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We consider the effects of several forms of delays on the existence and stability of travelling waves
in non-locally coupled networks of Kuramoto-type phase oscillators, and theta neurons. By passing
to the continuum limit and using the Ott/Antonsen ansatz we derive evolution equations for a
spatially-dependent order parameter. For phase oscillator networks the travelling waves take the
form of uniformly twisted waves, and these can often be characterised analytically. For networks of
theta neurons, the waves are studied numerically.
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One of the simplest forms of behaviour of an array of coupled oscillators is a travelling
wave with constant speed. Here we consider two types of non-locally coupled networks
of heterogeneous phase oscillators which show travelling wave solutions, and investigate
the effects of including different forms of delays in their coupling. By taking the
continuum limit and using the Ott/Antonsen ansatz we derive evolution equations for
a spatially-dependent order parameter. Numerical and bifurcation analysis of these
equations gives results on the existence and stability of travelling waves, and their
dependence on delays.

I. INTRODUCTION

The study of networks of coupled oscillators has a long history and encompasses many different
areas of science [49]. One particular type of network of interest is an array, or lattice, of oscillators [17,
26, 27, 31, 35, 45], which can be thought of as a discretisation of a continuous oscillatory medium.
A common simplification when studying networks of coupled oscillators is to describe the state of an
oscillator by a single variable, its phase [52]. This simplification is valid when oscillators are weakly
coupled, for example [15, 16]. One type of solution which can occur in an array of non-locally
coupled oscillators is the chimera state [30, 48] in which some oscillators are synchronised while
the remainder are asynchronous. Another simpler type of solution is a travelling wave, described
by a fixed profile which travels at a constant speed. Such waves have been observed in various
neural systems [16, 23, 50, 51] and are often associated with pathological states such as cortical
spreading depression and epileptic seizures [5]. One particular type of travelling wave is a uniformly
twisted state in which, at any moment in time, the phase of oscillators varies linearly with spatial
position [21, 41]. Such states have been previously studied in networks of identical oscillators [59]
and later in heterogeneous networks [45].
Delayed interactions between different nodes in a network often occur. One example is a transmis-

sion delay, in which a signal propagates (along a neuron’s axon, for example) at a constant speed, and
thus the delay is proportional to the distance between units [7, 53, 63]. Another example is a fixed
delay [9, 43, 62], representing the time taken for certain processes to occur, for example the kinetics
of synaptic transmission between two neurons [8, 16], or the passage of light through a laser [36].
A third possibility involves distributed delays [2, 38, 39], which may result from there being many
connections between two nodes, with different delays along each path. A related concept is that
of distributed transmission velocities [3]. One may also consider systems simultaneously possessing
two or more of these types of delays [18].
In this paper we investigate the effects of including various types of delay on the existence and

stability of both uniformly twisted waves in a network of Kuramoto oscillators, and travelling waves
in a network of theta neurons, to better understand the effects of delays on such types of waves.
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In both networks we assume that the oscillators are heterogeneous. The effects of delays on the
dynamics of coupled oscillator networks have been considered a number of times previously [10,
15, 24, 52, 55], but here we will extensively use the recent ansatz of Ott and Antonsen [46, 47] to
derive continuum level descriptions of travelling waves, which will make the formulation of delayed
equations straightforward.
We study Kuramoto oscillators in Sec. II and theta neurons in Sec. III. For the Kuramoto

oscillators we consider constant delays in Sec. II B, transmission delays in Sec. II C and distributed
delays in Sec. II D. For the theta neurons we consider only distributed delays, in Sec. III C.

II. KURAMOTO OSCILLATORS

We first consider a network of Kuramoto oscillators, i.e. non-identical phase oscillators coupled
by a sinusoidal function of phase differences [1, 28, 57].

