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Abstract. We present a biologically plausible model of binocular rivalry consisting of a network of
Hodgkin—Huxley type neurons. Our model accounts for the experimentally and psychophysically observed
phenomena: (i) it reproduces the distribution of dominance durations seen in both humans and primates,
(ii) it exhibits a lack of correlation between lengths of successive dominance durations, (iii) variation of
stimulus strength to one eye influences only the mean dominance duration of the contralateral eye, not the
mean dominance duration of the ipsilateral eye, (iv) increasing both stimuli strengths in parallel decreases
the mean dominance durations. We have also derived a reduced population rate model from our spiking
model from which explicit expressions for the dependence of the dominance durations on input strengths
are analytically calculated. We also use this reduced model to derive an expression for the distribution of

dominance durations seen within an individual.

1. Introduction

Binocular rivalry occurs when the two eyes are presented with drastically different images.
Only one of the images is perceived at a given time, and every few seconds there is alterna-
tion between the perceived images. The perceived durations of the images are stochastic
and uncorrelated with previous perceived durations (Fox and Herrmann, 1967; Walker,
1975). Also, changing the contrast of the images will change the dominance durations of
the perceptions in specific ways.

It is not yet clear exactly what is rivaling during binocular rivalry (Lee and Blake,
1999; Logothetis et al., 1996). It was traditionally thought that the rivalry was between
the two eyes (Blake, 1989; Lehky, 1988). However, there is more recent evidence that the
neurons at the site(s) of rivalry have access to information from both eyes (Carlson and
He, 2000; Kovacs et al., 1996; Lumer et al., 1998; Ngo et al., 2000), and these experimental
results cannot be explained in terms of “eye rivalry” (although see Lee and Blake (1999)
for an indication of how changing stimulus characteristics can produce either “eye rivalry”
or “stimulus rivalry”).

Recordings in the cortex of monkeys undergoing binocular rivalry indicate that the neu-
ronal activity of binocular rather than monocular neurons is correlated with the perception
of one of the presented images (Leopold and Logothetis, 1996; Leopold and Logothetis,
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A spiking neuron model for binocular rivalry 3

1999; Logothetis, 1998; Logothetis et al., 1996; Logothetis and Schall, 1989). The pro-
portion of neurons which are active only when one of the images is perceived increases
as one moves up the visual pathway (Leopold and Logothetis, 1999; Logothetis, 1998).
It should be noted that while some neurons are more active when their preferred image
is perceived, others are more active when their preferred image is suppressed, and yet
others show little selectivity during nonrivalrous stimulation but become more selective
during rivalrous stimulation (Leopold and Logothetis, 1996; Logothetis, 1998; Logothetis
and Schall, 1989).

Several explanations of binocular rivalry have been proposed (Dayan, 1998; Gomez et
al., 1995; Lehky, 1988; Lumer, 1998). One set of theories propose that the alternation is
due to some form of reciprocal inhibition between the two monocular pathways (Blake,
1989; Lehky, 1988). Many of the existing theories involve neural network or rate models
for which making direct quantitative comparisons with neurophysiological recordings are
not possible.

Our focus is on the specific biophysical mechanisms responsible for binocular rivalry
and multistable perception. We present a network of Hodgkin-Huxley—type neurons that
reproduces the observed psychophysical and experimental behavior. Our network consists
of both excitatory and inhibitory cells in a biophysically plausible cortical network. We
then present a reduced population rate model derived from the spiking neuronal network.
We propose that the known observed phenomena associated with binocular rivalry are
direct consequences of the underlying physiology of coupled spiking neurons.

We propose that a given percept is represented as a localized focus of active neu-
rons (Hansel and Sompolinsky, 1998; Laing and Chow, 2001). In the simple case of the
two presented images being oriented gratings (Lee and Blake, 1999; Logothetis et al., 1996),
we suggest that a population of neurons is tuned to a given orientation, and neurons in this
population are locally connected to other neurons with similar preferred orientations. (We
note that our spiking model could be adapted so that the two foci represent eye images.)
When a grating of a given orientation is presented, the network receives orientation specific
inputs and the local cortical connectivity shapes the activity of the population to fire
maximally at the preferred orientation with a drop off in activity away from the maximum
in a way that matches the tuning curve of the individual neurons. One possibility is that
this network is situated at a higher level visual area where inputs arrive both from lower
level visual areas and from higher level cortical areas.

When two conflicting stimuli are presented, the network is unable to sustain activity
centered around both inputs simultaneously and thus alternates between one focus of
activity and the other. This switching is the neurophysiological correlate of binocular
rivalry. The switching is induced by a slow process such as spike frequency adaptation

or synaptic depression. The dominance duration depends on not only the time scale of
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4 Laing and Chow

the slow process but also strongly on the input strength to the network. This allows for
large variations in the dominance times even when the time—constant of the slow process
is fixed. Our simulations and analysis show that the behavior of the network matches the
observed behavior in a number of ways: (a) it reproduces the distribution of dominance
durations seen in humans and primates, (b) there is a lack of correlation between lengths
of successive dominance durations, (c¢) variation of stimulus strength to one eye influences
only the mean dominance duration of the contralateral eye, not the mean dominance
duration of the ipsilateral eye, (d) increasing both stimuli strengths in parallel decreases
the mean dominance durations, and (e) rotating the bars so they are no longer orthogonal
increases mean dominance durations. The model’s behavior when the stimulus strength
to one eye is changed in synchronization with either the suppression or dominance of the
percept presented to that eye also agree with experimentally observed behavior.

Our model combines local cortical circuits and higher level control to explain binocular
rivalry. Local cortical circuits are responsible for selecting which neurons are involved in
the particular perception and inducing the switching between the alternate perceptions.
High level feedback can play a role in setting the eventual mean dominance times and can

strongly influence which image is perceived.

2. Hodgkin—Huxley type model

Our model consists of a network of excitatory and inhibitory Hodgkin—-Huxley—type con-
ductance based neurons in a biophysical cortical network architecture. The neurons are
orientation selective and receive external inputs from both eyes and possibly feedback from
higher levels. They have a “preferred orientation” and fire at a high rate when presented
with a grating at that orientation. To model the experiment in which the two eyes are
presented with orthogonal gratings, we inject currents at two locations in the network
centered around neurons whose preferred orientations differ by 90 degrees. The spatial
structure of the current input is Gaussian — see Figure 1 and eqn. (20). (Note that since
there is no eye—specific information in the network, this model is also appropriate for
the study of monocular viewing of orthogonal sinusoidal gratings (Andrews and Purves,
1997; Walker, 1976). In these experiments, periods of mixed perception are intermingled
with periods of exclusive visibility of one or the other pattern.)

