighting the usefulness of this
simple ansatz for wave speed.
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Figure 6. Left: Fluctuating firing threshold h(x) for h = 0.2,
a = 1 and ν = 0.2. Middle: c(x) = (1 − 2h(x))/(2h(x)). Right:
Corresponding simulation results. (These were generated using a
4th order Runge-Kutta scheme with spatial-temporal discretisation
∆x = ∆t = 0.025 with a domain size N ×∆x = 50 and N = 2000.
Fast Fourier transforms were used to calculate convolution terms).

It is natural to extend the previous model to two spatial dimensions (u(x, t) →
u(r, t), r ∈ R2) and to consider spatio-temporal fluctuations of the firing threshold.
For 2D neural field models with Mexican hat interactions it is well known that stable
spatially localised spot solutions can be supported. Moreover, for a Heaviside firing
rate function it is known that they can become unstable for low firing thresholds [16].
In Fig. 7 we show the results of a simulation of an unstable spot subject to threshold
fluctuations with 〈h(r)〉 = h, and 〈δh(r, t)δh(r + r′, t + s)〉 = aνµ exp(−|r′|/ν −
|s|/µ). As shown in [16] a spot in a system with the parameters as used in Fig. 7
(but without fluctuations) is most unstable to a mode 3 perturbation of the form
δu(r, θ) = δu(r)eimθ with m = 3 (for some small bounded radial perturbation
δu(r)). When adding threshold fluctuations, symmetric perturbations of this form
will also lead to a mode destabilisation. However, the symmetry of this initial
perturbation will not persist due to the noisy threshold, and irregular patterns with
broken symmetry will develop.

We also examine a model in two spatial dimensions that incorporates nonlinear
adaptation ut → ut − ga and at = −a + H(u − h) [1]. The firing threshold here
is subject to spatial fluctuations only. In this case the outcome of the simulation
shown in Fig. 8 is completely different from the one without adaptation. The spot
destabilises into a moving worm-like structure that gains length as it propagates
until it collides with itself (due to periodic boundary conditions) which leads to a
repeated splitting until the space is filled with spots whose shapes and centres of
mass undergo random fluctuations.

4.2. Spatial parameter heterogeneity. Here we further pursue models with
some form of adaptation and show how to construct travelling waves in the presence
of spatial parameter heterogeneity. For concreteness we consider a 1D system of
the form

ut(x, t) = −u(x, t) +

∫ 2π

0

dyG(x− y)f(u(y, t))− a(x, t), (40)

τat(x, t) = Bu(x, t)− a(x, t), (41)

where

G(x) ≡ 0.09 + 0.45 cosx+ 0.09 cos (2x), (42)
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Figure 7. Destabilisation of a spot in a 2D model with Mexican
hat connectivity (as used in [16] with β = 0.5 and γ = 4) and
spatio-temporal fluctuations of the firing threshold (h = 0.05, a =
0.1, ν = 0.5 and µ = 1). From top left to bottom right: plots of
u(r, t) at t = 0, t = 25, t = 50, t = 100, t = 150 and t = 200.
Simulations were done with a simple Euler scheme and the use of
2D Fast Fourier transforms to compute convolutions, with a spatio-
temporal discretisation ∆x = 0.05 and ∆t = 0.1 on a spatial grid
of size 1536× 1536.

Figure 8. Destabilisation of a spot in a 2D model with Mexican
hat connectivity (as used in [16] with β = 0.5 and γ = 4) with
spatial fluctuations of the firing threshold (h = 0.05, a = 0.1 and
ν = 0.5) and adaptation with g = 0.1. From top left to bottom
right: plots of u(r, t) at t = 0, t = 50, t = 100, t = 200, t = 400
and t = 800. The numerical scheme is the same as that used for
Fig. 7 with ∆t = 0.02.
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Figure 9. Top: G(x) as given by (42). Bottom: a leftward moving
bump of activity. Other parameters: β = 20, h = 0.4 and B = 0.4.

and f is given by (2). As seen in Fig. 9 (top), G(x) is of Mexican hat type, with
local excitation and distal inhibition. The strength of the negative feedback is B
and its timescale is τ , which we fix at τ = 15. Note that the domain is now
[0, 2π], with periodic boundary conditions. Models of this form have been studied
elsewhere [17, 18], and a typical, spatially-localised, moving bump of activity is
shown in Fig. 9 (bottom).