A. Theory

The model consists of N phase oscillators on a one-dimensional lattice, each coupled to M ∈ Z
+

neighbours either side:

dθj
dt

= ωj +
K

2M + 1

M∑

k=−M

sin (θj+k − θj) (1)

for j = 1, 2 . . .N , where periodic boundary conditions in index (space) are taken and K is the
coupling strength. We assume that the ωj are randomly chosen from a Lorentzian distribution,
g(ω), with mean Ω0 and half-width-at-half-maximum 1, i.e.

g(ω) =
1/π

(ω − Ω0)2 + 1
(2)

This type of model has been studied previously [44, 60] and the presentation here follows [45].
(The authors [45] actually considered the more general case, where θj+k − θj in (1) was replaced by
θj+k−θj−α for some constant α.) The choice of a Lorentzian for g(ω) is common [30, 31, 38, 39, 45–
47], and allows one to analytically evaluate an integral in (11) (below), although it is not clear that
all results for a Lorentzian apply when other similar distributions are used [29]. Note that the
dynamics of (1) depend on only phase differences, i.e. the system is invariant under a uniform phase
shift: θj 7→ θj + γ for all j, where γ is an arbitrary constant.
Defining a complex mean field at each lattice point by

Zj(t) =
1

2M + 1

M∑

k=−M

eiθj+k (3)

we have

dθj
dt

= ωj +KIm
[
Zje

−iθj
]
= ωj +

K

2i

[
Zje

−iθj − Zje
iθj

]
(4)

where overbar indicates complex conjugate. We fix the length of the periodic domain to be 2π so
that oscillator j is at spatial position xj = 2πj/N and take the continuum limit N,M → ∞ in
such a way that M/N → σ < 1/2. The system is then described by a probability density function
f(θ, ω, x, t) such that the probability that an oscillator in [x, x+ dx] and with natural frequency in
[ω, ω + dω] has phase in [θ, θ + dθ] at time t is f(θ, ω, x, t)dxdωdθ, where x is now position along a
line segment of length 2π. The continuous analogue of the mean field Zj is then

Z(x, t) =

∫ 2π

0

G(x − y)

∫ ∞

−∞

∫ 2π

0

f(θ, ω, y, t)eiθdθ dω dy (5)
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where

G(x) =

{
1

4πσ , |x| < 2πσ

0, otherwise
(6)

and the spatial integral is evaluated using periodic boundary conditions. The density f satisfies the
continuity equation

∂f

∂t
+

∂

∂θ
(fv) = 0 (7)

where

v = ω +
K

2i

[
Ze−iθ − Zeiθ

]
(8)

The system (7)-(8) is amenable to the Ott/Antonsen ansatz [46, 47] so we write

f(θ, ω, x, t) =
g(ω)

2π

[
1 +

∞∑

n=1

{z̄(ω, x, t)}neinθ + c.c.

]
(9)

for some function z(ω, x, t) where “c.c.” is the complex conjugate of the previous term. This ansatz
is an assumption that f takes the particular form (9). Substituting (9) into (5) and (7)-(8) we find
that z satisfies

∂z

∂t
= iωz +

K

2

[
Z − Zz2

]
(10)

where

Z(x, t) =

∫ 2π

0

G(x− y)

∫ ∞

−∞

g(ω)z(ω, y, t)dω dy (11)

Using contour integration to evaluate the integral over ω in (11) and defining u(x, t) = z(Ω0− i, x, t)
we find that u satisfies

∂u

∂t
= (−1 + iΩ0)u+

K

2

[
Z − Zu2

]
(12)

where

Z(x, t) =

∫ 2π

0

G(x− y)u(y, t)dy (13)

Partially coherent uniformly-twisted states are solutions of (12)-(13) of the form u(x, t) = aei(qx+νt)

where a and ν are real and q is an integer (the “twist” of a twisted state; an integer because of the
periodic boundary conditions of the domain). The quantity a (0 < a < 1) measures the coherence
level of a state: a increases as the coherence increases, q gives the rate at which the phase of u
changes with x at a fixed t, while ν gives the temporal rotation rate of a twisted state. Substituting
this form of solution into (12)-(13) we find

iν = −1 + iΩ0 +
KĜ(q)