We assume that excitatory cells are synaptically coupled to other excitatory cells with
a strength that decays as a Gaussian function of the difference between their preferred
orientations. There is also coupling with a Gaussian footprint from excitatory neurons to
inhibitory neurons, between inhibitory neurons, and from inhibitory neurons to excita-
tory neurons, with the variable always being the difference in preferred orientations. The

equations and parameter values are given in the Methods section.
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A spiking neuron model for binocular rivalry 5

We include two slow processes. The first is spike frequency adaptation due to a calcium—
dependent potassium current (Huguenard and McCormick, 1992; McCormick and Hugue-
nard, 1992). This is sufficient to cause oscillations in the network’s activity, although they
occur on a similar time—scale to the time constant of the decay of this current, ~ 80 ms.
We also include synaptic depression in the excitatory to excitatory connections that has
a larger time—constant (Abbott et al., 1997). We find that synaptic depression alone is
not sufficient to cause switching — we need a slow hyperpolarizing current as well. The
switching phenomenon is quite robust with respect to the exact strengths and time-scales
of these slow variables.

For simplicity, we explicitly model only those neurons whose activity increases when
their preferred stimuli are perceived. Those neurons that respond preferentially when
their preferred stimuli are suppressed may be part of a different circuit that is involved
in suppression of a particular image or eye, and those whose selectivity changes when
the stimulus is changed from rivalrous to nonrivalrous may be manifesting the effects of
attention on perception (Leopold and Logothetis, 1996; Logothetis, 1998; Logothetis and
Schall, 1989). Neurons in these last two classes are not explicitly modeled. Those neurons
possibly involved in suppressing an image are similar to those that fire when their preferred
stimulus is dominant (both groups fire when one image is suppressed) and our model could

be augmented to include such neurons.

2.1. SIMULATION RESULTS

Figure 2 shows a rastergram of the firing events of the excitatory neurons in the network
given two current stimuli centered at neurons whose preferred orientations differ by 90
degrees. At every moment in time, the activity is localized into a bump which is centered
at either of the two locations of maximum external current input. A bump in one of these
locations is thought to represent a perception of bars of the corresponding orientation.
The inhibitory neuron activity is very similar although it has a greater angular spread.
Note the wide spread of activity, lasting less than 100 ms, when the activity initially
moves to another location. The decrease in width after this period is probably due to the
adaptation current saturating. This type of high activity at the onset of a percept is seen
in some neurons in superior temporal sulcus and inferior temporal cortex during binocular
rivalry (Leopold and Logothetis, 1999; Sheinberg and Logothetis, 1997). Experimentally,
bursting behavior is also seen in some of these neurons. Replacing some of the fast ex-
citatory synapses in our model with slower NMDA-type synapses (as in Wang (1999))
causes neurons in a bump to burst in an approximately synchronous fashion while active,
rather than fire approximately periodically and asynchronously (results not shown). The

network is capable of sustaining only one bump at any given time, and since the neurons
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0 Laing and Chow

are coupled synaptically, the subthreshold inputs to the currently suppressed bump do not
affect the currently active bump.

Figure 3 shows the voltage trace from a typical neuron in a bump. Note the slower
firing rate at the end of a firing episode relative to that at the start. This simulation used
a total of 60 excitatory and 60 inhibitory neurons, and had no external noise. Similar
switching behavior is seen when larger numbers of neurons are used, but we do not show
results for these larger networks because of the prohibitively large amounts of computer
time required for such simulations.

A histogram of dominance durations is shown in Figure 4. It is unimodal and skewed,
with a long tail at long durations. Included are fits to the data of a Gamma function that
is commonly (Kovacs et al., 1996; Logothetis et al., 1996), although not always (Gomez et
al., 1995; Lehky, 1995), fitted to such data, along with another function (equation (12))
that is derived in Sec. 3.1. Figure 5 shows the autocorrelation coefficients for the data in
Figure 4. The lack of any strong correlation beyond zero lag is clearly seen, in agreement
with observations (Lehky, 1988; Lehky, 1995; Logothetis et al., 1996). The Lathrop statis-
tic (Logothetis et al., 1996), which measures the correlation between successive values
in a time series, was calculated (L = 0.977, ¢ = 0.073, giving a z-value of 0.31) and
this confirms the lack of a significant correlation. A simple explanation for this lack of
correlation in a completely deterministic system is that the system is chaotic — the
maximum Lyapunov exponent is approximately 40 s~!. Since typical dominance durations
are much longer than the reciprocal of this quantity, switching times can be thought of
as resulting from an extreme “undersampling” of the underlying dynamical system, and
successive dominance durations will not be correlated (Racicot and Longtin, 1997). (This
interpretation as undersampling also provides an explanation of the results of Lehky (1995)
who, by analyzing a time series of dominance durations, concluded that the underlying
dynamical system was not a low dimensional chaotic attractor.) Both Kalarickal and
Marshall (2000) and Lehky (1988) studied simple models of binocular rivalry which showed
this lack of serial correlation, but both models had stochastic inputs.

As a result of the spatial structure of both the external current inputs and the coupling,
neurons in the network have a range of different input currents and hence fire at different
average frequencies (Hansel and Sompolinsky, 1998; Laing and Chow, 2001). Thus, the
neurons cannot synchronize and there should not be any strong correlations between firing
times of different neurons although weak correlations are possible (Gutkin et al., 2001).
As the number of neurons in the network increases, fluctuations in the synaptic input to a
given neuron should decrease. The observed non—zero variance of experimentally obtained
distributions is thought to be due to both fluctuations from the finite number of neurons

in the network and synaptic, channel or external noise.
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A spiking neuron model for binocular rivalry 7

The switching can be understood heuristically. In Sec. 3 we give a more quantitative
explanation. Consider two input stimuli 1 and 2. Connections between excitatory neurons
promote activity centered at stimulus 1 or 2 while inputs from the inhibitory population
prevent this activity from spreading over the whole network. This inhibitory activity is
also strong enough to suppress activity at the site corresponding to the stimulus that
is not perceived. (For sufficiently strong inputs, two bumps may coexist). Suppose that
population 1 is active and 2 is suppressed and consider the effects of the slow current
respounsible for spike frequency adaptation. This current increases at site 1 and decreases
at site 2 until eventually the adaptation remaining from activity at site 2 has decreased
sufficiently that the neurons at site 2 are able to fire again, immediately suppressing the
neurons at site 1. The adaptation current at site 2 then builds up, the adaptation current
at site 1 wears off sufficiently, and the cycle repeats. A similar argument can be made if
synaptic depression is the cause of the switching: both the recurrent excitation at site 1
and the inhibition of the neurons at site 2 weaken, allowing neurons at site 2 to fire and
suppress neurons at site 1.

