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We consider networks formed from two populations of identical oscillators, with uniform strength
all-to-all coupling within populations, and also between populations, with a different strength. Such
systems are known to support chimera states in which oscillators within one population are perfectly
synchronised while in the other the oscillators are incoherent, and have a different mean frequency
from those in the synchronous population. Assuming that the oscillators in the incoherent population
always lie on a closed smooth curve C, we derive and analyse the dynamics of the shape of C and
the probability density on C, for four different types of oscillators. We put some previously derived
results on a more rigorous footing, and analyse two new systems.

PACS numbers:

I. INTRODUCTION

Chimera states in networks of coupled oscillators,
consisting of coexisting synchronous and asynchronous
groups of oscillators, have been intensively studied in
recent years [1, 2]. Often they are studied in one-
dimensional [3–6] or two-dimensional domains [7–12]
with nonlocal coupling, but it was Abrams et al. [13]
who first “coarse-grained” space and studied chimeras
in a network formed from two populations of oscillators,
with equal strength coupling between oscillators within
a population, and weaker coupling to those in the other
population. Later studies of networks with such structure
include [14–18] and we also mention the experimental re-
sults [19, 20] and the prior work [21]. In such networks
a chimera state occurs when one population is perfectly
synchronised (all oscillators behave identically) while in
the other the oscillators are not phase synchronised but
all have the same time-averaged frequency, which is dif-
ferent from that of the synchronous population. Such
a state is similar to that of self-consistent partial syn-
chrony [22–24].

Regarding the types of oscillators used, early works
used phase oscillators with sinusoidal interaction func-
tions [4, 5], while later studies include oscillators near a
SNIC bifurcation [25], van der Pol oscillators [26], oscil-
lators with inertia [27–29], Stuart-Landau oscillators [15,
30], and neuron models including leaky integrate-and-
fire [31], quadratic integrate-and-fire [32], and FitzHugh-
Nagumo [3].

The vast majority of papers concerning chimeras show
just the results of numerical simulations of finite net-
works of oscillators. Such simulations cannot detect un-
stable states, making it difficult to obtain a complete
understanding of the existence and stability of chimeras
as parameters are varied. Early researchers showed
the existence of chimeras using a self-consistency argu-
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ment [5, 6, 11, 12] and later the Ott/Antonsen ansatz [33]
was used to investigate their stability [8, 13, 16, 34, 35].
However, these techniques relied on the number of oscil-
lators being infinite, and more restrictively, that the os-
cillators were phase oscillators coupled through a purely
sinusoidal function of phase differences. (Also, states
found using the Ott/Antonsen ansatz are not attract-
ing for networks of identical oscillators — heterogeneity
is required to give stability [7, 34].) Finite networks of
identical sinusoidally coupled phase oscillators have been
studied using the Watanabe/Strogatz ansatz [17, 18, 36].

An exception to the approach above was [30], where
chimeras in a network of two populations of Stuart-
Landau oscillators were studied using a self-consistency
argument. The existence of a chimera state was deter-
mined from the periodic solution of an ordinary differen-
tial equation (ODE), but this approach did not provide
information on the stability or otherwise of the solution
found.

In this paper we use techniques from [22] to revisit the
system studied in [30] and calculate stability information
for the solutions found there. Since the approach in [22]
is generally applicable to a situation in which oscillators
in one population lie on a closed smooth curve, we then
apply these ideas to three more networks formed from
two coupled populations. The second network we con-
sider consists of Kuramoto oscillators with inertia, each
described by a second order ODE. The third network
consists of FitzHugh-Nagumo neural oscillators, each de-
scribed by a pair of ODEs. Unlike the oscillators studied
in the first and second networks, these are not invariant
under a global phase shift. The last network we con-
sider consists of Stuart-Landau oscillators with delayed
coupling both within and between populations.

We now briefly present the results from [22] which we
will use. Sec. II contains the analysis and results for the
four types of networks, while Sec. III contains a discus-
sion and conclusion.

