
BUMPS IN SMALL-WORLD NETWORKS

CARLO R. LAING

Abstract. We consider a network of coupled excitatory and inhibitory theta neurons which is ca-

pable of supporting stable spatially-localised “bump” solutions. We randomly add long-range and

simultaneously remove short-range connections within the network to form a small-world network

and investigate the effects of this rewiring on the existence and stability of the bump solution. We

consider two limits in which continuum equations can be derived; bump solutions are fixed points of

these equations. We can thus use standard numerical bifurcation analysis to determine the stability

of these bumps and to follow them as parameters (such as rewiring probabilities) are varied. We find

that under some rewiring schemes bumps are quite robust, whereas in other schemes they can become

unstable via Hopf bifurcation or even be destroyed in saddle-node bifurcations.

1. Introduction

Spatially-localised “bumps” of activity in neuronal networks have been studied for many years, as they

are thought to play a role in short term memory [13, 53, 10, 12] and the head direction system [54, 43],

among other phenomena. Some models of bump formation have used a firing rate description [52, 3,

20, 39, 29] while others have considered networks of spiking neurons [30, 19, 48]. The simplest models

typically have “Mexican-hat” connectivity in a single population of neurons, where nearby neurons are

excitatorily coupled and more distant ones are inhibitorily coupled [10, 15]. However, more realistic

models consider both excitatory and inhibitory neurons with non-negative connectivity within and

between populations [6, 41]. Almost all previous models have considered homogeneous and isotropic

networks, which typically support a continuous family of reflection-symmetric bumps, parametrised by

their position in the network. Some exceptions are [9, 8], in which a spatially-inhomogeneous coupling

function is used, and [47], in which a spatially-varying random firing threshold is imposed.

In this paper we further investigate the effects of breaking the spatial homogeneity of neural net-

works which support bump solutions, by randomly adding long-range connections and simultaneously

removing short-range connections in a particular formulation of small-world networks [45]. Small-world

networks [51] have been much studied and there is evidence for the existence of small-worldness in sev-

eral brain networks [11]. In particular, we are interested in determining how sensitive networks which

support bumps are to this type of random rewiring of conections, and thus how precisely networks must

be constructed in order to support bumps.

We will consider networks of heterogeneous excitatory and inhibitory theta neurons, the theta neuron

being the canonical model for a Type I neuron for which the onset of firing is through a saddle-node

on an invariant circle bifurcation [16, 18]. In several limits such networks are amenable to the use of

the Ott/Antonsen ansatz [36, 37], and we will build on previous work using this ansatz in the study of

networks of heterogeneous theta neurons [22, 24, 31, 44]. We present the model in Sec. 2.2 and then
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consider two limiting cases: an infinite number of neurons (Sec. 2.3) and an infinite ensemble of finite

networks with the same connectivity (Sec. 2.4). Results are given in Sec. 3 and we conclude in Sec. 4.

Appendix A contains some mathematical manipulations relating to Sec. 2.4.

2. Materials and Methods

2.1. Introduction. First consider an all-to-all coupled network of N heterogeneous theta neurons

whose dynamics are given by

dθi
dt

= 1− cos θi + (1 + cos θi)(Ii + gr)(1)

τ
dr

dt
=

1

N

N
∑

j=1

Pn(θj)− r(2)

for i = 1, 2, . . .N where θi ∈ [0, 2π) is the phase of the ith neuron, Pn(θ) = an(1− cos θ)n, n ∈ N
+ and

an is a normalisation factor such that
∫ 2π

0
Pn(θ)dθ = 2π. The function Pn is meant to mimic the action

potential generated when a neuron fires, i.e. its phase increases through π; n controls the “sharpness”

of this function. The Ii are input currents randomly chosen from some distribution, g is the strength of

connectivity within the network (positive for excitatory coupling and negative for inhibitory), and τ is

a time constant governing the synaptic dynamics. The variable r is driven up by spiking activity and

exponentially decays to zero in the absence of activity, on a timescale τ .

The model (1)-(2) with τ = 0 (i.e. instantaneous synapses) was studied by [31], who found multista-

bility and oscillatory behaviour. The case of τ > 0 was considered in [26] and similar forms of synaptic

dynamics have been considered elsewhere [17, 7, 14]. The model presented below results from general-

ising (1)-(2) in several ways. Firstly, we consider two populations of neurons, one excitatory and one

inhibitory. Thus we will have two sets of variables, one for each population. Such a pair of interacting

populations was previously considered by [14, 25, 32, 7]. Secondly, we consider a spatially-extended

network, in which both the excitatory and inhibitory neurons lie on a ring, and are (initially) coupled

to a fixed number of neurons either side of them. Networks with similar structure have been studied

by many authors [13, 19, 22, 24, 30, 43].