In a coordinate frame moving with speed c, equations (40)-(41) are written

ut(ξ, t) = cuξ(ξ, t)− u(ξ, t) +

∫ 2π

0

dyG(ξ − y)f(u(y, t))− a(ξ, t), (43)

at(ξ, t) = caξ(ξ, t) +
Bu(ξ, t)− a(ξ, t)

τ
. (44)

Bump solutions such as the one shown in Fig. 9 (bottom) are steady states of (43)-
(44), i.e. satisfy

0 = cuξ(ξ)− u(ξ) +

∫ 2π

0

dyG(ξ − y)f(u(y))− a(ξ), (45)

0 = caξ(ξ) +
Bu(ξ)− a(ξ)

τ
, (46)

where c is equal to the speed of the bump. However, due to the translational
invariance of solutions of (45)-(46), there is actually a continuum of such solutions
related by translations in x. To remove this degeneracy, and in order to find c, we
append the following pinning equation to (45)-(46):∫ 2π

0

∂û

∂x
(u− û) dx = 0, (47)
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Figure 10. Speed of a bump of activity as a function of firing
rate threshold h. Solid line: β = 20. Dashed line: β is spatial
white noise (see text for details). Upper branches are stable, lower
unstable. Other parameters: τ = 15 and B = 0.4.

where û(x) is a template function [19], chosen to be cos (x) in this case. Equa-
tion (47) is the result of minimising the L2 norm between u and û [20, 21]. After
suitably discretising eqns. (45)-(47) in space, solutions of the resulting system can
be followed as parameters are varied, using (for example) pseudo-arclength contin-
uation. An example of the results obtained is shown in Fig. 10 (solid line) where
we plot c as a function of h for β = 20. We see that a stable and unstable bump
are destroyed in a saddle-node bifurcation as h is increased.

The form of (45)-(47) suggests that one could introduce spatial heterogeneity
to them, average over many realisations of this heterogeneity, and then solve the
resulting equations in order to determine the effects of this heterogeneity. As an
example, consider β (the gain of the firing rate function f) to be spatial white
noise. In practice, this means that at each of the 1000 spatial points used in the

calculation of the term
∫ 2π

0
dyG(ξ − y)f(u(y)) in (45), β is chosen independently

from a uniform distribution on [m−∆,m+ ∆]. Let βi(x) be the ith realisation of
this process. We expect that solving the averaged system

0 = cuξ(ξ)− u(ξ) +

〈∫ 2π

0

dyG(ξ − y)f [u(y), βi(y)]

〉
i

− a(ξ), (48)

0 = caξ(ξ) +
Bu(ξ)− a(ξ)

τ
, (49)

0 =

∫ 2π

0

∂û

∂x
(u− û) dx, (50)



RANDOM NEURAL MEDIA 15

0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5
0

0.5

1

h

p
ro

p
o

rt
io

n

Figure 11. Proportion of simulations showing successful propa-
gation of a bump as a function of h. Other parameters: B = 0.4.

where the angled brackets indicate averaging over i and

f [u, β] =
1

1 + e−β(u−h)
, (51)

will give information about the behaviour of (40)-(41) for a typical realisation of
the βi(x). The results of solving (48)-(50) when m = ∆ = 20 are shown in Fig. 10
(dashed line). (We average over 2500 realisations of the βi(x). Increasing this
number, or increasing the number of spatial points used to calculate the integral∫ 2π

0
dyG(ξ − y)f(u(y)) does not qualitatively change the results presented.) From

Fig. 10 we see that including such heterogeneity should (i) lower the maximum value
of h for which a moving bump exists, and (ii) slightly decrease the speed of a stable
moving bump. To illustrate that the first effect occurs we plot in Fig. 11, for several
values of h, the proportion of 20 simulations for which a moving bump propagates,
where (for fixed h) each of the 20 simulations uses a different realisation of β(x).
We see the gradual failure of propagation and, for example, that at h = 0.49 none
of the simulations showed a propagating bump, whereas from Fig. 10, if β was
constant over space, a stable bump would propagate at this parameter value. We
also observed numerically that such spatial disorder does slightly decrease the stable
bump’s speed (not shown).

4.3. Neural field models driven by temporal noise. Another method for in-
corporating randomness in a neural field model is to drive it with spatio-temporal
noise. For simplicity we focus here on purely temporal noise; we will use some of
the ideas presented in [21].