Clusella and Politi [22] consider a network of N oscil-
lators, with the state of the jth oscillator being described
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by the complex variable zj . The dynamics is given by

dzj
dt

= f(zj , z̄;K) (1)

for some function f where the mean field is given by

z̄ =
1

N

N∑
k=1

zk (2)

and K is the strength of coupling between an oscillator
and the mean field. For some values of K it is observed
that when the states of all oscillators are plotted as points
in the complex plane, they lie on a smooth curve, C,
enclosing the origin, the shape of which is parametrised
by an angle φ. The distance from the origin to C at angle
φ is R(φ, t), and the density at the point parametrised
by φ is P (φ, t). Writing zj = rje

iφj we can write (1) as

drj
dt

= F (rj , φj , z̄) (3)

dφj
dt

= G(rj , φj , z̄) (4)

Clusella and Politi [22] show that the dynamics of R and
P are given by

∂R

∂t
(φ, t) = F (R,φ, z̄)−G(R,φ, z̄)

∂R

∂φ
(5)

∂P

∂t
(φ, t) = − ∂

∂φ
[P (φ, t)G(R,φ, z̄)] (6)

where

z̄ =

∫ 2π

0

P (φ, t)R(φ, t)eiφdφ (7)

They used these equations to study the splay state and
self-consistent partial synchrony in a network of Stuart-
Landau oscillators. Of course, such equations are only a
valid description of the dynamics of the network if the
oscillators do lie on a curve C, which should be checked
by solving the original equations governing their dynam-
ics. Numerically, we will treat R and P as continuous
functions of φ, corresponding to an infinite number of
oscillators.

While [22] considered a single population of all-to-all
coupled oscillators, the approach is also valid for a net-
work of two populations of oscillators in which oscillators
in one population lie on a smooth closed curve while those
in the other population are perfectly synchronous, i.e. a
chimera state. (It is also valid when oscillators from each
population lie on their own curve; see Sec. II C.)

II. RESULTS

A. Stuart-Landau oscillators

We first consider the chimera state found in [30]. The
equations governing the dynamics are

dXj

dt
= iωXj + ε−1{1− (1 + δεi)|Xj |2}Xj

+ e−iα

(
µ

N

N∑
k=1

Xk +
ν

N

N∑
k=1

XN+k

)
(8)

for j = 1, . . . N and

dXj

dt
= iωXj + ε−1{1− (1 + δεi)|Xj |2}Xj

+ e−iα

(
µ

N

N∑
k=1

XN+k +
ν

N

N∑
k=1

Xk

)
(9)

for j = N + 1, . . . 2N , where each Xj ∈ C and ω, ε, δ, α, µ
and ν are all real parameters. In a chimera state one pop-
ulation is perfectly synchronised, while the phases of the
other population are distributed, although not uniformly
(see Fig. 1 in [30]).

To analyse such a state we set Xj = Y for j ∈ {N +
1, . . . 2N}, i.e. population two is perfectly synchronised.
Letting

X̄ =
1

N

N∑
k=1

Xk (10)

we have

dY

dt
= iωY + ε−1{1− (1 + δεi)|Y |2}Y + e−iα

(
µY + νX̄

)
(11)

and each oscillator in population one satisfies

dXj

dt
= iωXj + ε−1{1− (1 + δεi)|Xj |2}Xj

+ e−iα
(
µX̄ + νY

)
, (12)

for j = 1, . . . N . Writing Xj = rje
iφj we have

drj
dt

= ε−1(1− r2
j )rj + Re

[
e−i(α+φj)

(
µX̄ + νY

)]
≡ F (rj , φj , X̄, Y ) (13)

dφj
dt

= ω − δr2
j +

1

rj
Im
[
e−i(α+φj)

(
µX̄ + νY

)]
≡ G(rj , φj , X̄, Y ) (14)

Thus, taking the limit N →∞, we consider the dynam-
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ical system

∂R

∂t
(φ, t) = F (R,φ, X̄, Y )−G(R,φ, X̄, Y )