2.2. Model. We consider a network of 2N theta neurons, N excitatory and N inhibitory. Within

each population the neurons are arranged in a ring, and there are synaptic connections between and

within populations, whose strength depends on the distance between neurons, as in [27, 19]. (In the

networks we will consider, connection strengths are either 1 or 0, i.e. neurons are either connected or not

connected.) Inhibitory synapses act on a timescale τi, whereas the excitatory ones act on a timescale τ .

θi ∈ [0, 2π) is the phase of the ith excitatory neuron and φi ∈ [0, 2π) is the phase of the ith inhibitory
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one. The equations are

dθi
dt

= 1− cos θi + (1 + cos θi)(Ii + gEEvi − gEIyi)(3)

dφi

dt
= 1− cosφi + (1 + cosφi)(Ji + gIEui − gIIzi)(4)

τ
dvi
dt

= ri − vi(5)

τ
dui

dt
= qi − ui(6)

τi
dyi
dt

= si − yi(7)

τi
dzi
dt

= wi − zi(8)

for i = 1, 2 . . .N , where

qi =
1

N

MIE
∑

j=−MIE

Pn(θi+j)(9)

ri =
1

N

MEE
∑

j=−MEE

Pn(θi+j)(10)

si =
1

N

MEI
∑

j=−MEI

Pn(φi+j)(11)

wi =
1

N

MII
∑

j=−MII

Pn(φi+j)(12)

where Pn is as in Sec. 2.1. The positive integers MIE ,MEE , MEI and MII give the width of connec-

tivity from excitatory to inhibitory, excitatory to excitatory, inhibitory to excitatory, and inhibitory to

inhibitory populations, respectively. The non-negative quantities gEE , gEI , gIE and gII give the overall

connection strengths within and between the two populations (excitatory to excitatory, inhibitory to

excitatory, excitatory to inhibitory, and inhibitory to inhibitory, respectively). The variable vi (when

multiplied by gEE) gives the excitatory input to the ith excitatory neuron, and whose dynamics are

driven by ri, which depends on the activity of the excitatory neurons with indices between i − MEE

and i +MEE . Similarly, ui (when multiplied by gIE) gives the excitatory input to the ith inhibitory

neuron, and is driven by qi, which depends on the activity of the excitatory neurons with indices be-

tween i −MIE and i +MIE . gEIyi is the inhibitory input to the ith excitatory neuron, driven by si,

which depends on the activity of the inhibitory neurons with indices between i − MEI and i + MEI .

Lastly, gIIzi is the inhibitory input to the ith inhibitory neuron, driven by wi, which depends on the

activity of the inhibitory neurons with indices between i−MII and i+MII .

For simplicity, and motivated by the results in [41], we assume that the inhibitory synapses act

instantaneously, i.e. τi = 0, and that there are no connections within the inhibitory population, i.e. gII =

0. Thus (8) and (12) become irrelevant and from (7) we have that yi = si in (3).

The networks are made heterogeneous by randomly choosing the currents Ii from the Lorentzian

(13) h(I) =
∆/π

(I − I0)2 +∆2
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and the currents Ji from the Lorentzian

(14) g(J) =
∆/π

(J − J0)2 +∆2
.

I0 and J0 are the centres of these distributions, and for simplicity we assume that both have the same

width, ∆. The heterogeneity of the neurons (i.e. the positive value of ∆) is not necessary in order

for the network to support bumps, but it is necessary for the Ott/Antonsen ansatz, used extensively

below, to be valid [38]. Networks of identical phase oscillators are known to show non-generic behaviour

which can be studied using the Watanabe/Strogatz ansatz [50, 49]. We want to avoid non-generic

behaviour, and having a heterogeneous network is also more realistic. For typical parameter values we

see the behaviour shown in Figs. 1 and 2, i.e. a stable stationary bump in which the active neurons are

spatially localised.

(While these bumps may look superficially like “chimera” states in a ring of oscillators [21, 1, 2, 40]

they are different in one important aspect. Chimera states in the references above occur in networks for

which the dynamics depend on only phase differences. Thus these systems are invariant with respect to

adding the same constant to all oscillator phases, and can be studied in a rotating coordinate frame in

which the synchronous oscillators have zero frequency, i.e. only relative frequencies are meaningful. In

contrast, networks of theta neurons like those studied here are not invariant with respect to adding the

same constant to all oscillator phases. The actual value of phase matters, and the neurons with zero

frequency in Fig. 2 have zero frequency simply because their input is not large enough to cause them

to fire.)