One well-known aspect of binocular rivalry is that if the strength of the stimulus to one
eye is changed, it is largely the mean dominance duration of the other eye that is affected,
not the mean dominance duration of the eye whose stimulus strength is being changed.
This effect is sometimes known as Levelt’s second proposition (Bossink et al., 1993; Levelt,
1968) and has been observed many times (Leopold and Logothetis, 1996; Logothetis et
al., 1996; Mueller and Blake, 1989). More specifically, if the strength of the stimulus to
eye 1 is decreased, the mean dominance duration of eye 2 typically increases markedly
in a nonlinear fashion, while the mean dominance duration of eye 1 decreases by a small
amount. We performed this experiment with our model and the results are shown in
Figure 6 (together with data from the reduced model that is presented in Sec. 3). They
agree well with observations, and an explanation for this behavior is given in Sec. 3.

Another experiment that has been performed involves changing the angle between the
two sets of bars presented to the two eyes. It has been observed that decreasing the
angle from 90 degrees causes the mean dominance durations to increase (Andrews and
Purves, 1997). We performed this experiment on our model and the results are shown in
Figure 7. The variation is small (as it is in experiments, (Andrews and Purves, 1997))
but significant. (Smaller angular differences could not be tested, as this caused the two
bumps to “merge” into one that spanned both input positions. This is due to the widths
of the Gaussians used in coupling neurons — if these widths were reduced, smaller angular
differences could have been tested, but the total number of neurons in the network would
have then had to be correspondingly increased, resulting in prohibitively long simulation
times.) An explanation for the dependence of dominance duration on angle between bars

is given in Sec. 3.
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8 Laing and Chow

A further experiment of interest is that of Mueller and Blake (1989). They changed the
strength (contrast) of the stimulus presented to one eye, but the change was only made
during either dominance or suppression of that image. For example, if the manipulation
is synchronized with dominance of an eye, the contrast of the image presented to that
eye is changed when that image is reported as being dominant, and is returned to the
baseline level when the image is no longer reported as being dominant. We performed
this experiment with our model, and the results are shown in Figure 8. The results for
the case where the stimulus strength is synchronized with suppression of that image (Fig-
ure 8 (top)) are very similar to the situation described above as Levelt’s second proposition,
i.e. if the stimulus strength is decreased, the dominance duration of the ipsilateral eye is
largely unaffected, but the dominance duration of the contralateral eye increases markedly
(compare Figure 8 (top) with Figure 6). The results shown in this Figure agree well with
experimental results (Figure 4 of Mueller and Blake (1989)). The case when the stimulus
strength is synchronized with dominance of the image is shown in Figure 8 (bottom). It
is seen that decreasing the stimulus strength slightly decreases the dominance duration of
the ipsilateral eye, but leaves the dominance duration of the contralateral eye essentially
unchanged. This is also in good agreement with experimental results (Mueller and Blake,

1989). An explanation for this behavior is given in Sec. 3.

3. Reduced description

We make our heuristic arguments more precise with a reduced spatially averaged model.
The resulting equations are similar to the proposed models of Kalarickal and Marshall
(2000), Lehky (1988), Mueller (1990) and Wilson et al. (2000). In Appendix B we describe
how the following equations can be derived from our spiking neuronal network. They
represent the spatially averaged dynamics of two populations of Hodgkin-Huxley-type

neurons with recurrent excitation, cross—inhibition, adaptation and synaptic depression:

% = —uy + f(auig1 — Buags — a1 + 1) (1)
% = —uy + f(auzge — furgr — a2 + ) (2)
Ta% = —a1 + ¢of (quig1 — Buzgs — a1 + I1) (3)
Ta% = —az + dof (quzgs — Purgr — az + Iz) (4)
Td% = 1-g1 — q1¢af (quigr — Busgs — a1 + I1) (5)
Td% = 1— g2 — g2¢af (quage — Buigr — az + I) (6)
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A spiking neuron model for binocular rivalry 9

where all constants are positive. Here u; represents the spatially averaged net excita-
tory activity of each localized population seen in the simulations of the spiking neurons
(¢ = 1,2 labels the percept or “bump”), a; and g; are the population adaptation and
synaptic depression variables, respectively. We have included synaptic depression in both
the excitatory and inhibitory connections. While depression is thought to occur in only
excitatory synapses, the inhibitory neurons in the full spiking model are largely driven
by the excitatory population, and it is the depression in the excitatory to excitatory
connections that leads to this decrease in inhibitory activity on the time-scale of the
depression, so this is not an unreasonable choice. For simplicity we take the gain function
f to be the Heaviside step function i.e. f(z) = 1 for £ > 0 and f(z) = 0 for z < 0.
The constants 7, and 74 are the time constants of the adaptation and synaptic depression,
respectively, and are both assumed to be much larger than 1. A high level of u; is assumed
to be directly correlated with the perception of image i. The chaotic dynamics of the
spiking network are not represented in these reduced equations. They could be mimicked
by including stochastic forcing terms.

The dynamics of (1)-(6) are fairly simple because of the separation of time scales
between the activities and the slow variables. Depending on the parameters, the system
either oscillates or goes to a steady state. The only possible steady states are both activities
at zero (both—off), both activities at 1 (both—on), or one at 1 and the other at zero (one—on)
and its mirror image.