Consider the model

ut(x, t) = −u(x, t) +

∫ 2π

0

dyG(x− y)f(u(y, t))− a(x, t), (52)

τat(x, t) = Bf(u(x, t))− a(x, t), (53)

which is very similar to (40)-(41), except that the dynamics of a are now nonlinear,
as considered in, for example, [22]. Holding other parameters constant, if B (the
strength of negative feedback) is decreased, the speed of a moving bump will de-
crease and reach zero at some non-zero value of B — see Fig. 12 (blue circles). (Put
another way, a stable stationary bump goes unstable as B is increased through this
value).

One question of interest is the effect of temporal noise on this bifurcation. To
address this we replace (52) by ut → ut + η where η(t) is coloured noise with
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Figure 12. Speed of a moving bump solution of (54)-(55) for
(from top to bottom) D = 0, 0.001 and 0.003. At each value of
B, 5 simulations of duration 1000 time units were performed and
the mean speed for each simulation was measured. The mean and
standard deviation of these 5 speeds are plotted. Other parameters:
τ = 5, h = 0.4, β = 20 and γ = 1.

〈η(t)〉 = 0 and 〈η(t)η(s)〉 = Dγ exp (−γ|t− s|). D is the noise intensity and 1/γ is
the correlation time of the noise. Moving to a coordinate frame travelling at speed
c(t), (52)-(53) become

ut(ξ, t) = c(t)uξ(ξ, t)− u(ξ, t) +

∫ 2π

0

dyG(ξ − y)f(u(y, t))− a(ξ, t) + η(t), (54)

at(ξ, t) = c(t)aξ(ξ, t) +
Bf(u(ξ, t))− a(ξ, t)

τ
. (55)

Although we can no longer find fixed points of (54)-(55) because of the presence of
the noise term η(t), we can still freeze solutions using (for example) (47) and simu-
late (54)-(55) with (47) for long periods of time, gathering statistics on c(t), which
is now a random variable. Some results are shown in Fig. 12 where we have used
as a template a typical profile of u in the absence of noise. We see that increasing
the amplitude of the noise decreases the bump’s speed and moves the bifurcation
to higher values of B. This is an example of noise delaying a bifurcation [23], and
qualitatively similar results were found in [24, 25], where the authors considered
spatially-discretised versions of models similar in form to (52)-(53) with additive
noise. To demonstrate the results shown in Fig. 12, we show in Fig. 13 a simulation
in which the noise intensity D is increased at two points in time, with all other
parameters held constant. We see clearly the slowing down and then stopping of
the bump. This can be regarded as a noise-induced bifurcation [26] which is easily
understood by observing from Fig. 12 that for D = 0, B = 0.07 is to the right of the
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Figure 13. Top: simulation of (52)-(53) with additive noise and
B = 0.07 for D = 0 (0 < t < 3000), D = 0.001 (3000 < t < 6000)
and D = 0.003 (t > 6000). u(x, t) is shown colour-coded. Bottom:
instantaneous bump speed extracted from the simulation in the top
panel. Other parameters: τ = 5, h = 0.4, β = 20 and γ = 1.

bifurcation (i.e. only moving bumps are stable) whereas for D = 0.003, B = 0.07 is
to the left of the bifurcation, and the only stable state is a stationary bump.

5. Discussion. It is hard even at a first approximation to view the brain as a ho-
mogeneous system and so there is a pressing need to develop a set of mathematical
tools for the study of waves in heterogeneous media that can be used in brain mod-
elling. Homogenization is one natural multi-scale approach that can be utilised in
this regard, and we have revisited the mathematical foundations of this approach
in the context of non-local integral models that arise in neural field modelling. As a
perturbation technique it requires that modulation on the micro-scale be both small
in amplitude and rapidly varying in space, and as such is limited in its range of ap-
plicability. For the special case of a Heaviside firing rate function we have shown
how improved results can be obtained (circumventing the need for rapid spatial
modulation) using an interface approach. One important observation, previously
made by Bressloff [9], is that modulation of synaptic connectivity can lead to a
slowing down of travelling waves and ultimately result in wave propagation failure.
We have also considered other forms of natural disorder in this paper, including
threshold fluctuations, parameter heterogeneity and stochastic forcing. Fluctua-
tions of the firing threshold (spatial or temporal) can, in some scenarios, lead to an
increase in wave speed, while additive noise can act rather differently and actually
slow down or pin a wave. The mathematical toolbox for rigorously analysing these
phenomenon does not yet exist and we have relied mainly on numerical simulations
to gain insight. However, even here it has been interesting to consider how to define
the notion of a travelling wave (in a system with broken translation invariance) and
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informative to adapt recent ideas developed for the numerical study of waves in
stochastic PDEs [21]. In this sense it is likely that other ideas from applied dynam-
ical systems [27] may be usefully adapted for the study of non-local random neural
systems.