∂R

∂φ
(15)

∂P

∂t
(φ, t) = − ∂

∂φ

[
P (φ, t)G(R,φ, X̄, Y )

]
+D

∂2

∂φ2
P (φ, t)

(16)

dY

dt
= iωY + ε−1{1− (1 + δεi)|Y |2}Y

+ e−iα
(
µY + νX̄

)
(17)

where

X̄ =

∫ 2π

0

P (φ, t)R(φ, t)eiφdφ (18)

and for numerical stability reasons we have added a small
amount of diffusion, of strength D, to (6) (as did [22]).
The equations (15)-(18) form a coupled PDE/ODE sys-
tem. We define β = π/2− α and let µ = (1 + A)/2, ν =
(1−A)/2.

Note that (8)-(9) are invariant under the global phase
shift Xj 7→ Xje

iγ for any constant γ and thus we can
move to a rotating coordinate frame in which Y is con-
stant, and we can then shift our coordinate system so
that Y is real. Moving to a coordinate frame rotating
with speed Ω has the effect of replacing ω in (14) and (17)
by ω + Ω.

We numerically integrate (15)-(18) in time to find a
stable solution. An example is shown in Fig. 1. (Com-
pare with Fig. 1 of [30].) We discretised φ using 256
equally-spaced points and implemented derivatives with
respect to φ spectrally [37]. We enforce conservation of
probability by setting P at one grid point equal to 1/∆
minus the sum of the values at all other grid points, where
∆ = 2π/256, the φ grid spacing [38]. We then follow
the solution in Fig. 1 using pseudo-arclength continua-
tion [39, 40] as ε is varied. The results are shown in
Fig. 2, and we have reproduced the first four panels in
Fig. 2 of [30]. The advantage of this approach is that
we can calculate the stability from the eigenvalues of the
linearisation of (15)-(18) about the steady state, unlike
in [30] where it was just inferred.

The eigenvalues, λj , of the linearisation of (15)-(18)
about the solution shown in Fig. 1 are plotted in the
complex plane in Fig. 3. We notice that they form two
clusters, one around Re(λj) = −40 and the other around
Re(λj) = 0. The first group can be understood by lin-
earising F with respect to R. We obtain ε−1(1 − 3R2),
and evaluating this at R = 1 gives −2/ε = −40, for this
solution. The second group of eigenvalues is presumably
related to the dynamics of P , and has been observed in
other similar systems [2, 22, 24]. The slight deviation
from the imaginary axis visible in panel (c) of Fig. 3 is
due to the non-zero value of D used (D = 10−8). If D is
set to zero when calculating the eigenvalues, this group
lies very close to the imaginary axis (|Re(λj)| < 10−9).

As mentioned in [22], one could find a steady state
of (15)-(18) with D = 0 by assuming a value for X̄,
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FIG. 1: Snapshot of a solution of (15)-(18) for which Y is
real. (a): R(φ), (b): P (φ). Parameters: ε = 0.05, ω = 0, δ =
−0.01, A = 0.2, β = 0.08, D = 10−8.
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FIG. 2: Steady states of (15)-(18) as functions of ε. (a):
Re(X̄), (b): Im(X̄), (c): Y and (d): Ω. Solid: stable; dashed:
unstable. Other parameters: ω = 0, δ = −0.01, A = 0.2, β =
0.08, D = 10−8.
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FIG. 3: (a): spectrum of the solution shown in Fig. 1. Panels
(b) and (c) show details of the two clusters of eigenvalues. Pa-
rameters: ε = 0.05, ω = 0, δ = −0.01, A = 0.2, β = 0.08, D =
10−8.
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solving dY/dt = 0 for Y , numerically integrating

∂R

∂φ
=
F (R,φ, X̄, Y )

G(R,φ, X̄, Y )
(19)

to obtain R0(φ), setting

P0(φ) =
η

G(R0, φ, X̄, Y )
(20)

where η is a normalisation constant (since P is a proba-
bility density) and then requiring that∫ 2π

0

P0(φ)R0(φ)eiφdφ (21)

is equal to the value originally assumed for X̄. Such an
approach is equivalent to that taken in [30], where the
equations governing a single oscillator in population one

dr

dt
= F (r, φ, X̄, Y ) (22)

dφ

dt
= G(r, φ, X̄, Y ) (23)

were numerically solved in a self-consistent way to show
the existence of a chimera.

