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Abstract

We investigate Turing bifurcations in a neural field model with one spatial dimension.

For some parameter values the resulting Turing patterns are stable, while for others the

patterns appear transiently. We show that this difference is due to the relative position

in parameter space of the saddle-node bifurcation of a spatially-periodic pattern, and the

Turing bifurcation point. By varying parameters we are able to observe transient patterns

whose duration scales in the same way as type-I intermittency. Similar behaviour occurs in

two spatial dimensions.
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I. INTRODUCTION

Spatio-temporal pattern formation in regions of the brain has been a topic of

great interest for a number of years [1, 2, 4–6, 10, 12, 16, 18, 25, 29]. Because of the

relative spatial scales of the patterns of activity and individual neurons, continuum

models, in which space is taken as a continuous variable, are often used. The patterns

studied include spatially-localised “bumps”, modelling working memory and feature

selectivity in the visual cortex [14, 16, 23], travelling waves [12, 24], and spatially-

periodic patterns [7, 17, 28].

The formation of periodic patterns in the visual cortex has been proposed as the

mechanism behind geometric patterns perceived during hallucinations [3, 10, 11, 26],

and a common mechanism for the formation of spatio-temporally periodic patterns

is a Turing bifurcation in which a spatially-uniform solution becomes unstable to

spatially-periodic perturbations with a range of wavelengths [27]. Such bifurcations

in neural field models have been studied by several authors [6, 17, 25, 28, 29].

In this paper we are interested in pattern formation beyond a Turing instability

in the model of Laing et al. [21]

∂u(x, t)

∂t
= −u(x, t) +

∫

Ω

w(x − y)f [u(y, t)]dy (1)

where

w(x) = e−b|x|(b sin |x| + cos x) (2)

and

f(u) = 2H(u − θ)e−r/(u−θ)2 (3)

where H is the Heaviside function. Here, u(x, t) is the average voltage, or activity

level, of a neuronal population at spatial position x and time t. The parameter b

governs the rate at which oscillations in the coupling function w decay with distance.

The firing rate function f in (3) models neurons firing once threshold is reached

and tends to a maximal limit as the stimulus is increased. Parameter θ is the firing

threshold and r is the steepness parameter.

The main difference between this model and those previously studied is the form

of the coupling function, which is oscillatory rather than of “Mexican-hat” type [4,

10]. This decaying oscillatory form was motivated by labelling studies showing that
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spatially approximate periodic stripes are formed by coupled groups of neurons in the

prefrontal cortex [15]. Only spatially-localised patterns have previously been studied

for this model [19, 21], and the oscillatory nature of the coupling function is likely to

lead to novel behaviour [20].

Our goal is to use the analytical stability analysis of Hutt et al. [17] to investigate

Turing instabilities in (1)–(3). Since the trigonometric functions in w have period

2π we choose a domain Ω = [−10π, 10π], with periodic boundary conditions. (The

effects of a different domain size are discussed below). In (2) and (3), we have b, θ > 0

and set r = 0.095.

The paper proceeds as follows. First, we find spatially-uniform steady states of the

model in (1)–(3). We then use linear stability analysis to find regions of parameter

space where Turing instabilities can occur. In Section IIC numerical simulations

of the full model show that spatially-uniform steady states can go unstable to both

stable and transient Turing patterns, depending upon parameter values. Through

bifurcation analysis of periodic patterns we find that the stability of Turing patterns

is due to the position of the saddle-node bifurcation of a spatially-periodic pattern in

relation to the parameter value at which the Turing instability occurs. In Section II E

we show that the transiency of some solutions is related to type-I intermittency, and in

Section II F we extend the analysis to two spatial dimensions. The appendix contains

details of the numerical continuation of periodic orbits.

II. ANALYSIS AND RESULTS

A. Spatially-uniform states

We first find spatially-uniform steady states of (1)–(3). Let u∗ be the value of u

at one of these states. Since θ > 0, one solution is u∗ = 0. Nontrivial values of u∗

satisfy

u∗ = Wf(u∗)

where

W ≡
∫

Ω

w(x)dx =
4b

(

1 − e−10bπ
)

b2 + 1
,
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that is,

u∗ =
8b

(

1 − e−10bπ
)

e−r/(u∗−θ)2

b2 + 1
. (4)

Given b, (4) has one or three solutions, depending upon the value of θ. Fig. 1 shows

u∗ as a function of θ. With respect to spatially uniform perturbations, the zero

and upper steady states are always stable (solid lines) and the middle steady state is

unstable (dashed lines). The two nonzero steady states are destroyed in a saddle-node

bifurcation as θ increases.