For clarity, first consider the case where only adaptation is active (i.e. g1 = g2 = 1
and we ignore equations (5) and (6)). For the both—off steady state, the variables satisfy
(u1,u2,a1,a2) = (0,0,0,0). For this state to exist, the total inputs of the gain func-
tions must be below threshold ie. I; < 0 and Ir < 0. For the both-on fixed state,
(u1,u9,a1,a2) = (1,1, ¢4, ¢s)- In this case, the inputs must be greater than threshold
ie.a—f—¢o+11 >0and a—f — ¢+ Iz > 0. Thus, strong inputs or strong excitation
is required for the both—on state. The one-on case has (u1,usg,a1,a2) = (1,0, ¢g,0) or its
mirror image. This requires o — ¢, + I; > 0 and Is — 8 < 0. Thus, the one—on fixed state
needs strong excitation and inhibition compared to the inputs.

If none of the fixed state conditions are satisfied then the system oscillates. Say, for ex-
ample, that u; = 1 and ug = 0. Then with a time constant 7,, a1 exponentially approaches
¢o and a9 exponentially approaches zero. This will decrease the total inputs to u; and
increase the total inputs to us. This causes the inputs to uo to cross threshold making
ug increase and simultaneously increasing inhibition to ui, causing it to decrease. The
process then repeats and oscillations ensue. We equate the duration that each population
is turned on with the dominance time of the corresponding percept.

An example is shown in Figure 9; parameter values are a = 0.2, = 0.4, ¢, = 0.4,

Tq = 20, I1 = 0.43, Iy = 0.5. One population becomes active only when its adaptation
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10 Laing and Chow

has worn off by a sufficient amount. For the parameters shown, population 1 switches on
when a1 = I; — 8 = 0.03 and population 2 switches on when ay = I, — 8 = 0.1.

We can calculate the dominance period by following the dynamics of the adaptation
variable. It has a growing phase (a;(t) = a{(t)) and a decaying phase (a;(t) = al(t)). Let
T; be the dominance period of percept 1 (decay phase of az) and T be that of percept 2

(decay phase of a1). T} is obtained from the condition
Iy - B—a3(T1) =0 (7)

where time is measured from the onset of percept 1. Solving (4) in the decaying phase
gives ad(t) = a4(0) exp(—t/7,). We need to compute a¢(0). We first note that aj(t) =
¢a+ (I2— B — ¢g) exp(—t/7,) in the growing phase, where time is now measured from the
onset of percept 2, and that a%(0) = aJ(7T3). This yields

Iy = B~ [$a+ (I2 = B — ¢a) exp(~T2/7a)] exp(~T1/7a) = 0 8)
Repeating for a; we get the same equation but with the indices reversed. This then allows
us to solve for T and 75 to obtain

These are shown in Figure 10 (top). It is clear that T} is largely independent of I7, while
T5 has a strong dependence on I; — this is an explanation for Levelt’s second proposition.

One notable difference between the curves in Figure 10 (top) and the data in Figure 6
for the spiking neuron model (and also those reported in Leopold and Logothetis (1996),
Logothetis et al. (1996) and Mueller and Blake (1989)) is that T} increases as I is decreased
in (9), in contrast with the other results above. (The qualitative nature of the behavior
predicted by (9) was also seen in the spiking neuron model when no synaptic depression
was included, results not shown.) However, adding the effects of depression to those of
adaptation in the model (1)-(6) can produce qualitative agreement between the behavior
of T1 as a function of I; for the reduced model, and the spiking model and experimental
results mentioned above; see below.

From expressions (9) we can determine the dependence of dominance duration on input
when the inputs have equal strength, i.e. Iy = Io = I:

T=—7,log (%) (10)

This is shown in Figure 10 (bottom). We see that as I is decreased, the dominance
durations increase, as observed experimentally. Also, there is a critical value of I (I = f3)
such that for I < 8 there are no oscillations.

The simple model (1)-(4) can also explain the results of Mueller and Blake (1989)

regarding synchronized changes in input, and the results of their type of experiment on
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A spiking neuron model for binocular rivalry 11

our detailed biophysical model (Figure 8). Imagine that I5 is fixed at I, and that I; is also
set to I when w4 is high, but is switched to I — A when u; is low, i.e. the change in I; is
synchronized with the suppression of percept 1. Since T3 is governed by the decay of ao
to a value set by Iy when us is low, and 75 is governed by the decay of a; to a value set
by I; when u; is low, this manipulation will clearly affect T5 more than it affects 77. In

fact, the expressions for 7} and T in this situation can be obtained directly from (9):

T =—malog (/3 + ¢Ia_—€ + A)’ T2 =—malog (ﬁ) (1)

Increasing A will produce a figure identical to Figure 10 (top), which is qualitatively the
same as Figure 4A in (Mueller and Blake, 1989).

Conversely, if I; is changed to a new level when w; is high, i.e. the changes in Ij
are synchronized with the dominance of percept 1, it is clear from the arguments above
that this will not affect either of the dominance durations. Experimentally (Mueller and
Blake, 1989), and for simulations of our biophysical model (Figure 8, (bottom)), dominance
durations during this type of experiment show either weak or no significant dependence
on the value to which I is changed during the dominance of percept 1. Thus, while the
reduced model (1)-(4) does not reproduce all experimental results in every detail, it does
reproduce the overall behavior.

In the presence of synaptic depression alone, the dynamics are similar in the parameter
regime with oscillations, although explicit expressions of the form (9) cannot be derived. As
in the case of adaptation only, there is a relative lack of dependence of T7 on I (although
it increases slightly as I; is decreased) and strong nonlinear dependence of T on I, (not
shown). However, in contrast with the adaptation—only model, once I decreases below the
critical value for oscillations (58/[1+ ¢4]) the “both—on” state ((u1,us2,91,92) = (1,1,1/[1+
¢al,1/[1 + ¢q])) is stable (as is the “one-on” state, (u1,u2,g1,92) = (1,0,1/[1 + ¢4],1) or
its mirror image).

Using the reduced model above, we can explain why decreasing the angle between two
sets of bars should increase the mean dominance durations. As mentioned, the inhibitory
activity in the network of spiking neurons has a greater angular spread than the excitatory
activity, so when the current inputs in Figure 1 are moved closer to one another, the net
effect is that each bump feels stronger inhibition from the other. For the rate model (1)-
(6), this corresponds to increasing 3, and from (10), or the equivalent expressions when
only synaptic depression is considered, it can be see that this is equivalent to decreasing
I, which leads to an increase in mean dominance duration.