Each oscillator in population one satisfies (22)-(23).
Thus having found a steady state of (15)-(18) by inte-
grating these equations in time, we can find a periodic
solution of (22)-(23). 2π divided by the period of this or-
bit then gives the angular frequency of an incoherent os-
cillator, relative to that of the synchronous group (whose
frequency in the original coordinate frame is Ω). For all
of the points shown in Fig. 2, (22)-(23) has a stable peri-
odic solution, the period of which is shown in Fig. 4. Note
that this Figure reproduces panel (e) in Fig. 2 of [30].

Following the saddle-node bifurcation shown in Fig. 2
as A is varied we obtain Fig. 5. By increasing A for
ε = 0.05 we find a Hopf bifurcation, also shown in
Fig. 5. Numerical investigations suggest that this bi-
furcation is supercritical, and that the oscillations cre-
ated in it are destroyed in a homoclinic bifurcation to
the right of the Hopf curve in Fig. 5. The curve of homo-
clinic bifurcations should terminate at the codimension-
two point where the Hopf curve meets the saddle-node
curve; this scenario is observed in many systems show-
ing chimeras [13, 16, 17, 30, 34, 35, 41]. Note that the
curve of Hopf bifurcations was found by following the
algebraic equations defining such a bifurcation, whereas
in [30], such a curve could only be found through direct
simulation of (8)-(9).

We end this section by noting that with the approach
presented here we cannot detect bifurcations in which
the synchronous group becomes asynchronous, since we
assume that the synchronous group is synchronous, with
dynamics governed by an ODE. Also, above the saddle-
node curve in Fig. 5 the only attractor is the fully syn-
chronous state and the approach presented here cannot
be used to study this state, as P approaches a delta func-
tion in φ and our numerical scheme breaks down.
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FIG. 4: Period, T , of the stable periodic solution of (22)-(23),
where the values of X̄, Y and Ω are those shown in Fig. 2.
Solid and dashed lines refer to stability indicated in Fig. 2.
Other parameters: ω = 0, δ = −0.01, A = 0.2, β = 0.08, D =
10−8.
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FIG. 5: Continuation of the saddle-node bifurcation shown
in Fig. 2 (solid) and a Hopf bifurcation (dash-dotted). Oscil-
lating chimeras exist slightly to the right of the Hopf curve.
Other parameters: ω = 0, δ = −0.01, β = 0.08, D = 10−8.

B. Kuramoto with inertia

We now consider a network formed from two popula-
tions of N Kuramoto oscillators with inertia. The system
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is described by

m
d2θ

(1)
i

dt2
+
dθ

(1)
i

dt
= ω +

µ

N

N∑
j=1

sin
(
θ

(1)
j − θ

(1)
i − α

)

+
ν

N

N∑
j=1

sin
(
θ

(2)
j − θ

(1)
i − α

)
(24)

m
d2θ

(2)
i

dt2
+
dθ

(2)
i

dt
= ω +

µ

N

N∑
j=1

sin
(
θ

(2)
j − θ

(2)
i − α

)

+
ν

N

N∑
j=1

sin
(
θ

(1)
j − θ

(2)
i − α

)
(25)

where m is “mass”, ω, µ, ν and α are parameters, and
the superscript labels the population. When m = 0 this
reverts to a previously studied case [13, 18]. It is reason-
able to expect that chimeras may exist and be stable for
m in some interval [0,m0], as found via numerical simula-
tions of slightly heterogeneous oscillators [27]. Note that
the system is invariant under a uniform shift of all of the
phases, so we can set ω = 0 without loss of generality.
We rewrite the equations as

dθ
(1)
i

dt
= u

(1)
i (26)

du
(1)
i

dt
=

−u(1)
i +

µ

N

N∑
j=1

sin
(
θ

(1)
j − θ

(1)
i − α

)