We now want to introduce rewiring parameters in such a way that on average, the number of connec-

tions is preserved as the networks are rewired. This is different from other formulations of small-world

networks in which additional edges are added [35, 33] (but see [42] for an example in which the number

of connections to a node is precisely conserved). The reason for doing this is to keep the balance of

excitation and inhibition constant. If we were to add additional connections, for example, within the

excititory population, the results seen might just be a result of increasing the number of connections,

rather than their spatial arrangement. We are interested in the effects of rewiring connections from

short range to long range, and thus use the form suggested in [45]. We replace (9)-(11) by

(15) qi =
1

N

N
∑

j=1

AIE
ij Pn(θj); ri =

1

N

N
∑

j=1

AEE
ij Pn(θj); si =

1

N

N
∑

j=1

AEI
ij Pn(φj);

where

(16) AIE
ij =















1 with probability

{

1− [1− (2MIE + 1)/N ]p1, |i− j| ≤ MIE

(2MIE + 1)p1/N, |i− j| > MIE

0 otherwise

(17) AEE
ij =















1 with probability

{

1− [1− (2MEE + 1)/N ]p2, |i− j| ≤ MEE

(2MEE + 1)p2/N, |i− j| > MEE

0 otherwise
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Figure 1. A bump solution of (3)-(6). Top: sin θi. Bottom: sinφi. Parameter

values: N = 1024,∆ = 0.02, I0 = −0.16, J0 = −0.4, n = 2, gEE = 25, gIE = 25, gEI =

7.5,MIE = 40,MEE = 40,MEI = 60 and τ = 10.
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Figure 2. Average frequency for excitatory population (blue) and inhibitory (red) for

the solution shown in Fig. 1.
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Figure 3. Typical realisations of AIE for p1 = 0 (left) 0.5 (middle) and 1 (right).

N = 1024,MIE = 40. Black corresponds to a matrix entry of 1, white to 0.

and

(18) AEI
ij =















1 with probability

{

1− [1− (2MEI + 1)/N ]p3, |i− j| ≤ MEI

(2MEI + 1)p3/N, |i− j| > MEI

0 otherwise

where |i − j| refers to the shortest distance between neurons i and j, measured on the ring. When

p1 = p2 = p3 = 0, (15) reverts to (9)-(11). Note that when p1 = 1, the probability of AIE
ij being 1

is independent of i and j, and that the expected number of nonzero entries in a row of AIE
ij (i.e. the

expected number of connections from the excitatory population to an inhibitory neuron) is independent

of p1. Similar statements apply for the other two matrices and their parameters p2 and p3. Typical

variation of AIE with p1 is shown in Fig. 3 and it is clear that increasing p1 interpolates between purely

local connections (p1 = 0) and uniform random connectivity (p1 = 1).

We could simply simulate (3)-(6) with (15) for particular values of p1, p2 and p3 but we would like

to gain a deeper understanding of the dynamics of such a network. The first approach is to take the

continuum limit in which the number of neurons in each network goes to infinity, in a particular way.
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Figure 4. One of the functions (19)-(21) with (a): p = 0, (b): p = 0.5, and (c): p = 1.

For this example, α = 0.1. Note the similarity with the middle row of the matrices

shown in Fig. 3.

2.3. Continuum limit. We take the continuum limit: N,MEI ,MEE,MIE → ∞ such that MEI/N →

αEI , MEE/N → αEE and MIE/N → αIE , where 0 < αEI , αEE , αIE < 1/2, and set the circumference

of the ring of neurons to be 1. In this limit the sums (15) are replaced by integrals (more specifically,

convolutions) with the connectivity kernels

GIE(x, p1) =

{

1− (1− 2αIE)p1, |x| < αIE

2αIEp1, otherwise
(19)

GEE(x, p2) =

{

1− (1− 2αEE)p2, |x| < αEE

2αEEp2, otherwise
(20)

GEI(x, p3) =

{

1− (1− 2αEI)p3, |x| < αEI

2αEIp3, otherwise
(21)

where GIE(x, p1) is the probability that a point in the excitatory population is connected to a point

in the inhibitory population a distance x away, and similarly for the other two kernels. The effect of

varying pj , j = 1, 2, 3, on one of the functions (19)-(21) is shown in Fig. 4. Taking GIE for example, we

see that
∫ 1/2

−1/2 GIE(x, p1) dx = 2αIE independent of p1, i.e. the expected total number of connections

is preserved, and similarly for the other two functions.

Taking the continuum limit of (3)-(6) we describe the dynamics of the θi and φi in terms of probability

densities FE(θ, x, I, t) and FI(φ, x, J, t), respectively, where x and t are (continuous) space and time,

and I and J are random variables with densities h(I) and g(J) respectively. FE satisfies the continuity

equation [31]

(22)
∂FE

∂t
+

∂

∂θ
{FE [1− cos θ + (1 + cos θ)(I + gEEv − gEIs)]} = 0

and similarly FI satisfies

(23)
∂FI

∂t
+

∂

∂φ
{FI [1− cosφ+ (1 + cosφ)(J + gIEu)]} = 0
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where

τ
∂v

∂t
= r − v(24)