For both spike frequency adaptation only and synaptic depression only we obtain a
nonlinear dependence of the periods on stimulus strength, and the existence of a minimum
strength for the weaker stimulus below which switching is not observed. The form of

the dependencies are similar to those observed (Bossink et al., 1993; Leopold and Logo-
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12 Laing and Chow

thetis, 1996), however, when interpreting these results one should keep in mind that the
relationship between “stimulus strength” and “current input” is not at all clear.

The full system, (1)-(6), shows qualitatively similar oscillations and dependence of
dominance durations on input strengths as the two special cases examined above, and we
suggest that in practice it may well be a combination of adaptation and synaptic depression
(and possibly more than one mechanism for each of these) that causes switching. As a
specific example of the behavior when both adaptation and depression are present in (1)-
(6), we show in Figure 6 linearly—rescaled plots of T} (dashed) and T, (dash-dotted) as
functions of I; when I was held constant. (Note that T} decreases as I; is decreased.) The
parameter values are o = 0.35, 8 = 0.2, ¢, = ¢q = 0.6, 7, = 20, 74 = 40, and the rescalings
are £ = (0.111; +0.064)/0.27 and ¢t = T1 2/20 4 2.1, where z is the strength of the current
input for the spiking neuron model (eqn. 20), and ¢ is the dominance duration in seconds.
Note that these rescalings can be absorbed into the parameters of the model (1)-(6), and
do not represent any physical changes. The curves in Figure 6 are not meant to be a fit to
the data from the spiking model, but to indicate that an appropriate mixture of adaptation
and depression in the simple model (1)-(6) can qualitatively reproduce observed behavior.

This analysis shows that the dominance durations can vary over a wide range depending
on the strength of the inputs. Thus even though the mechanism for switching may be
adaptation, synaptic depression or a combination of these two, and these processes are
likely to have relatively uniform time constants between subjects, there could still be
wide variations in the dominance durations between subjects due to differences in actual
input strengths. The sources of the binocular inputs in our model are not specified and
we envision them as being due to combined inputs from lower visual regions and higher
cortical regions. We postulate that variations in these inputs could be the reason for the
wide variation in dominance times seen in psychophysical experiments (Pettigrew and
Miller, 1998).

3.1. DISTRIBUTION OF DOMINANCE DURATIONS

We can also use this reduced model to explain the distribution of dominance durations
observed in the simulations of our spiking neuronal network. As noted in the above analysis,
the switching of one percept to the other is controlled by the release from inhibition due
to the decay back to the resting value of the adaptation or synaptic depression variable.
If we include the effects of the fluctuations due to the chaotic dynamics (or noise effects)
then this decay will be a stochastic process. Consider the example of adaptation only.
During decay the adaptation current obeys a?(t) = ag exp(—t/7). When a? decays below
a threshold level, the inhibited neurons will fire. However, with fluctuations the threshold
value will be a stochastic variable, and a( will not be the same for each dominance period.

Consider the simplified case where the threshold is reset to a random variable chosen from
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a Gaussian distribution, and ag is randomly chosen from another Gaussian distribution,

d is reset. The distribution of dominance durations is then

2
T) = Q e 117 [y + e 117 o ) 12
) =\ e ) P | 2y e ) 12

each time a

where 2,7, k and 7 are related to the parameters of the two Gaussian distributions. See
Appendix C for the derivation. This function is plotted in Figure 4 together with data
from the simulation of the full Hodgkin-Huxley network. It fits the data well and has the
typical skewed shape seen in experimental data (Kovacs et al., 1996; Logothetis et al.,
1996).

4. Discussion

Our cortical circuit of excitatory and inhibitory neurons is able to reproduce many of
the observed dynamical characteristics of binocular rivalry. We are also able to compute
analytically the dependence of the dominance period on the input strengths, and this shows
how Levelt’s second proposition can arise naturally in a network with mutual inhibition.

We find that the input strength to the network strongly influences the dominance du-
ration. This allows large variations in the dominance durations even with fixed adaptation
and synaptic depression time scales. The large distribution in mean times between subjects
could be due to the differential input to the local circuit — this may be especially true
of feedback from higher level cortical areas — and the strength of this contribution could
vary widely between subjects and even change within a subject. The neuromodulators
acetylcholine, histamine, norepinepherin and serotonin are all known to decrease the effects
of spike frequency adaptation in human cortex (McCormick and Williamson, 1989) and
if adaptation is the main mechanism for switching, changes in their concentration would
significantly affect mean dominance durations. It is known that there is some training
effect in binocular rivalry and multistable perception (Leopold and Logothetis, 1999),
and systematic changes in switching frequency on the time scale of several minutes have
been observed (Borsellino et al., 1972; Lehky, 1995). Also, knowledge that a stimulus is
ambiguous and the possible perceptions of it plays a role in switching (Rock et al., 1994).

There are instances when rivalry does not take place. It is known that if the stim-
ulus contrast is reduced the images from the two eyes can fuse into a single merged
percept (Leopold and Logothetis, 1999). Presumably, this fixed percept corresponds to a
“fixed” pattern of activation. In our model, reducing the input stimulus causes the duration
periods to increase until rivalrous oscillations cease. The ensuing fixed state depends on
the type of slow process in the system. If only adaptation is included then the network

goes to the both—off state. If only depression is included then the network can go into
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either the both—on state or the one-on state. With a combination of adaptation and
depression either of the fixed states are possible. However, since our network is assumed
to represent binocular information about orientation of gratings, it is unclear how fusion
would be represented — it may not simply be a state where the network is in the “both—on”
state. The local network we model may only represent the orientation of images and the
perception of grid images may be represented by a different set of neurons. One possible
scenario is that the orientation network, when active, inhibits the network of grid neurons.
Fusion then arises when the orientation network is inactive, thereby releasing the inhibition
on the grid network. In this scenario, the both—off state in our network would correspond
to fusion.

A lack of rivalry also occurs if the angular sizes of the images are increased beyond
a given level. What is perceived instead is a constantly changing spatial patchwork of
both images (Blake, 1989), or a traveling wave if the image is restricted to an essentially
one—dimensional annulus (Wilson et al., 2001). Our cortical network may only represent
orientation for a single spatial location, and the spatial patchwork may arise if there are
many networks of the type we have studied, each corresponding to a different spatial
location, and there is some form of local coupling between such networks. For strong input
strength, either both—on or one—on states are possible in our model.