B. Stability

To find a possible Turing bifurcation point we use the linear stability analysis of

Hutt et al. [17]. Let u∗ to be the upper spatially-uniform steady state found in (4)

and let

u(x, t) = u∗ +

∞
∑

n=−∞

un exp (iknx + λnt)

where kn = 2πn/|Ω| = n/10. Substituting into (1) and keeping first order terms we

obtain

λn = −1 + γWn

where γ ≡ f ′(u∗) and

Wn =
4b(b2 + 1)

[

1 − (−1)ne−10bπ
]

(b2 + k2
n)2 + 2 (b2 − k2

n) + 1
.

We see that λn ∈ R, so no oscillatory bifurcations are expected. Bifurcations do occur

when λn = 0, that is, when

γ = γ∗ ≡ 1

Wn
=

(b2 + k2
n)

2
+ 2 (b2 − k2

n) + 1

4b(b2 + 1) [1 − (−1)ne−10bπ]
. (5)

Since Wn > 0, the uniform steady state loses stability as γ increases through γ∗. Now

dγ∗/dkn > 0 for b > 1, so in this case u∗ will go unstable to a perturbation with k = 0,

i.e. to another spatially-uniform state. When 0 < b < 1, γ∗(kn) has a minimum at

kn =
√

1 − b2, and there will be a spatial pattern of wavelength km appearing when

γ = γ∗(km), where m is the integer for which γ∗(km) is minimised over all kn. Fig. 2

shows γ∗ as a function of kn for b = 0.25, 0.50, 0.75. For b = 0.25, the horizontal

line shows γ = γ∗ and indicates the onset of instability. The unstable wavenumber

4



is kn = 1.0, hence n = 10. (Recalling that kn = 2πn/|Ω|, we see that for a different

domain size, periodic perturbations with n 6= 10 may be the most unstable.) As θ is

varied further, γ increases through γ∗ and u∗ loses stability to a spatial perturbation.

For b = 0.50, the dominant unstable wavenumber is kn = 0.9, so n = 9. For b = 0.75,

the dominant unstable wavenumber is kn = 0.7, therefore n = 7.

In Fig. 3 we show curves corresponding to Turing bifurcations for n = 8, 9 and 10,

over a range of b values. The upper fixed point is stable to the left of the leftmost

curve. We see that for 0.47 < b < 0.5, the uniform steady state goes unstable to

a pattern with n = 9 as θ is increased, whereas for 0.25 < b < 0.3, a pattern with

n = 10 appears. Also shown is the curve of saddle-node bifurcations of the upper and

middle spatially-uniform fixed points. To the right of this, these states do not exist.

C. Simulations

We now show the results of simulations of (1)–(3) to confirm the above analysis.

We discretise Ω into a uniform grid of 501 points, and the convolution term is ap-

proximated by a Riemann sum. We set b and, using (5), choose θ such that the upper

nonzero spatially-uniform steady state given by (4) will be unstable to a spatially-

periodic pattern through a Turing instability. As an initial condition we use the

steady state plus a small random spatial perturbation. A typical Turing pattern that

appears is shown in the top panel of Fig. 4. This pattern has n = 10, as expected.

However, if we choose another set of parameter values, such as b = 0.5, θ = 1.94, we

see the behaviour in the bottom panel of Fig. 4. Here a pattern with n = 9 emerges, as

expected, but it is transient and the system moves eventually to the spatially-uniform

zero steady state. This behaviour was unexpected, as (to our knowledge) transient

Turing patterns have only been observed in chemical systems [9, 22], and there, the

transiency is due to chemical species in a closed system eventually being consumed.

It seems that for b small, there does exist a stable periodic pattern to which the

system is attracted once the Turing bifurcation occurs, whereas for larger b, such a

stable pattern does not exist. We now investigate this by finding spatially-periodic

patterns and following them as parameters are varied.
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D. The role of periodic orbits

The computational details of following periodic orbits are given in the appendix.

First, we consider b = 0.25. The top panel of Fig. 5 shows the solution curves of

8-, 9- and 10-bump periodic solutions. Stable solutions are indicated by solid lines

and unstable solutions by dashed lines. As θ is increased, 10-bump solutions are the

last to be destroyed in a saddle-node bifurcation. Vertical lines indicate the value of

θ for which a Turing instability occurs. The smallest value of θ for which a Turing

instability can occur is for instabilities with the wavenumber kn = 1.0, that is, n = 10.

Thus a 10-bump periodic solution will always arise in a Turing instability for these

parameter values. The saddle-node bifurcation of the upper and middle fixed points

is given by the circles joined by solid lines. A non-trivial spatially uniform steady

state cannot exist to the right of this line. To the left of the solid vertical line, a stable

uniform steady state will be unaffected by a spatial perturbation. For θ between the

solid vertical line and the saddle-node bifurcation vertical line, a Turing instability

can occur and a stable 10-bump solution forms.