2
(1− a2) (14)

where Ĝ is the Fourier transform of G:

Ĝ(q) =

∫ 2π

0

G(x) cos (qx)dx =
sin (2πσq)

2πσq
(15)

for the coupling function given by (6). Equating real and imaginary parts of (14) we find

a2 = 1−
2

KĜ(q)
and ν = Ω0 (16)
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FIG. 1: Twisted state solutions of (12)-(13) with q = 0, 1, 2, 3 (top to bottom). Solid: stable; dashed:
unstable. The circles indicate Hopf bifurcations. Parameters: σ = 0.1.

Thus a twisted state with twist q is created as K increases through 2/Ĝ(q), and the value of Ω0 is
largely irrelevant, as it just sets the rotation rate ν.
The stability of the uniformly incoherent state (corresponding to u = 0 in (12)) and of a twisted

state can be found analytically by linearising (12)-(13) about them [45], and we do not present the
analysis here. The uniformly incoherent state becomes unstable to a perturbation with twist q at
the same value of K at which the q-twisted state is created. The 0-twisted state is stable upon
creation as K is increased, but the states with higher values of q are unstable when they are created,
only stabilising through a subcritical Hopf bifurcation as K is increased further, as shown in Fig. 1.
This scenario has similarities to the Eckhaus instability [45, 58].
Figure 2 shows snapshots of twisted waves with q = 0, 1 for the original system of phase oscilla-

tors (1) at K = 5. We see from Fig. 1 that for this value of K these are the only stable twisted states.
(All computations were performed using Matlab. Numerical integration was done with ode45 using
default tolerances and continuation using pseudo-arclength methods [33].)

B. Constant delay

We now consider including a constant delay, modelling some sort of “event” of fixed duration
which occurs before the influence of an oscillator can be felt by those to which it is connected. We
thus modify (1) to

dθj(t)

dt
= ωj +

K

2M + 1

M∑

k=−M

sin (θj+k(t− τ) − θj(t)) (17)

where τ ∈ R
+. This can be thought of as a spatially-extended version of [62]. Defining the complex

mean field as in (3), moving to the continuum limit and performing the integrals as in Sec. II A we
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FIG. 2: Snapshots of twisted state solutions of (1) with q = 0 (a) and q = 1 (b), after transients have been
discarded. Initial conditions of θi(0) = 2πqi/N were used. Parameters: N = 1000, M = 100, K = 5,Ω0 = 0.

find that the dynamics are given by

∂u(x, t)

∂t
= (−1 + iΩ0)u(x, t) +

K

2

[
Z(x, t− τ) − Z(x, t− τ)u2(x, t)

]
(18)

where Z(x, t) is given by (13). Again looking for solutions of the form u(x, t) = aei(qx+νt) we find
that

iν = −1 + iΩ0 +
KĜ(q)

2

[
e−iντ − a2eiντ

]
(19)

and rearranging we find that

a2 = 1−
2

KĜ(q) cos (ντ)
(20)

where ν satisfies

ν = Ω0 + tan (ντ) −KĜ(q) sin (ντ) (21)

A twisted wave is created when a = 0, i.e. when ν satisfies

ν = Ω0 − tan (ντ) (22)

Eqn. (22) has an infinite number of solutions for fixed Ω0 and τ but we will numerically follow the
solution branch ν(τ) for which ν(0) = Ω0, as τ is increased. Substituting this branch into (20) and
setting a = 0 we can find the value of K at which a q-twisted state is created for a range of τ values.
These are shown with solid curves in Fig. 3. As in Sec. II A, the q = 0 state is stable upon creation,
but the states with higher values of q are unstable upon creation and are stabilised through Hopf
bifurcations as K is increased further. To find these Hopf bifurcations we move to a coordinate
system rotating at speed ν, i.e. let ũ(x, t) = u(x, t)e−iνt so that ũ is a fixed point of

∂ũ(x, t)