We have focused mainly on developing results in one spatial dimension and it
remains to perform the extension to two spatial dimensions. Although both ho-
mogenization and interface formalisms go over naturally to two spatial dimensions
the solution of the resulting models will no doubt remain a challenge — if nothing
else but for the reason that solutions in 2D can come in a variety of rich forms such
as spiral waves, labyrinthine structures and replicating and rotating collections of
bumps [28, 16]. A generalisation of the freezing approach discussed in Secs. 4.2-4.3
has been applied to spiral waves in reaction-diffusion systems [20, 29] and it should
be possible to apply them to waves in 2D neural field models. The development
of a 2D interface dynamics for translation invariant kernels is currently under de-
velopment and is likewise expected to form the basis for a perturbation theory for
modulated connectivities. These and related ideas will be presented elsewhere.

Appendix A. Here we give an outline of the derivation of the homogenized version
of (1) by means of two-scale convergence techniques. The detailed derivation of (4)
will be presented in a complementary paper [30]. We write the original model in
the form

∂

∂t
uε(x, t) = −uε(x, t) +

∫ ∞
−∞

w∗(x′ − x, x
′

ε
)f(uε(x

′, t))dx′, (56)

where w∗(x, y) = φ(|x|/σ(y))/σ(y). The relationship between w and w∗ is given by
w(x, y) = w∗(x− y, y/ε). It turns out that this formulation of a neural field model
is tractable when using two scale convergence techniques.

We view (56) as a one-parameter family of neural field models, parametrized by
ε. The initial value problem of (56) is, according to Potthast et al. [31], globally
well-posed in the Banach space of bounded, continuous functions for connectivity
functions which are uniformly bounded in both the supremum norm and the L1-
norm and satisfy a Hölder condition, and firing rate functions which take values
between 0 and 1. One notable property is that the ε-dependent solution is uni-
formly bounded, where the bound depends on the supremum norm of the initial
condition and the bounding constant of the connectivity function in the L1-norm.
We assume from now on that the conditions prescribed in Potthast et al. [31] are
fulfilled.

For our purposes we will need the existence and boundedness of solution uε in
L2(R). From Theorem 3.2.1 in Faye et al. [32], which is a straightforward adap-
tation of a classical result by Hale et al. [33] for first order functional differential
equations, we get the following result:

Lemma 1. Assume that w∗ ∈ L2(R) and that the initial condition uε(x, 0) =
U(x) is square integrable, i.e. U ∈ L2(R). Then there is a unique solution uε ∈
L2([0, T ];L2(R)) of (56) which obeys the uniform bounds

‖uε‖L∞([0,T ];L2(R)) ≤ C1

(
‖U‖L2(R) + ‖w∗‖L2(R)

)
, (57)

and
‖uε‖L2([0,T ];L2(R)) ≤ C1

(
‖U‖L2(R) + ‖w∗‖L2(R)

)
. (58)
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for some constants C1 > 0 and T > 0.

Just as in [34, 35] we get the following results:

Lemma 2. Let the initial condition uε(x, 0) = U(x) of (56) belong to the intersec-
tion L1(R) ∩ L∞(R) and assume that

sup
x∈R
{
∫ ∞
−∞

w∗(x, y)dy} ≤ C

for some positive constant C > 0. Then there exists a unique uε ∈ C(R+
0 ;L1(R) ∩

L∞(R)) satisfying (56). Moreover, we have the uniform bounds

max
0≤t≤T

‖uε‖L1(R) ≤ C‖U‖L1(R)

and
max

0≤t≤T
‖uε‖L∞(R) ≤ C‖U‖L∞(R)

for some T > 0.

The proofs of Lemma 1 and Lemma 2 will be presented in a forthcoming pa-
per [30].