Our simulations show that switching caused by depression is much less robust to noise
than switching caused by adaptation. The reason for this is probably that if depression is
used, the switching occurs because the balance between excitation and inhibition gradually
changes during a dominance period, finally reaching a critical value. This balance is quite
fragile, and external noise will upset it, causing switching. However, switching caused
by the wearing off of adaptation in the form of a slow hyperpolarizing current seems
more robust since the network will not switch until the current is close to threshold.
Small to moderate amounts of noise will not change the magnitude of the current that
is wearing off, acting instead to make the threshold a stochastic function of time rather
than a constant. One modification of the depression mechanism that could make it more
robust is the inclusion of not only depression between excitatory neurons, but facilitation
in the connections from excitatory to inhibitory neurons (Markram et al., 1998), on an
appropriate time—scale. We have seen that both adaptation and depression have advantages
and disadvantages with regards to modeling binocular rivalry, and in practice it is likely
that they both contribute. It is worth noting that in both the spiking neuron and reduced
models, the only way to obtain the correct dependence of the mean dominance duration
of the ipsilateral eye on stimulus strength when testing Levelt’s second proposition was to
include both spike frequency adaptation and synaptic depression. This suggests that both

are present in the relevant circuits of the cortex.
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Our reduced model was anticipated by Lehky (1988) who proposed a neural network
model of binocular rivalry which involved reciprocal inhibitory feedback between signals
from the two eyes, prior to binocular convergence. He created an electronic circuit to
represent the network, and for strong enough reciprocal inhibition the circuit oscillated.
The oscillations stopped for weak inhibition which Lehky attributed to fusion. He could
reproduce Levelt’s second proposition by changing the adaptation rates on either neuron
and postulated that changing stimulus strength changes adaptation rates.

Recently, Kalarickal and Marshall (2000) numerically studied a model similar to (1)-
(6), with noise, but not including adaptation. Their model reproduced Levelt’s second
proposition, the lack of correlation between successive dominance durations, and the
results of Mueller and Blake (1989) relating to synchronized changes in input strengths.
They also realized that it is the total input to the inactive population that determines
the time for which the active population remains active (thus explaining Levelt’s second
proposition and the results of Mueller and Blake (1989)), but the advantage of our reduced
model (1)-(6) over their model is that the dependence of dominance duration on input can
be explicitly derived.

Mueller (1990) presented a reduced model similar to (1)-(6) but without noise, and by
trial and error chose parameters so that his model reproduced the results of Mueller and
Blake (1989). However, due to the complexity of his model, little analytical insight can be
gained regarding the mechanisms or the underlying physiology.

Wilson et al. (2000) studied the oscillations in the perception of circles in static periodic
dot patterns (Marroquin patterns) using a planar network of 64 by 64 coupled “spike-rate”
units, each of which is analogous to our rate model (1)-(6), although these authors did
not include synaptic depression. Their adaptation variable’s time—constant determines the
slow (on the order of a few seconds) perceived switching between circles. They also fit a
Gamma function to their distribution of dominance periods. They did not include noise
in the simulations, so the width of the histogram of observed dominance periods is due to
the complex, possibly chaotic, behavior of a high dimensional dynamical system.

A third alternative model that we could have studied is a spatially-extended rate model,
similar to that of Wilson et al. (2000). Using Gaussian connectivity similar to that used
in the Hodgkin—Huxley type model (see Appendix A), but using rate units with dynamics
similar to (1)-(6), we obtain bumps similar to those seen in other rate models (Hansel and
Sompolinsky, 1998; Laing and Chow, 2001). By adding spatially inhomogeneous currents
and enough adaptation and/or depression we obtain bumps that alternate in a way similar
to those shown in Figure 2 (results not shown). The main difference between a spatially—
extended rate model and a spatially—extended spiking neuron model is that alternation

of bumps in the former is strictly periodic (as it is in e.g. Dayan (1998)), whereas in the
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latter it is nonperiodic, as seen from Figure 4. Thus such a model provides few benefits
over a spatially—averaged rate model such as (1)-(6).

Our model does not specify whether the rivalry is “stimulus rivalry” or “eye rivalry”.
Recent results of Lee and Blake (1999) may indicate that both are occurring. These authors
presented orthogonal gratings to the two eyes and investigated the effects of both flickering
the images at 18 Hz and swapping the images between the two eyes (as done by Logothetis
et al. (1996)). Their results suggest that both the 18 Hz flicker and the swapping of the
images continually produce transient effects that significantly change perception of the
images, and that either “eye rivalry” or “stimulus rivalry” can result from very similar
stimuli. Other recent results (O’Shea, 1998) suggest that binocular rivalry consists of two
components: alternations between two images that are independent of eye of origin, and
alternations between two images that depend on eye of origin. It is possible that networks
with our proposed connectivity exist in various regions of the cortex and produce rivalrous
dynamics.

The temporal dynamics of the perception of other ambiguous stimuli such as the Necker
cube are similar to those investigated in this model (Borsellino et al., 1972; Gomez et al.,
1995), which lends weight to the idea that binocular rivalry is another manifestation
of competition between alternative representations of a stimulus, rather than being a
phenomenon that is restricted to the ocular system (Leopold and Logothetis, 1999), and
it may be possible to extend this type of modeling to include more complex visual stimuli,

for example, blurred images (O’Shea et al., 1997).
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Appendix

A. Methods

The equations are (for each of the excitatory neurons):

Cddvte = Isyn + Iewt(t) - Imem(Ve’ne’ he) B IAHP(V;’ [Ca])
dne
o5 = Plon(Ve)(1 = ne) = Bu(Ve)ne]
d;te = '¢[ah(Ve)(1 - he) - ﬂh(vé)he]
dse
RS = Ao(Ve)(1~ s0) ~ 5. (13)
d[gta] = —0.002g¢4 (Ve — Voa)/(1 + exp {—(Ve + 25)/2.5}) — [Ca]/80
dg _
TQE =1- ¢_ fG(V€)¢

where Imem(Vesne,he) = gr(Ve — Vi) + gxne(Ve — Vi) + gna(moo(Ve))?he(Ve — Viva)
and Tagp(Ve,[Cal) = gamp[Cal/([Ca] + 1)(Ve — Vi). Other functions are mqo(V) =
am (V) (am(V) + Bm(V)), am(V) = 0.1(V + 30)/(1 — exp{—0.1(V +30)}), Bn(V) =
4exp{—(V +55)/18}, an(V) = 0.0L(V + 34)/(1 — exp{—-0.1(V+34)}),
Bn(V) = 0.125exp {—(V + 44)/80}, ap(V) = 0.07exp {—(V +44)/20}, Br(V) = 1/(1 +
exp{—0.1(V +14)}), (V) =1/(1 + exp{—(V + 20)/4}).