+
ν

N

N∑
j=1

sin
(
θ

(2)
j − θ

(1)
i − α

) /m (27)

dθ
(2)
i

dt
= u

(2)
i (28)

du
(2)
i

dt
=

−u(2)
i +

µ

N

N∑
j=1

sin
(
θ

(2)
j − θ

(2)
i − α

)

+
ν

N

N∑
j=1

sin
(
θ1
j − θ

(2)
i − α

) /m (29)

In a chimera state let us assume that population two is

perfectly synchronised, with θ
(2)
i = Θ for i = 1, 2 . . . N .

This population satisfies

dΘ

dt
= U (30)

dU

dt
=

−U − µ sinα+
ν

N

N∑
j=1

sin (θj −Θ− α)

 /m
=
[
−U − µ sinα+ νIm

{
e−i(Θ+α)X

}]
/m (31)

where

X ≡ 1

N

N∑
j=1

eiθj ∈ C, (32)

the sums are over population one, and we have dropped
the superscripts. Oscillators in population one satisfy

dθi
dt

= ui (33)

dui
dt

=

−ui +
µ

N

N∑
j=1

sin (θj − θi − α)

+ν sin (Θ− θi − α)] /m

=
[
−ui + µIm

{
e−i(θi+α)X

}
+ ν sin (Θ− θi − α)

]
/m

(34)

for i = 1, . . . N . We put these equations in “polar” form
by defining rj = 2 + uj and thus we have

drj
dt

=
[
−(rj − 2) + µIm

{
e−i(θi+α)X

}
+ν sin (Θ− θi − α)] /m ≡ F (rj , θj , X,Θ) (35)

dθj
dt

= rj − 2 (36)

The chimera state of interest is stationary in a coordinate
frame rotating at speed Ω. Moving to this coordinate
frame has the effect of replacing (30) by

dΘ

dt
= U + Ω (37)

and (36) by

dθj
dt

= rj − 2 + Ω ≡ G(rj , θj , X,Θ) (38)

Thus we take the limit N →∞ and consider the dynam-
ical system

∂R

∂t
(θ, t) = F (R, θ,X,Θ)−G(R, θ,X,Θ)

∂R

∂θ
(39)

∂P

∂t
(θ, t) = − ∂

∂θ
[P (θ, t)G(R, θ,X,Θ)] +D

∂2

∂θ2
P (θ, t)

(40)

along with (31) and (37) where

X(t) =

∫ 2π

0

P (θ, t)R(θ, t)eiθdθ (41)

Choosing parameters µ = 0.6, ν = 0.4, α = π/2 −
0.05,m = 0.1, D = 10−4 and numerically integrating this
system we find a stable steady state, shown in Fig. 6. The
nonuniform distribution of phases is clearly seen, with a
peak close to the phase of the synchronous population,
Θ. However, decreasing D from this value we find that
this solution is actually unstable for smaller values of D,
with the instability seeming to be a Hopf bifurcation.

To verify this we followed the steady state shown in
Fig. 6 as m was varied, for a very small value of D (D =
10−13). The real part of the right-most eigenvalues of
the linearisation about this state are shown in Fig. 7,
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FIG. 6: Steady state of (39)-(40), (31) and (37). (a): R(θ).
(b): P (θ) (solid) with the value of Θ shown dotted. Parame-
ters: µ = 0.6, ν = 0.4, α = π/2− 0.05,m = 0.1, D = 10−4.
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FIG. 7: (a): Maximum of the real parts of the eigenvalues
of the linearisation about a steady state of (39)-(40), (31)
and (37), as a function of m. (The curve continues in this
way to m ≈ 0.32.) (b): Zoom of panel (a). Other parameters:
µ = 0.6, ν = 0.4, α = π/2− 0.05, D = 10−13.

and we see that for all values of m, these are positive
(and the right-most eigenvalues are a complex conjugate
pair). Thus the system (39)-(40), (31) and (37) does
not support a stable chimera for small values of m, at
least for the values of the other parameters used here.
The paper [27] does, however, show numerical evidence
of the existence of stable chimeras in a finite network of
heterogeneous oscillators of the form (24)-(25) for small
m and the same values of other parameters as used here.