∂t
= [−1 + i(Ω0 − ν)]ũ(x, t) +

K

2

[
e−iντ Z̃(x, t− τ) − eiντ Z̃(x, t− τ)ũ2(x, t)

]
(23)

where

Z̃(x, t) =

∫ 2π

0

G(x− y)ũ(y, t)dy (24)

We then spatially discretise (23)-(24) and follow the fixed points using DDE-BIFTOOL [11] and
determine their stability. Several curves of Hopf bifurcations are shown (dashed) in Fig. 3. We see
that increasing the delay τ causes all bifurcations to move to higher values of K (for these values of
Ω0 and σ).
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FIG. 3: q-twisted states for constant delay τ are created as the corresponding solid line is crossed from below,
and become stable as the dashed line of the same colour is crossed from below. The q = 0 state is stable
upon creation and the q = 3 state is stabilised at higher values of K than the range shown. Parameters:
σ = 0.1,Ω0 = 1.

C. Transmission delay

We now consider transmission delays, as in [30, 55, 63], modelling a signal which travels between
oscillators at a constant velocity. We have

dθj(t)

dt
= ωj +

K

2M + 1

M∑

k=−M

sin [θj+k(t− |k|∆xs) − θj(t)] (25)

where ∆x = 2π/N and s is the reciprocal of the transmission velocity, i.e. the delay is proportional
to the distance between oscillators. We define the complex mean field at each point by

Zj(t) =
1

2M + 1

M∑

k=−M

eiθj+k(t−|k|∆xs) (26)

Moving to the continuum limit and performing the integrals as in Sec. II A we obtain

∂u

∂t
= (−1 + iΩ0)u+

K

2

[
Z − Zu2

]
(27)

as in Sec. II A, but where

Z(x, t) =

∫ 2π

0

G(x − y)u(y, t− |x− y|s)dy (28)
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and |x − y| denotes the shortest distance between points x and y on the circle, i.e. |x − y| =
min (|x− y|, 2π − |x− y|). For a twisted state u(x, t) = aei(qx+νt) and coupling function (6)

Z(x, t) =
iaei(qx+νt)

4πσ

[
1− e2πiσ(q−νs)

q − νs
−

1− e−2πiσ(q+νs)

q + νs

]
(29)

and thus twisted states are solutions of

iν = −1 + iΩ0 +
K

2

[
η − η̄a2

]
(30)

where

η ≡
i

4πσ

[
1− e2πiσ(q−νs)

q − νs
−

1− e−2πiσ(q+νs)

q + νs

]
(31)

Setting a = 0 we find that for fixed σ and s a q-twisted state is created at

K =
2

Re(η)
(32)

where ν is a solution of

ν = Ω0 +
Im(η)

Re(η)
(33)

We know that for s = 0, Im(η) = 0 and thus ν = Ω0 and a q-twisted state is created at K = 2/Ĝ(q).
Following these bifurcations as s is increased from zero we obtain the curves shown with solid lines
in Fig. 4. The stability of these solutions was found by direct simulation to change via a Hopf
bifurcation at the points indicated by circles in Fig. 4. We see that for these parameter values,
increasing s, i.e. decreasing the transmission velocity, moves all curves to higher values of K.
We finish this section by noting that when performing the reduction of general weakly coupled

oscillators with transmission delay to phase oscillators, the delay appears as a phase shift, i.e. one
obtains an undelayed system of the form

dθj
dt

= ωj +
K

2M + 1

M∑

k=−M

sin (θj+k − θj − α|k|∆x) (34)

where α is a constant [7, 15]. We will not consider such a system here.