Parameters are g, = 0.05, V, = —65, gx = 40, Vx = —80, gng = 100, Vi, = 55,
Vea =120, gapp = 0.05, ¥ = 3, 7. = 8, 7, = 1000. f had various values between 0.5 and

1.5. The equations for the inhibitory neurons are

dv;

CE = Isyn+Iewt(t) = Imem (Vi ni; hi)
dn;
d_TZ = Plan(Vi)(1 = ng) — Bn(Vi)ng]
% = Plan(Vi)(1 = hy) — Br(Vi)hi]
ds; N1 e e

TZ'E = AO’(V;)(I 31) Si

7; = 10 and other functions are as above. The synaptic current to the jth excitatory

neuron is
1 N N N
~ |(Vee = Vd) > glkskt + (Vie— V)Y glest (14)
k=1 k=1
where V.. = 0, V;e = —80, V/ is the voltage of the jth excitatory neuron, s’g /i is the

strength of the synapses emanating from the kth excitatory/inhibitory neuron, ¢* is the

factor by which the kth excitatory neuron is depressed, N is the number of excitatory
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neurons (and the number of inhibitory neurons),

; 50 .
gle = Cee\| — exp (=50[(j — k)/N?) (15)
and 55
gle = aie\| — exp (—20[(j — k)/NT) (16)
Similarly, the synaptic current entering the jth inhibitory neuron is
1 LA LA
N [(Vez -V7) Z 9ei 35 + (Vi = V7)) Z it 3? (17)
k=1 k=1

where V,; =0, V;; = —80, Vij is the voltage of the jth inhibitory neuron,

o2 = a2 exp (20((G - F)/NT) (18)

and
ot = [ exp (=300 — B)/NP) (19

A typical I, for the excitatory population is

I(i)=0.4 lexp (— {MF) + exp (— {W}Q)] —0.01 (20)

wherei = 1... N, i.e. two Gaussians centered at 1/4 and 3/4 of the way around the domain
together with a constant negative current. I.,; for the inhibitory population is 0. Typical

values for the coupling strengths are aee = 0.285, e = 0.36, ae; = 0.2, 3 = 0.07.

B. Derivation of Reduced Model

Here we derive the reduced model, equations (1)—(6). We first note that spike frequency
adaptation and synaptic depression are both slow processes relative to the time over which
a spike occurs. Both are driven by the post-synaptic activity. Focusing on adaptation we

can write

da;
dt
where a; is a generalized adaptation variable (e.g. the calcium concentration in system (13))

= —ai/T—FAZ'(t) (21)

and A;(t) is proportional to the cell activity (instantaneous firing rate) of neuron 7. We
then assume that the neuronal activity is driven by the synaptic inputs through a gain
function f,

Ai(t) = £ (Y wigUs (1) — ai + ;) (22)
where w;; represents the synaptic weight from neuron j to neuron 4, and Uj(t) is the post-

synaptic response of neuron j. We assume the influence of the adaptation is linear and I;
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represents the external inputs to the neuron. A similar set of equations can be derived for
a generalized synaptic depression variable.

If the post-synaptic response is stereotypical, we can write it as being induced by the
activity through a linear filter yielding (Ermentrout, 1998)

U;(t) = / " et — 5)Ay(s) ds (23)

-0

If €(t) is composed of exponential and power functions we can invert this integral operator
to obtain a differential equation for Uj(t). For example, if we assume that €(t) is given
by a single exponential then (23) can be converted into a first order differential equation,
and substituting A; from (22) into (23) we obtain a set of coupled differential equations
involving the U;’s only, and we have converted the conductance-based network into a
network of “rate” neurons.

We assume that the network is in a state of binocular rivalry where two bumps of
neurons alternate their firing. The connectivity pattern of the network is such that the
local inhibition has a broader footprint than the excitation. Within a given bump the
excitation dominates the inhibition but outside of the bump the opposite is true. We can
thus consider the dynamics of a spatially averaged net activity of a bump that is self-
exciting and inhibits another self-exciting bump. Labeling the two populations by 1 and

2 and including noise, we obtain the set of spatially averaged equations (1)—(6).
C. Derivation of dominance duration distribution
Assume that the slow variable decays as g(t) = ae~*/" towards a fixed threshold, 6, that

has been chosen from a Gaussian with mean uy and standard deviation gy. The probability

density function for 6 is

1 —(po — 0)?
f(0) = oo/ exp <T> (24)

so the conditional probability, p(T'|a), that the decay takes time 7' given the initial value

—T/T _ _ aeo—T/T\2
— (L8 exp (o a26 ) (25)
t=T TV 2T 20%

If we now assume that the initial value, a, also comes from a Gaussian distribution with

a is proportional to

flor) |7

mean i, and standard deviation o, the probability density function for 7" is

p(T) = Q/_o:o ae~ T/ exp <—(,u9 — aeT/T)2> exp <M> da (26)

2
209

00 B\?2 B2
_ T/t _ _ _
Qe [waexp < lA (a 2A) +C 4A]> da (27)
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where o) T/ 2
e /T 1 96_ T /19
A=—5—+— B= = 2
203 + 202’ 02 7+ o5 ¢= 20 202 (28)
and Q is a normalization constant defined through [*°_ p(T)dT = 1. So
00 B 2
p(T) = Qe_T/TeB2/(4A)_C/ aexp | —A (a — —) da (29)
oo 24
= Qe e -0 [ (g B e gy (30)
BQ -T/7_,B?/(4A)-C
_ V7 BQe e (31)

2 43/2
where we have made the substitution u = a — B/(2A) and used the fact that ue™ " is an

odd function. Simplifying, we obtain

2
(1) = Qa00V2me” T lpaoj + ppoae 7] — [ttae™ /™ — o)
- €X
p [03 + 02e=2T/7]3/2 p 2(03 T 026 2077

(32)

Defining Q = Qo,09v/27m, Y= 0 2/uZ, n= po/pe and k = o2 /u?, this becomes

™y
( e [y + e/ T]) exp | — [e=tm =] (33)

’7 + ke 2T/7']3/2 2(,), + K/efQT/T)

Dropping the hat on €, this is equation (12).
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List of Figures

LAING: Two coupled networks of binocular, orientation—selective neurons.
The neurons are labeled with their preferred orientation in degrees. Current
is injected to two groups of neurons whose preferred orientations differ by
90 degrees.