τ
∂u

∂t
= q − u(25)

and

q(x, t) =

∫ 1

0

GIE(|x− y|, p1)

∫ ∞

−∞

∫ 2π

0

FE(θ, y, I, t)an(1− cos θ)ndθ dI dy(26)

r(x, t) =

∫ 1

0

GEE(|x− y|, p2)

∫ ∞

−∞

∫ 2π

0

FE(θ, y, I, t)an(1− cos θ)ndθ dI dy(27)

s(x, t) =

∫ 1

0

GEI(|x− y|, p3)

∫ ∞

−∞

∫ 2π

0

FI(φ, y, J, t)an(1− cosφ)ndφ dJ dy(28)

The forms of (22) and (23) mean that they are amenable to the use of the Ott/Antonsen ansatz [36,

37]. This ansatz states that if the neurons are not identical (i.e. ∆ > 0 for the networks studied

here), solutions of the continuity equations (22) and (23) decay exponentially onto a lower-dimensional

manifold on which the θ and φ dependence of FE and FI , respectively, have a particular form. This

form is a Fourier series in θ (or φ) in which the nth coefficient is some function to the nth power.

(See (57), for example.) Thus we can restrict (22) and (23) to this manifold, thereby simplifying the

dynamics.

The standard Kuramoto order parameter for an all-to-all coupled network with phases {θj} is the

expected value of eiθj [46]. For the network studied here we can define the analogous spatially-dependent

order parameters for the excitatory and inhibitory networks as

(29) zE(x, t) =

∫ ∞

−∞

∫ 2π

0

FE(θ, x, I, t)e
iθ dθ dI

and

(30) zI(x, t) =

∫ ∞

−∞

∫ 2π

0

FI(φ, x, J, t)e
iφ dφ dJ

respectively. For fixed x and t, zE(x, t) is a complex number with a phase and a magnitude. The

phase gives the most likely value of θ and the magnitude governs the “sharpness” of the probability

distribution of θ (at that x and t), and similarly for zI(x, t) and φ [22, 24]. We can also determine from

zE and zI the instantaneous firing rate of each population (see Sec. 3.1 and [34]).

Performing manipulations as in [22, 24, 31, 44] we obtain the continuum limit of (3)-(6): evolution

equations for zE and zI

∂zE
∂t

=
(iI0 −∆)(1 + zE)

2 − i(1− zE)
2

2
+

i(1 + zE)
2(gEEv − gEIs)

2
(31)

∂zI
∂t

=
(iJ0 −∆)(1 + zI)

2 − i(1− zI)
2

2
+

i(1 + zI)
2gIEu

2
(32)
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together with (24)-(25), where

q(x, t) =

∫ 1

0

GIE(|x− y|, p1)H(zE(y, t);n)dy(33)

r(x, t) =

∫ 1

0

GEE(|x− y|, p2)H(zE(y, t);n)dy(34)

s(x, t) =

∫ 1

0

GEI(|x− y|, p3)H(zI(y, t);n)dy(35)

and

(36) H(z;n) = an

[

C0 +
n
∑

q=1

Cq (z
q + z̄q)

]

where

(37) Cq =

n
∑

k=0

k
∑

m=0

n!(−1)kδk−2m,q

2k(n− k)!m!(k −m)!

and where by |x − y| in (26)-(28) we mean the shortest distance between x and y given that they are

both points on a circle, i.e. |x− y| = min (|x− y|, 1− |x− y|).

The advantage of this continuum formulation is that bumps like that in Fig. 1 are fixed points

of (31)-(32) and (24)-(25). Once these equations have been spatially discretised, we can find fixed

points of them using Newton’s method, and determine the stability of these fixed points by finding the

eigenvalues of the linearisation around them. We can also follow these fixed points as parameter are

varied, detecting (local) bifurcations [23]. The results of varying p1, p2 and p3 independently are shown

in Sec. 3.1.

2.4. Infinite ensembles. We now consider the case where N is fixed and finite, and so are the matrices

AIE , AEE and AEI , but we average over an infinite ensemble of networks with these connectivities,

where each member of the ensemble has a different (but consistent) realisation of the random currents

Ii and Ji [5, 28]. This procedure results in 4N ordinary differential equations (ODEs), 2N of them for

complex quantities and the other 2N for real quantities. Thus there is no reduction of dimension from

the original system (3)-(6), but as in Sec. 2.3, bump states will be fixed points of these ODEs.

Letting the number of members in the ensemble go to infinity, we describe the state of the excitatory

network by the probability density function

(38) fE(θ1, θ2, . . . , θN ; I1, I2, . . . IN ; t) ≡ fE({θ}; {I}; t)

and that of the inhibitory one by

(39) f I(φ1, φ2, . . . , φN ; J1, J2, . . . JN ; t) ≡ f I ({φ}; {J}; t)

which satisfy the continuity equations

(40)
∂fE

∂t
+

N
∑

j=1

∂

∂θj

[

fE

(

dθj
dt

)]

= 0

and

(41)
∂f I

∂t
+

N
∑

j=1

∂

∂φj

[

f I

(

dφj

dt

)]

= 0
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where dθj/dt and dφj/dt are given by (3) and (4).