Now consider b = 0.5. The bottom panel of Fig. 5 shows the solution curves for

8-, 9- and 10-bump periodic solutions. As θ is increased, the saddle-node bifurcation

for 10-bump solutions occurs first, then for 8-bump solutions, and finally, for 9-bump

solutions. For this larger value of b, stable periodic patterns do not exist where a

Turing instability can arise. The dominant unstable wavenumber is kn = 0.9. Thus a

Turing instability will give rise to a 9-bump periodic pattern for the range of θ between

the vertical lines for the n = 9 Turing instability and the saddle-node bifurcation of the

two nonzero fixed points. The 9-bump periodic pattern will only be seen transiently

as the system moves to the spatially-uniform zero steady state. This provides an

explanation for the behaviour seen in Fig. 4. For low values of b, stable periodic

patterns exist for the parameter values at which the spatially-uniform state becomes

unstable, and it is to those patterns that the system moves. For higher values of b,

stable periodic patterns do not exist for values of θ at which the Turing bifurcation

occurs; they have been destroyed in saddle-node bifurcations. Thus an approximately

periodic pattern arises from the Turing instability, but the system must move to a

stable state which is not spatially-periodic, in this case the spatially-uniform state
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u = 0.

The different types of behaviour are explained by Fig. 6, where we plot saddle-

node bifurcations of spatially-periodic patterns, and Turing instabilities, in the (θ, b)

plane. There is a value of b, b̄ say, at which the first Turing instability (n = 9) occurs

at the same value of θ at which the 9-bump periodic solution is destroyed in a saddle-

node bifurcation. We see that b̄ ≈ 0.4828. Thus for b > b̄ only transient patterns

appear, while for b < b̄ the patterns created in the Turing bifurcation can be stable

and hence permanent, or both permanent patterns and unstable (transient) patterns

can appear, depending upon the value of θ.

E. Scaling

The transient behaviour described above is caused by the system passing close to a

region of phase space in which (for nearby parameter values) there was a correspond-

ing stable periodic pattern. The effect of such a “ghost” is well-known in relation to

type-I intermittency [13] and has been described in chemical systems [9]. It can be

shown that for fixed b, the length of time spent in the vicinity of the previously stable

structure (in this case, a periodic pattern) scales as (θ − θ∗)−1/2, where the periodic

pattern is destroyed in a saddle-node bifurcation as θ increases through θ∗.

The easiest place to observe this scaling is for b slightly less than b̄, since we can

then make θ − θ∗ arbitrarily small, and have the spatially-uniform state unstable to

spatially-periodic perturbations. We set b = 0.4825, vary θ near θ∗ and measure T ,

the length of time for which a transient 9-bump structure is present. In Fig. 7 we

show ln(T ) versus ln(θ − θ∗), together with the least-squares fit straight line through

the data points. The straight line has slope of −0.50071, in excellent agreement with

the predicted value of −1/2 for this type of intermittency. These results show that

by tuning parameters of the system, arbitrarily long transients can be produced.

F. Two spatial dimensions

We can extend the analysis to two spatial dimensions but over an infinite domain.

The correction term for the finite domain is expected to have a small effect. The
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equation for the onset of instability in two dimensions can be obtained from (5) by

removing the correction term for the finite domain of (−1)ne−10bπ in the denominator

and replacing the 1D wavenumber with the norm of the 2D wavenumber.

Turing patterns with some spatial structure are observed in numerical simulations

(not shown). We see similar behaviour to the one-dimensional model in that the

Turing patterns appear to be stable for small b and transient for large b.

III. CONCLUSION

We have studied pattern formation arising out of Turing bifurcations in a recently-

proposed neural field model. In contrast with the results of others [6, 17, 25, 28, 29],

transient Turing patterns were observed in some regions of parameter space while

stable patterns were found elsewhere. We provided an explanation for this by showing

that transient Turing patterns occur in regions of parameter space where no stable

periodic patterns exist. By varying parameters we were able to control the amount

of time for which a transient structure appeared, and this relationship was quantified

using the analysis of Type-I intermittency [13]. Simulations in two spatial dimensions

showed the same qualitative behaviour.

Macroscopic models such as the one studied here have had a major impact on

the understanding of the possible dynamics of brain regions [4]. Our main result is

the observation and analysis of transient Turing patterns. These results suggest that

transient patterns perceived during hallucinations may not be the result of homeo-

static processes “quenching” activity, but rather a result of the intrinsic dynamics of

the system itself.