LAING: Activity in the excitatory population as a function of time. The
current stimuli are centered at neurons 15 and 45. The right plot shows
detail of the left plot.

LAING: Voltage of the 38th neuron in Figure 2. Note the different horizontal
scales in the lower two plots. The apparent difference in spike heights is a
result of plotting voltage at discrete values of time.

LAING: The distribution of dominance durations for the Hodgkin—Huxley
model. The solid line is equation (12) with parameters v = 0.0174, n =
—0.0005, k = 0.0782, 7 = 1.1389, and the dashed is a Gamma distribution
with A = 2.3593 and r = 6.7381 where the Gamma distribution is f(t) =
/T (r)t" L exp(—At).

LAING: Autocorrelation coefficients for the data in Figure 4.

LAING: A demonstration of Levelt’s second proposition in a spiking neu-
ron model. The strength of one input was fixed at 0.4 and the other was
reduced. X — mean dominance duration for the stimulus whose strength was
decreased, o — mean dominance duration for the stimulus whose strength
was unchanged. Compare with Figure 1 of Leopold and Logothetis (1996),
Figure 4 of Logothetis et al. (1996), or Figure 2 of Mueller and Blake
(1989). Also shown are rescaled dominance durations from the reduced
model (1)-(6), (dashed and dash-dotted). See text for details.

LAING: Variation of mean dominance duration as a function of the angle
between two sets of gratings presented to the two eyes. Smaller angular dif-
ferences could not be tested, since for these values the two bumps “merged”.
The bars indicate the standard deviation of the dominance durations. Com-
pare with Figure 4B (i) in Andrews and Purves (1997).

LAING: The effects of changing the strength of one input in the spiking
neuron model, synchronized to either the suppression of that image (top),
or the dominance of that image (bottom), as described by Mueller and
Blake (1989). The strength of one input was fixed at 0.4 and the other was
reduced. x — mean dominance duration for the stimulus whose strength was
decreased, o — mean dominance duration for the stimulus whose strength

was unchanged. Compare with Figure 4 of Mueller and Blake (1989).

23

25

26

27

28
29

30

31

32

swapbc.tex; 11/03/2002; 16:50; p.23



24

10

Laing and Chow

LAING: Solution of the reduced model (1)—(4). Parameter values are a =
0.2,8=04, ¢, =04, 7, = 20, I; = 0.43, I, = 0.5, g1 = go = 1. The top
plot is u1 and a1, the bottom is uy and as. 33
LAING: Dominance durations with only adaptation considered. Top: equa-
tions (1)—(4) with g1 = g2 = 1, as given by (9). 71 is dashed and T5 is solid.
Note the slight increase in T as I is decreased, in contrast with Figure 6.
Parameter values are o = 0.2, = 0.4, ¢, = 0.4, 7, = 20, I, = 0.5. Bottom:
Dominance duration as a function of input (), when the inputs to (1)—(4)

are equal, i.e. Iy = Iy = I. Other parameters are as above. 34
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Figure 1. LAING: Two coupled networks of binocular, orientation—selective neurons. The neurons are
labeled with their preferred orientation in degrees. Current is injected to two groups of neurons whose

preferred orientations differ by 90 degrees.
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Figure 2. LAING: Activity in the excitatory population as a function of time. The current stimuli are

centered at neurons 15 and 45. The right plot shows detail of the left plot.
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Figure 8. LAING: Voltage of the 38th neuron in Figure 2. Note the different horizontal scales in the lower

two plots. The apparent difference in spike heights is a result of plotting voltage at discrete values of time.
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Figure 4. LAING: The distribution of dominance durations for the Hodgkin—Huxley model. The solid
line is equation (12) with parameters v = 0.0174, n = —0.0005, x = 0.0782, 7 = 1.1389, and the

dashed is a Gamma distribution with A\ = 2.3593 and r = 6.7381 where the Gamma distribution is
ft) = )\r/l"(r)tT_1 exp(—At).
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Figure 5. LAING: Autocorrelation coefficients for the data in Figure 4.
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Figure 6. LAING: A demonstration of Levelt’s second proposition in a spiking neuron model. The strength
of one input was fixed at 0.4 and the other was reduced. x — mean dominance duration for the stimulus
whose strength was decreased, o — mean dominance duration for the stimulus whose strength was un-
changed. Compare with Figure 1 of Leopold and Logothetis (1996), Figure 4 of Logothetis et al. (1996),
or Figure 2 of Mueller and Blake (1989). Also shown are rescaled dominance durations from the reduced
model (1)-(6), (dashed and dash-dotted). See text for details.
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Figure 7. LAING: Variation of mean dominance duration as a function of the angle between two sets of

N
~J°0

gratings presented to the two eyes. Smaller angular differences could not be tested, since for these values
the two bumps “merged”. The bars indicate the standard deviation of the dominance durations. Compare
with Figure 4B (i) in Andrews and Purves (1997).
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Figure 8. LAING: The effects of changing the strength of one input in the spiking neuron model, synchro-

nized to either the suppression of that image (top), or the dominance of that image (bottom), as described
by Mueller and Blake (1989). The strength of one input was fixed at 0.4 and the other was reduced. x —
mean dominance duration for the stimulus whose strength was decreased, o — mean dominance duration

for the stimulus whose strength was unchanged. Compare with Figure 4 of Mueller and Blake (1989).
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Figure 9. LAING: Solution of the reduced model (1)—(4). Parameter values are o = 0.2, 8 = 0.4, ¢, = 0.4,
To = 20, I1 = 0.43, I, = 0.5, g1 = g2 = 1. The top plot is u1 and a1, the bottom is us and as.
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Figure 10. LAING: Dominance durations with only adaptation considered. Top: equations (1)—(4) with

g1 = g2 = 1, as given by (9). T1 is dashed and 75 is solid. Note the slight increase in T} as Iy is decreased,

in contrast with Figure 6. Parameter values are @ = 0.2,8 = 04,¢, = 0.4,74 = 20,1> = 0.5. Bottom:

Dominance duration as a function of input (I), when the inputs to (1)-(4) are equal, i.e. Iy = I, = I.

Other parameters are as above.
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