Performing the manipulations in Appendix A we obtain

dzEj
dt

=
(iI0 −∆)

(

1 + zEj
)2

− i
(

1− zEj
)2

2
+

i(1 + zEj )
2(gEEvj − gEIsj)

2
(42)

dzIj
dt

=
(iJ0 −∆)

(

1 + zIj
)2

− i
(

1− zIj
)2

2
+

i
(

1 + zIj
)2

gIEuj

2
(43)

for j = 1, 2, . . .N where

(44) qi =
1

N

N
∑

j=1

AIE
ij H

(

zEj (t);n
)

(45) ri =
1

N

N
∑

j=1

AEE
ij H

(

zEj (t);n
)

(46) si =
1

N

N
∑

j=1

AEI
ij H

(

zIj (t);n
)

and

τ
dvi
dt

= ri − vi(47)

τ
dui

dt
= qi − ui(48)

for i = 1, 2, . . .N . Equations (42)-(48) form a complete description of the expected behaviour of a

network with connectivities given by the matrices AIE , AEE and AEI . Note the similarities with (31)-

(35) and (24)-(25). As mentioned above, the advantage of this formulation is that states like that in

Fig. 1 will be fixed points of (42)-(48), for the specified connectivities.

Recalling that the matrices AIE , AEE and AEI depend on the parameters p1, p2 and p3 respectively

we now investigate how solutions of (42)-(48) depend on these parameters. One difficulty in trying to

vary, say, p1, is that the entries of AIE do not depend continuously on p1. Indeed, as presented, one

should recalculate AIE each time p1 is changed. In order to generate results comparable with those from

Sec. 2.3 we introduce a consistent family of matrices, following [33]. Consider AIE (similar procedures

apply for the other two matrices) and define an N ×N matrix r, each entry of which is independently

and randomly chosen from a uniform distribution on the interval (0, 1). The matrix r is now considered

to be fixed, and we define AIE(p1) as follows:

(49) AIE
ij (p1) =

{

Θ[rij − p1(1− (2MIE + 1)/N)], |i− j| ≤ MIE

Θ[rij − (1− p1(2MIE + 1)/N)], |i− j| > MIE

where Θ is the Heaviside step function and the indices are taken modulo N . Comparing this with (16)

we see that for a fixed p1, generating a new r and using (49) is equivalent to generating AIE using (16).

The reason for using (49) is that since the rij are chosen once and then fixed, an entry in AIE will

switch from 0 to 1 (or vice versa) at most once as p1 is varied monotonically in the interval [0, 1].

The effects of quasistatically increasing p1 and p3 for (42)-(48) are shown in Sec. 3.2.
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3. Results

3.1. Results for continuum limit. For the system (31)-(32) and (24)-(25) we discretise the spatial

domain into 1024 evenly spaced points and approximate the integrals in (33)-(35) with Riemann sums.

We numerically integrate the spatially-discretised evolution equations in time, using appropriate initial

conditions, until a steady state is reached. This steady state is then continued using pseudo-arclength

continuation, and the stability of the solutions found determined by examining the eigenvalues of the

Jacobian evaluated at them [23]. The increment between successive values of the pi found during

continuation is not fixed and the numerical results found were interpolated to a uniform grid for plotting

in Figs. 5, 7 and 8. We consider varying p1, p2 and p3 independently, keeping the other two parameters

fixed at zero. The results of varying p1 are shown in Fig. 5, where we plot the firing rate of the two

populations, derived as Re(wi)/π where wi = (1− z̄i)/(1 + z̄i) for i = I, E, as in [34], where the zi are

fixed points of (31)-(32). We see an increase and then decrease in bump width as p1 is increased. There

is also a pair of supercritical Hopf bifurcations, between which the bump is unstable. (It is only weakly

unstable, with the rightmost eigenvalue of the Jacobian having a maximal real part of 0.015 in this

interval.) At the leftmost Hopf bifurcation the Jacobian has eigenvalues ±1.8191i and at the rightmost

it has eigenvalues ±1.7972i, with all other eigenvalues having negative real parts. One notable aspect

is the increase in firing rate of the inhibitory population “outside” the bump as p1 is increased, such

that when p1 = 1 the firing rate in this population is spatially homogeneous. This is to be expected,

as there are no inhibitory-to-inhibitory connections, and when p1 = 1 all inhibitory neurons receive the

same input from the excitatory population.