D. Distributed delay

We now consider distributed delays. Let us define the complex mean field as in (3) but then
suppose that oscillator j is influenced by a delayed version of Zj, as in [31, 39], i.e. define

Rj(t) =

∫ ∞

0

Zj(t−∆)h(∆)d∆ (35)

where h(∆) is the probability density of the delay ∆, and let the oscillator dynamics be

dθj
dt

= ωj +KIm
[
Rje

−iθj
]
= ωj +

K

2i

[
Rje

−iθj −Rje
iθj

]
(36)

(As presented, we calculate Rj(t) by first forming the local mean field and then delaying it. Since
the sum in (3) and the integral in (35) commute we can also think of Rj(t) as resulting from first
delaying all the θs and then forming the local mean field from those delayed values.) Moving to the
continuum limit and performing the integrals as above we obtain

∂u(x, t)

∂t
= (−1 + iΩ0)u(x, t) +

K

2

[
R(x, t)−R(x, t)u2(x, t)

]
(37)
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FIG. 4: q-twisted states for the case of transmission delays are created as the corresponding solid line is
crossed from below, and become stable as the dashed line of the same colour is crossed from below. The
q = 0 state is stable upon creation and the q = 3 state is stabilised at higher values of K than the range
shown. Parameters: σ = 0.1,Ω0 = 1.

where

R(x, t) =

∫ ∞

0

Z(x, t−∆)h(∆)d∆ (38)

If h(∆) = δ(∆−τ) we have R(x, t) = Z(x, t−τ) and we recover the model in Sec. II B. Alternatively,
suppose that h(∆) = τ−1e−∆/τ , a choice which allows analytical progress. Using the linear chain
trick one can write (38) as

τ
∂R(x, t)

∂t
= Z(x, t)−R(x, t) (39)

(Distributions of the form h(∆) ∼ ∆ne−∆/τ for positive integer n also allow (38) to be written as a
differential equation for R [38, 39].) For a twisted state u(x, t) = aei(qx+νt), (37) and (39) give

iν = −1 + iΩ0 +
KĜ(q)

2

(
1

1 + iντ
−

a2

1− iντ

)
(40)

Rearranging we find that

a2 = 1−
2(1 + ν2τ2)

KĜ(q)
(41)

where ν satisfies

ν = Ω0 +
ντ

[
1 + ν2τ2 −KĜ(q)

]

1 + ν2τ2
(42)
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Setting a = 0 we find that a q-twisted state is created at

K =
2

Ĝ(q)

(
1 +

τ2Ω2
0

(1 + τ)2

)
(43)

Instead of varying τ we will set τ = 2 and vary Ω0, as doing so leads to some interesting be-
haviour [31, 39]. As in Sec. II B we move to a rotating coordinate frame at speed ν, i.e. let

ũ(x, t) = u(x, t)e−iνt, R̃(x, t) = R(x, t)e−iνt and Z̃(x, t) = Z(x, t)e−iνt so that ũ is a fixed point
of

∂ũ(x, t)

∂t
= (−1 + i(Ω0 − ν))ũ(x, t) +

K

2

[
R̃(x, t)− R̃(x, t)ũ2(x, t)

]
(44)

where

τ
∂R̃(x, t)

∂t
= Z̃(x, t) − R̃(x, t) − iντR̃(x, t) (45)

and

Z̃(x, t) =

∫ 2π

0

G(x− y)ũ(y, t)dy (46)

Following bifurcations of twisted states we obtain the results in Fig. 5. For Ω0 small we obtain similar
results to previous sections, but for larger Ω0 we see that twisted states are created in saddle-node
bifurcations as K is increased. In this range the bifurcation from the zero state is subcritical, leading
to the creation of an unstable branch which is stabilised through either a saddle-node bifurcation
(for q = 0) or in a Hopf bifurcation (for q > 0).
Figure 6 shows a plot of a versus K for Ω0 = 2.5, i.e. at the right edge of Fig. 5. Recalling