Next, let us define the concept of two-scale convergence: Let T denote the 1-
dimensional unit torus (or unit circle) and let Y = [0, 1]. We identify the Y -
periodic functions by those functions that are defined on T and introduce func-
tions ρ ∈ L2(R × T) and consider their traces ρ(x, x/ε). Assume that {vε} is a
bounded sequence in L2(R). The sequence {vε} is said to two-scale converge to
v ∈ L2(R;L2(T)) if∫ ∞

−∞
vε(x)ρ(x,

x

ε
)dx→

∫ ∞
−∞

∫
Y

v(x, y)ρ(x, y)dydx. (59)

as ε → 0 for all test functions ρ. A crucial step consists of constructing an admis-
sible class X of test functions ρ so that for any bounded sequence {vε} ∈ L2(R) we
have the convergence (59). It turns out that we obtain two-scale convergence if X
is identified with the space L2(R;C(T)).

L2(R;L2(T)) denotes the space of those functions which are square integrable both
in the x and in the y-variable and are Y -periodic in y. The space L2(R;C(T)) is
the space of functions which are square integrable in the x variable and continuous
in the y variable and Y -periodic in the y variable.

The convergence in (59) is nothing but a weak convergence in L2-spaces where
the key ingredient is that the test functions ρ vary on two scales, i.e. on the global
scale x and on the local microscale y. By parameterizing (in ε) and substituting
y = x/ε the limit process will then capture a two-scales limit v = v(x, y) having
the same period as the two-scales test function ρ. From a heuristic point of view,
the two-scales limit function v = v(x, y) is the first term in a two-scales asymptotic
expansion of vε. This means that the two-scale convergence rigorously justifies the
existence of v = v(x, y). If we have more regularity so that the sequence {vε} is
bounded in H1(R), then two-scale convergence yields the existence of the first two
terms in a two-scales asymptotic expansion of vε. In that case one can rigorously
justify that vε(x) ∼ v(x) + εv1(x, x/ε).
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Now, according to Remark 7 in [36] it is possible to modify the definition of two-
scale convergence in L2-spaces to obtain a definition of two-scale convergence in
L1-spaces; see also [37]. The test functions are chosen here to be continuous with
compact support in x and continuous and Y -periodic in y. It is crucial that we can
include the L1-case since it turns out in the application of two-scale convergence
to the convolution integral in (1) that one of the terms is assumed to two-scale
converge in L1. So the fundamental question now is how to determine the limit of
the convolution term as ε→ 0. The following theorem which originally was proved
by Visintin [37] gives the answer to that question:

Theorem 1. Suppose that {vε} is a sequence of two-scale functions converging to
v ∈ L2(R;L2(T)) and that {wε} is two-scale converging to w ∈ L1(R;L1(T)). Then
the convolution integral

[wε ⊗ vε](x) ≡
∫ ∞
−∞

wε(x
′ − x)vε(x

′)dx′, (60)

two-scale converges to the double-convolution integral

[w∗ ⊗⊗ v](x, y) ≡
∫ ∞
−∞

∫
Y

w∗(x′ − x, y′ − y)v(x′, y′)dy′dx′, (61)

as ε→ 0 in L2(R;L2(T)). The limit (61) (which is Y -periodic in the variable y), is
called the spatial two-scale convolution limit.

Now, the sequence of connectivity kernels {wε} defined by wε(z) = w∗(z, x′/ε)
where w∗ is given by (5), is by assumption a bounded sequence in L1(R). We
then have the two-scale convergence w∗(z, x′/ε)→ w∗(z, y) in L1(R;L1(T)). Since
uε by Lemma 1 is bounded in L2(R), uε will two-scale converge to some function
u ∈ L2(R;L2(T)), u = u(x, y). As f is a bounded and monotone function with
values between 0 and 1, the sequence vε = f ◦uε two-scale converges to v = f ◦u ∈
L2(R;L2(T1)). (See Theorem 3.1 in [38] for a recent proof.) Notice that we by
Lemma 2 can also conclude that vε = f ◦ uε two-scale converges to v = f ◦ u ∈
L1(R;L1(T1)). From Visintin’s theorem (Theorem 1), we conclude that the one-
parameter family of neural field models (56) approaches in the two-scale sense as
ε → 0 the nonlocal evolution equation given by (4). One can prove, by using the
same techniques as in Potthast et al. [31] that the initial value problem of (4) is
globally well-posed. Finally it is worth pointing out that the multiscale convergence
techniques are applicable to neural field models in several space dimensions and also
with heterogeneity in parameters of the firing rate function.
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