Increasing p2 while keeping p1 = p3 = 0 we find that the bump undergoes a Hopf bifurcation

(Jacobian has eigenvalues ±0.3404i) and then is destroyed in a saddle-node bifurcation at p2 ≈ 0.48, as

shown in Fig. 6. The behaviour of the bumps for 0 ≤ p2 ≤ 0.48 is shown in Fig. 7.

Varying p3 we obtain Fig. 8, where there are no bifurcations as p3 is increased all the way to 1,

corresponding to the case where all excitatory neurons feel the same inhibition, just a weighted mean of

the output from the inhibitory population. We again see an increase and then slight decrease in bump

width as p3 is increased.

While a Hopf bifurcation of a bump may seem undesirable from a neurocomputational point of

view, it should be kept in mind that oscillations are an essential phenomenon in many different neural

networks, and they are widely studied [4].

We have only varied one of p1, p2 and p3, keeping the other two probabilities at zero. A clearer

picture of the system’s behaviour could be obtained by simultaneously varying two, or all three, of these

probabilities. We leave this as future work, but mention that for the special case p1 = p2 = p3 = p, the

bump persists and is stable up to p ≈ 0.49, where it undergoes a saddle-node bifurcation (not shown).

3.2. Results for infinite ensemble. This section refers to equations (42)-(48). In Fig. 9 we show the

results of slowly increasing p1, while keeping p2 = p3 = 0. We initially set p1 = 0 and integrated (42)-

(48) to a steady state, using initial conditions that give a bump solution. We then increased p1 by 0.01

and integrated (42)-(48) again for 10,000 time units, using as an initial condition the final state of the

previous integration. We continued this process up to p1 = 1. The firing rate for the jth excitatory

neuron is Re(wj)/π where wj = (1− z̄Ej )/(1 + z̄Ej ), and similarly for an inhibitory neuron. Comparing

Fig. 9 with Fig. 5 we see the same behaviour, the main difference being that the bump now moves

in an unpredictable way around the domain as p1 is increased. This is due to the system no longer

being translationally invariant, and the bump moving to a position in which it is stable [47]. Unlike
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Figure 5. Firing rate for (a): excitatory population and (b): inhibitory population, as

a function of p1, with p2 = p3 = 0. There is a Hopf bifurcation on both white vertical

lines and the bump is unstable between these. Other parameters: ∆ = 0.02, I0 =

−0.16, J0 = −0.4, n = 2, gEE = 25, gIE = 25, gEI = 7.5, αIE = 40/1024, αEE =

40/1024, αEI = 60/1024 and τ = 10.
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Figure 6. Maximum (over x) of the firing rate for the excitatory population as a

function of p2 with p1 = p3 = 0. Solid: stable; dashed: unstable. The Hopf bifurcation

is marked with a circle. Other parameters: ∆ = 0.02, I0 = −0.16, J0 = −0.4, n =

2, gEE = 25, gIE = 25, gEI = 7.5, αIE = 40/1024, αEE = 40/1024, αEI = 60/1024 and

τ = 10.

the situation shown in Fig. 5 we did not observe any Hopf bifurcations, for this realisation of the AIE .

Presumably this is also a result of breaking the translational invariance and the weakly unstable nature

of the bump shown in Fig. 5 between the Hopf bifurcations.

Repeating this process as p3 is varied with p1 = p2 = 0 we obtain the results in Fig. 10. Comparing

with Fig. 8 we see very good agreement, although the bump does move considerably for small p3, as in

Fig. 9. Varing p2 with p1 = p3 = 0 we obtain similar results to those in Fig. 7 (not shown). Typical

behaviour of (42)-(48) with p2 = 0.3 (i.e. beyond the Hopf bifurcation shown in Fig. 7) is shown in

Fig. 11, where the oscillations are clearly seen.

3.3. Results for original network. To verify the results obtained above we ran the full network (3)-

(6) but using the connectivity (49) (and similar constructions for AEE and AEI) to calculate (15). The

frequency was measured directly from simulations. Varying p1 we obtain the results in Fig. 12; again,

no oscillatory behaviour associated with a Hopf bifurcation was observed and the results are similar

to those in Fig. 9. Varying p3 we obtained Fig. 13 (compare with Fig. 10). Fig. 14 shows oscillatory

behaviour at p2 = 0.3, p1 = p3 = 0 (the same parameter values as used in Fig. 11).
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Figure 7. Firing rate for (a): excitatory population and (b): inhibitory population,

as a function of p2, with p3 = p1 = 0. There is a Hopf bifurcation at the white

vertical line and the bump is destroyed in saddle-node bifurcation at p2 ≈ 0.48. Other

parameters: ∆ = 0.02, I0 = −0.16, J0 = −0.4, n = 2, gEE = 25, gIE = 25, gEI =

7.5, αIE = 40/1024, αEE = 40/1024, αEI = 60/1024 and τ = 10.
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Figure 8. Firing rate for (a): excitatory population and (b): inhibitory population,

as a function of p3, with p2 = p1 = 0. Other parameters: ∆ = 0.02, I0 = −0.16, J0 =