that the zero state is stable for K < 2[1 + (τΩ0/(1 + τ))2] (68/9 for the parameters used here)
we see the possibility of bistability between the zero state and twisted states with low twist. Thus
we could initialise part of the domain at the zero state and the remainder at a twisted state and
follow the system’s evolution. This is shown in Fig. 7 for three different initial conditions. (We
have spatially discretised (37) and (39) using N = 500 points, with a neighbourhood of M = 5.
Boundary conditions are not periodic. To evaluate the sums near the boundaries, we extrapolate
both the amplitude and phase of u to a further M points outside of the domain shown. For a
periodic domain of length 2π, q must be an integer. For non-periodic boundary conditions q can be
any real number, and is then a measure of the twist rate, i.e. the spatial rate at which θ varies. Thus
Fig. 6 cannot be used to perfectly predict the behaviour in Fig. 7, but to suggest what might occur.)
In Fig. 7 we see that the “front” joining the twisted and the zero state travels at a uniform

speed, which depends on the twist rate of the twisted part of the pattern. Such patterns would be
stationary in the appropriate simultaneously travelling and rotating coordinate frame and could be
studied using the techniques in [31]. It is also possible to obtain stable spatially-localised “bumps”
of synchronous activity in a background of asynchrony (u = 0) by choosing appropriate parameter
values and initial conditions, as in Fig. 8.
We now move to considering travelling waves in a network of coupled theta neurons, each of which

is also described by a single angular variable.

III. THETA NEURONS

The theta neuron is a canonical model for a neuron which undergoes a saddle-node-on-invariant-
circle bifurcation as its input current is increased [12, 13, 19]. It can be derived from the quadratic
integrate-and-fire neuron [37] via a coordinate transformation. The state of a neuron is described
by a single angular variable, θ, and the neuron is said to “fire” when θ increases through π.

A. Theory

Suppose we have a network of N heterogeneous theta neurons equally spaced on a domain of
length 1 with periodic boundary conditions, coupled via instantaneous synapses to themselves and



10

0 0.5 1 1.5 2 2.5

2

3

4

5

6

7

8

9

10

11

Ω
0

K

 

 

q=0
q=1
q=2

FIG. 5: q-twisted states for the case of distributed delays bifurcate from the zero state as the corresponding
solid line is crossed, and become stable as the dashed line of the same colour is crossed from below. The
q = 0 state is stable upon creation as K is increased. For larger Ω0, the states are created in saddle-node
bifurcations (dotted). Parameters: σ = 0.1, τ = 2.

their nearest M neighbours to the right equally with strength g. Such asymmetric coupling has been
studied in a neural context in [6, 61] for example, as a mechanism for generating travelling waves.
See also [9, 20, 26, 27, 35] for chains of coupled oscillators with asymmetric coupling. The model
neurons are governed by

dθj
dt

= 1− cos θj + (1 + cos θj)(Ij + gsj); j = 1, 2, . . .N (47)

where

sj =
an
N

M∑

k=0

(1 − cos θj+k)
n (48)

indices are taken mod N , and an is the normalisation factor an = 2n(n!)2/(2n)!. The function
(1 − cos θ)n is meant to mimic the action potential produced when a neuron fires. Ij is the input
current to neuron j in the absence of any coupling and since neurons are not expected to be identical,
it is natural to assume that this quantity is different for each neuron. Thus the Ij are assumed to be
randomly chosen from a Lorentzian with mean I0 and half-width-at-half-maximum ∆, as others have
done [32, 34, 40, 42, 56] (although see [29]). Note that unlike the model considered in Sec. II, (47)
is not invariant under a uniform phase shift applied to all neurons. We take the continuum limit
M,N → ∞ in such a way that M/N → λ < 1 and describe the network by a probability density
function, as in Sec. II A. Following similar analysis as in that section (or see [32, 34, 40, 56]) we
obtain

∂z

∂t
=

(iI0 −∆)(1 + z)2 − i(1− z)2

2
+

ig(1 + z)2S

2
(49)
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FIG. 6: a as a function of K for twisted states with q = 0, 1 and 2. Solid: stable; dashed: unstable. Hopf
bifurcations are indicated by the circles. Parameters: σ = 0.1, τ = 2,Ω0 = 2.5.