APPENDIX A: FOLLOWING PERIODIC PATTERNS

Here we show how to follow spatially-periodic patterns in parameter space to

determine regions in which they exist and are stable. We represent these periodic

patterns using Fourier series:

u(x) =
a0

2
+

∞
∑

m=1

[am cos (mknx) + bm sin (mknx)] . (A1)
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Since the domain is of size 20π we take w(x) to be periodic with period 20π, writing

w(x) =
α0

2
+

∞
∑

p=1

αp cos (px/10) (A2)

where

α0 =
2

20π

∫

Ω

w(x)dx =
W

10π

and

αp =
2

20π

∫

Ω

cos (px/10)w(x)dx

=
2b(b2 + 1)(1 − e−10bπ)

5π{[b2 + (p/10)2]2 + 2[b2 − (p/10)2] + 1} .

Substituting (A1) and (A2) into (1) we have

a0

2
+

∞
∑

m=1

[am cos (mnx/10) + bm sin (mnx/10)] =

α0

2

∫

Ω

f [u(y)]dy +

∞
∑

p=1

αp cos (px/10)

∫

Ω

cos (py/10)f [u(y)]dy +

∞
∑

p=1

αp sin (px/10)

∫

Ω

sin (py/10)f [u(y)]dy.

So for p = mn we have

a0 = α0

∫

Ω

f [u(x)]dx

am = αmn

∫

Ω

cos (mnx/10)f [u(x)]dx

and

bm = αmn

∫

Ω

sin (mnx/10)f [u(x)]dx.

Note that since u(x) is periodic with period 20π/n we have

a0 = nα0

∫ 20π/n

0

f [u(x)]dx (A3)

am = nαmn

∫ 20π/n

0

cos (mnx/10)f [u(x)]dx (A4)

and

bm = nαmn

∫ 20π/n

0

sin (mnx/10)f [u(x)]dx. (A5)
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Equations (A3)–(A5) form a set of nonlinear coupled equations. These equations

do not uniquely specify the solution, since any spatial translation of u(x) is also a

solution. We thus pick one from this infinite family by imposing that a1 = 0. We

set b and θ, choose n, and find an initial n-bump pattern that is a solution of (1)

by solving (A3)–(A5). We use the pseudoarclength continuation method [8] to find

solutions as parameter values are varied. Following these patterns as θ is increased,

we find that they are destroyed in saddle-node bifurcations, as shown in Fig. 5.
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FIG. 1: Spatially-uniform steady states, u∗, of (1)–(3) as a function of θ, as given by (4).

The curves from bottom to top are for b = 0.25, 0.50, 0.75 respectively.

0 0.5 1 1.5
0

0.5

1

1.5

k
n

γ∗

b=0.25
b=0.50
b=0.75

γ

FIG. 2: γ∗ as a function of kn for b = 0.25, 0.50, 0.75. The wavenumbers kn = n/10

are indicated by circles, asterisks and diamonds for b = 0.25, 0.50, 0.75, respectively. For

b = 0.25, the horizontal line of γ indicates the onset of instability and a dominant unstable

wavenumber of kn = 1.0.
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FIG. 3: Curves of Turing instabilities for n = 8, 9, 10 (dashed-dot, solid and dashed, respec-

tively). Also shown is the curve of saddle-node bifurcations of the upper and middle fixed

points (circles joined by solid line).
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FIG. 4: (Color online) Top: A stable Turing pattern for b = 0.25, θ = 0.63. Bottom: A

transient Turing pattern for b = 0.5, θ = 1.94. Time is plotted horizontally and space

vertically. The color indicates the value of u (scale on right).
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FIG. 5: Top: Solution curves for n-bump periodic patterns for b = 0.25 (n = 10, 9, 8 from

right to left). Solid line for stable solution and dashed line for unstable solution. The vertical

lines give the Turing instability for n = 10, 9, 8 (dashed, solid, dashed-dot, respectively).

Also shown is the curve of saddle-node bifurcations of the upper and middle fixed points

(circles joined by solid line). Bottom: Solution curves for n-bump periodic patterns for

b = 0.50 (n = 9, 8, 10 from right to left).
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FIG. 6: Curves of saddle-node bifurations of n-bump periodic patterns (bold lines) and

curves of Turing instabilities for n = 8, 9, 10 (dashed-dot, solid and dashed, respectively).
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FIG. 7: Plot of ln(T ) as a function of ln(θ − θ∗) where T is the length of time a transient

9-bump structure is present for b = 0.4825 and θ. The saddle-node bifurcation of 9-bump

periodic patterns occurs at θ∗. The fitted line has a slope of −0.50071.
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