−0.4, n = 2, gEE = 25, gIE = 25, gEI = 7.5, αIE = 40/1024, αEE = 40/1024, αEI =

60/1024 and τ = 10.
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Figure 9. Firing rate for (a): excitatory population and (b): inhibitory population,

as a function of p1, with p2 = p3 = 0. Compare with Fig. 5. Other parameters: ∆ =

0.02, I0 = −0.16, J0 = −0.4, n = 2, gEE = 25, gIE = 25, gEI = 7.5, N = 1024,MIE =

40,MEE = 40,MEI = 60 and τ = 10.
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Figure 10. Firing rate for (a): excitatory population and (b): inhibitory population,

as a function of p3, with p2 = p1 = 0. Compare with Fig. 8. Other parameters: ∆ =

0.02, I0 = −0.16, J0 = −0.4, n = 2, gEE = 25, gIE = 25, gEI = 7.5, N = 1024,MIE =

40,MEE = 40,MEI = 60 and τ = 10.
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Figure 11. Instantaneous firing rate for (a): excitatory population and (b): inhibitory

population, with p2 = 0.3 and p3 = p1 = 0. Other parameters: ∆ = 0.02, I0 =

−0.16, J0 = −0.4, n = 2, gEE = 25, gIE = 25, gEI = 7.5, N = 1024,MIE = 40,MEE =

40,MEI = 60 and τ = 10.
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Figure 12. Firing rate for (a): excitatory population and (b): inhibitory population

in the full network (3)-(6), averaged over a time window of length 500, as a function

of p1 with p2 = p3 = 0. Compare with Fig. 9. Other parameters: ∆ = 0.02, I0 =

−0.16, J0 = −0.4, n = 2, gEE = 25, gIE = 25, gEI = 7.5, N = 1024,MIE = 40,MEE =

40,MEI = 60 and τ = 10.
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Figure 13. Firing rate for (a): excitatory population and (b): inhibitory population

in the full network (3)-(6), averaged over a time window of length 500, as a function

of p3 with p2 = p1 = 0. Compare with Fig. 10. Other parameters: ∆ = 0.02, I0 =

−0.16, J0 = −0.4, n = 2, gEE = 25, gIE = 25, gEI = 7.5, N = 1024,MIE = 40,MEE =

40,MEI = 60 and τ = 10.
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Figure 14. Behaviour of the full network (3)-(6) with p2 = 0.3 and p3 = p1 = 0.

(a): 1 − cos θj , (b): vj . Compare with Fig. 11. Other parameters: ∆ = 0.02, I0 =

−0.16, J0 = −0.4, n = 2, gEE = 25, gIE = 25, gEI = 7.5, N = 1024,MIE = 40,MEE =

40,MEI = 60 and τ = 10.
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Note that the results in Figs. 9-14 are each for a single realisation of a typical (parametrised) small-

world network. To gain insight into general small-world networks it would be of interest to study the

statistics of the behaviour of such networks.

4. Discussion

We have considered the effects of randomly adding long-range and simultaneously removing short-

range connections in a network of model theta neurons which is capable of supporting spatially localised

bump solutions. Such rewiring makes the networks small-world, at least for small values of the rewiring

probabilities. By using theta neurons we are able to use the Ott/Antonsen ansatz to derive descriptions

of the networks in two limits: an infinite number of neurons, and an infinite ensemble of finite networks,

each with the same connectivity. The usefulness of this is that the bumps of interest are fixed points of

the dynamical equations derived in these ways, and can thus be found, their stability determined, and

followed as parameters are varied using standard dynamical systems techniques.

For the parameters chosen we found bumps to be surprisingly robust: in several cases a rewiring

probability could be taken from 0 to 1 without destroying a bump. However, rewiring connections within

the excitatory population (increasing p2) was found to destabilise a bump through a Hopf bifurcation

and later destroy the unstable bump in a saddle-node bifurcation. Simulations of the full network were

used to verify our results.

The network studied has many parameters: the spatial spread of local couplings, the timescale of

excitatory synapses, the connection strengths within and between populations, and the distributions

of heterogeneous input currents. These were all set so that the network without rewiring supported

a stable bump solution, but we have not investigated the effects of varying any of these parameters.

However, even without considering rewiring, equations (31)-(35) and (24)-(25) provide a framework for

investigating the effects of varying these parameters on the existence and stability of bump solutions,

since these continuum equations are derived directly from networks of spiking neurons, unlike many

neural field models.

Acknowledgements: I thank the referees for their useful suggestions.