where

S(x, t) =

∫ λ

0

H(z(x+ y, t);n) dy (50)

and the integral is evaluated using periodic boundary conditions, and

H(z;n) = an


C0 +

n∑

j=1

Cj(z
j + z̄j)


 (51)

where

Cj =

n∑

k=0

k∑

m=0

n!(−1)kδk−2m,j

2k(n− k)!m!(k −m)!
. (52)

z(x, t) is the usual Kuramoto order parameter at position x and time t, i.e. the expected value
of eiθ [57]. The instantaneous firing frequency of the network at position x and time t is given
by [34, 42]

f(x, t) =
1

π
Re

(
1− z̄(x, t)

1 + z̄(x, t)

)
(53)

B. No delay

First consider the case of no delays. A simulation of the network of neurons (47)-(48) shows a
stable travelling pulse (Fig. 9). The corresponding pulse in the continuum equations (49)-(50) is
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FIG. 7: Solutions of (37)-(38). Re(u) is shown color-coded for three different initial conditions. For the
upper and lower panels, the twisted parts of the initial conditions have twists of opposite signs, whereas for
the middle panel it has zero twist. The front joining the twisted state to the zero state has highest speed
in the upper panel and lowest in the lower. Note that boundary conditions are not periodic. Parameters:
N = 500,M = 5,K = 7.5, τ = 2,Ω0 = 2.5.
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FIG. 8: Solutions of (37)-(38). Top: Re(u); bottom: |u|, shown color-coded. Parameters as in Fig. 7.
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FIG. 9: Travelling wave solution of (47)-(48). 1 − cos θ is shown in colour. Parameters: N = 256,M =
16, I0 = −0.2,∆ = 0.05, g = 11, n = 2.

shown in Fig. 10. These pulses move with a fixed profile at a constant speed. Note that the argument
of z increases through π once as we move around the domain, and this point corresponds to the
maximum of the firing frequency, as expected. (The network also supports travelling pulses with
more than one active region, but we do not consider them here.) Travelling waves such as that in
Fig. 9 have been observed in a number of neural systems [5, 51].
An important difference between the solution in Fig. 10 and the uniformly twisted states studied

in Sec. II is that the twisted states can be characterised completely by the amplitude of z and the
twist rate, whereas to describe a solution like that in Fig. 10 we need the actual shape of the pulse,
i.e. z(x, t) at some given time t. Thus the existence and stability of these solutions, as well as their
speed, must be determined numerically. Letting ξ = x+ ct, (49)-(50) become

∂z(ξ, t)

∂t
= −c

∂z(ξ, t)

∂ξ
+

(iI0 −∆)(1 + z(ξ, t))2 − i(1− z(ξ, t))2

2
+

ig(1 + z(ξ, t))2S(ξ, t)

2
(54)
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FIG. 10: Travelling wave solution of (49)-(50) (moving to the left at constant speed). (a): |z|; (b): arg(z);
(c): instantaneous frequency. Parameters: I0 = −0.2,∆ = 0.05, g = 11, n = 2, λ = 1/16.

where

S(ξ, t) =

∫ λ

0

H(z(ξ + y, t);n) dy (55)

If c (taken to be positive) is the speed of a wave like that in Fig. 10, the wave will be stationary in
the (ξ, t) coordinate system, i.e. it will satisfy

0 = −c
dz(ξ)

dξ
+

(iI0 −∆)(1 + z(ξ))2 − i(1− z(ξ))2

2
+

ig(1 + z(ξ))2S(ξ)

2
(56)

where

S(ξ) =

∫ λ

0

H(z(ξ + y);n) dy (57)

We can numerically follow solutions of (56)-(57) as parameters are varied and determine their stabil-
ity by linearising (54) about them [33]. Varying g, for example, we obtain Fig. 11. As g is decreased
the wave is destroyed in a saddle-node bifurcation, and as g is increased it becomes unstable through
a Hopf bifurcation.