Appendix A. Mathematical details relating to Sec. 2.4

In the limit of an infinite ensemble we have

qi =
1

N

N
∑

j=1

AIE
ij

∫

· · ·

∫

Pn(θj)f
E({θ}; {I}; t) dθ1 dθ2 . . . dθN dI1 dI2 . . . dIN(50)

=
1

N

N
∑

j=1

AIE
ij

∫ ∞

−∞

∫ 2π

0

Pn(θj)f
E
j (θj , Ij , t)dθj dIj

ri =
1

N

N
∑

j=1

AEE
ij

∫

· · ·

∫

Pn(θj)f
E({θ}; {I}; t) dθ1 dθ2 . . . dθN dI1 dI2 . . . dIN(51)

=
1

N

N
∑

j=1

AEE
ij

∫ ∞

−∞

∫ 2π

0

Pn(θj)f
E
j (θj , Ij , t)dθj dIj
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si =
1

N

N
∑

j=1

AEI
ij

∫

· · ·

∫

Pn(φj)f
I({φ}; {J}; t) dφ1 dφ2 . . . dφN dJ1 dJ2 . . . dJN(52)

=
1

N

N
∑

j=1

AEI
ij

∫ ∞

−∞

∫ 2π

0

Pn(φj)f
I
j (φj , Jj , t)dφj dJj

where fE
j (θj , Ij , t) is the marginal distribution for θj , given by

(53) fE
j (θj , Ij , t) =

∫

· · ·

∫

fE({θ}; {I}; t)
∏

k 6=j

dθk dIk

and similarly

(54) f I
j (φj , Jj , t) =

∫

· · ·

∫

f I({φ}; {J}; t)
∏

k 6=j

dφk dJk

Multiplying the continuity equation (40) by
∏

k 6=j dθk dIk and integrating we find that each fE
j satisfies

(55)
∂fE

j

∂t
+

∂

∂θj

[

fE
j

(

dθj
dt

)]

= 0

Similarly each f I
j satisfies

(56)
∂f I

j

∂t
+

∂

∂φj

[

f I
j

(

dφj

dt

)]

= 0

Using the Ott/Antonsen ansatz we write

(57) fE
j (θj , Ij , t) =

h(Ij)

2π

{

1 +

∞
∑

n=1

[

αE
j (Ij , t)

]n
einθj + c.c.

}

and

(58) f I
j (φj , Jj, t) =

g(Jj)

2π

{

1 +

∞
∑

n=1

[

αI
j (Jj , t)

]n
einφj + c.c.

}

for some functions αE
j (Ij , t) and αI

j (Jj , t), where “c.c.” means the complex conjugate of the previous

term. Substituting (57) into (55) and (58) into (56) we find that

∂αE
j

∂t
= −i

[

Ij + gEEvj − gEIsj − 1

2
+ (Ij + gEEvj − gEIsj + 1)αE

j(59)

+
Ij + gEEvj − gEIsj − 1

2

(

αE
j

)2

]

and

(60)
∂αI

j

∂t
= −i

[

Jj + gIEuj − 1

2
+ (Jj + gIEuj + 1)αI

j +
Jj + gIEuj − 1

2

(

αI
j

)2

]

Substituting (57) and (58) into (50)-(52) we obtain

(61) qi =
1

N

N
∑

j=1

AIE
ij

∫ ∞

−∞

h(Ij)H
(

αE
j (Ij , t);n

)

dIj
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(62) ri =
1

N

N
∑

j=1

AEE
ij

∫ ∞

−∞

h(Ij)H
(

αE
j (Ij , t);n

)

dIj

(63) si =
1

N

N
∑

j=1

AEI
ij

∫ ∞

−∞

g(Jj)H
(

αI
j (Jj , t);n

)

dJj

where H is given by (36). Using standard properties of the Lorentzian one can perform the integrals

in (61)-(63) and defining zEj (t) ≡ ᾱE
j (I0 + i∆, t) and zIj (t) ≡ ᾱI

j (J0 + i∆, t) we have

(64) qi =
1

N

N
∑

j=1

AIE
ij H

(

zEj (t);n
)

(65) ri =
1

N

N
∑

j=1

AEE
ij H

(

zEj (t);n
)

(66) si =
1

N

N
∑

j=1

AEI
ij H

(

zIj (t);n
)

Evaluating (59) at Ij = I0 + i∆ and (60) at Jj = J0 + i∆ we obtain

dzEj
dt

=
(iI0 −∆)

(

1 + zEj
)2

− i
(

1− zEj
)2

2
+

i(1 + zEj )
2(gEEvj − gEIsj)

2
(67)

dzIj
dt

=
(iJ0 −∆)

(

1 + zIj
)2

− i
(

1− zIj
)2

2
+

i
(

1 + zIj
)2

gIEuj

2
(68)

for j = 1, 2, . . .N . Equations (64)-(68) are equations (42)-(46) in Sec. 2.4.
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