C. Distributed delay

We now consider a distributed delay, as in Sec. II D. The oscillator equations are still (47), but
we have

sj(t) =
an
N

∫ ∞

0

h(∆)

M∑

k=0

[1− cos θj+k(t−∆)]n d∆ (58)

where h(∆) is the distribution of delays. Choosing h(∆) = τ−1e−∆/τ we have

τ
dsj
dt

=
an
N

M∑

k=0

(1− cos θj+k)
n
− sj (59)

where all variables are evaluated at the same time. (This type of synaptic dynamics is commonly
used [4, 14].) Taking the continuum limit we obtain (49) but with

τ
∂S(x, t)

∂t
=

∫ λ

0

H(z(x+ y, t);n) dy − S(x, t) (60)
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FIG. 11: Speed of travelling wave solution of (49)-(50) as a function of g. Solid: stable; dashed: unstable.
Parameters: I0 = −0.2,∆ = 0.05, n = 2, λ = 1/16.

Setting τ = 0 we obtain a model of the form studied in [32, 34]. Varying both g and τ we obtain
the results in Fig. 12. Increasing τ decreases the range of values of g over which the travelling wave
exists. For large enough τ the travelling wave is destroyed in saddle-node bifurcations for g both
too small and too large.

IV. SUMMARY AND DISCUSSION

We have investigated the effects of including several forms of delays on the dynamics of uniformly
twisted waves in networks of non-locally coupled Kuramoto oscillators, and of travelling waves in
similar networks of model theta neurons. Our work can be regarded as a generalisations of the
results in [45] and [32]. For both types of networks the state of an oscillator is described by a
single angular variable, and the Ott/Antonsen (OA) ansatz can be used to derive exact equations
governing the asymptotic (in time) evolution of an order parameter in the continuum limit. The
existence of uniformly twisted waves can be determined analytically, due to their simple form, but
travelling waves in networks of theta neurons must be found numerically.
For the parameters used, we found that increasing both constant and transmission delays moved

the existence and stability of uniformly twisted waves in Kuramoto networks to higher values of the
coupling strength (Figs. 3 and 4). A distributed delay allowed bistability between the zero state
and a uniformly twisted state and thus the possibility of fronts joining these two states (Fig. 7).
For the network of theta neurons, increasing the value of the distributed delay time constant led
to eventual destruction of the travelling wave (Fig. 12). Even the simple networks considered here
have a number of parameters which must be set, and the results found here will differ for different
values of these parameters.
The OA ansatz restricts the probability density for the phases to a particular manifold,

parametrised by a complex, spatially-dependent variable. For the systems studied here this manifold
is invariant, and the dynamics on it are given by equations of the form (12)-(13). However, the global
attractiveness of this manifold has only been determined in some cases and not (as far as we are
aware) for a system like (47), where, in the continuum limit, the coefficient of a sinusoidal fuction of
θ is distributed. Nonetheless, using the ansatz for networks of theta neurons does seem to correctly
predict the behaviour of large networks [32, 34, 40]. Also note that since the OA ansatz restricts the
probability density to a particular manifold, it will not capture transients of the original network
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FIG. 12: Curves of saddle-node (solid) and Hopf (dashed) bifurcations of travelling wave solution of (49),(60).
The curves meet at a Takens-Bogdanov bifurcation. A travelling wave solution like that in Fig. 10 exists in
the region between the two solid blue curves. τ = 0 corresponds to Fig. 11. Parameters: I0 = −0.2,∆ =
0.05, n = 2, λ = 1/16.

which are not on this manifold.
Regarding generalisations, we have considered only phase oscillators, and it would be of interest to

determine which of our results qualitatively agree with those for networks of more general oscillators.
We have considered only the case of non-identical oscillators, as it is then that the OA ansatz is
thought to be valid. However, it would also be of interest to consider the case of identical oscillators
as in [59], and then including delays, as in, for example [53–55]. Other possible generalisations include
considering two-dimensional domains [22, 25], and forms of heterogeneity other than Lorentzian [29].
Acknowledgements: I thank the referees for their helpful comments.
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