Olmi [28] considered (24)-(25) for ω = 1, N = 200, α =
π/2− 0.02, and the same values of µ and ν as used here.
Repeating the analysis above for this value of α we find
qualitatively the same picture as that shown in Fig. 7.
Olmi observed that even for m = 10−4, oscillations in
the magnitude of the order parameter of the partially
synchronous population grew, “but over very long times
scales,” consistent with our results. Repeating the cal-
culations shown in Fig. 7 but for α = π/2 − 0.02, then
interpolating to find the real part of the rightmost eigen-
values for m = 10−4, we obtain ∼ 4.8 × 10−6. Thus
over 5 × 105 time units, we expect the amplitude of
these fluctuations to grow by a factor of approximately

exp (4.8× 10−6 × 5× 105) ≈ 11, in excellent agreement
with Olmi’s observation of growth by a factor of 10.

In conclusion, stable chimera states (stationary in a
uniformly rotating frame) do not exist in (24)-(25) for
infinite N for any small values of m using the values of
other parameters from [27], or from [28]. Stable chimeras
may exist in finite networks with either heterogeneous
frequencies [27] or large mass [29].

C. FitzHugh-Nagumo oscillators

In this section we consider two populations of
FitzHugh-Nagumo oscillators, each described by a pair
of ODEs. In [3] the authors considered a ring of such
oscillators, nonlocally coupled, and showed numerically
that such a system could support chimeras, i.e. on part
of the ring the oscillators were synchronised in the sense
of having the same average frequency, while on the rest of
the ring the oscillators had different average frequencies.

Consider the following network:

ε
dui
dt

= ui − u3
i /3− vi + µ [buu (U1 − ui) + buv (V1 − vi)]

+ ν [buu (U2 − ui) + buv (V2 − vi)] (42)

dvi
dt

= ui + a+ µ [bvu (U1 − ui) + bvv (V1 − vi)]

+ ν [bvu (U2 − ui) + bvv (V2 − vi)] (43)

for i = 1, 2 . . . N and

ε
dui
dt

= ui − u3
i /3− vi + µ [buu (U2 − ui) + buv (V2 − vi)]

+ ν [buu (U1 − ui) + buv (V1 − vi)] (44)

dvi
dt

= ui + a+ µ [bvu (U2 − ui) + bvv (V2 − vi)]

+ ν [bvu (U1 − ui) + bvv (V1 − vi)] (45)

for i = N + 1, . . . 2N , where

U1 ≡
1

N

N∑
i=1

ui; V1 ≡
1

N

N∑
i=1

vi (46)

and

U2 ≡
1

N

N∑
i=1

uN+i; V2 ≡
1

N

N∑
i=1

vN+i (47)

We have coupling coefficients [3](
buu buv
bvu bvv

)
=

(
cosφ sinφ
− sinφ cosφ

)
(48)

for some phase φ. Coupling within each population has
strength µ and that between populations has strength ν,
and we control their relative strength by defining µ = (1+
A)/20 and ν = (1−A)/20. Numerically, we find a stable
chimera state for φ = π/2−0.1, ε = 0.1, a = 0.5, A = 0.2,
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FIG. 8: A chimera state for equations (42)-(45). The top two
rows show u and v for population one, and the bottom two
show them for population two. Parameters: N = 500, φ =
π/2− 0.1, ε = 0.1, a = 0.5, A = 0.2.

as shown in Fig. 8, where population two is synchronised.
Since ε is small the oscillators are relaxation oscillators,
with strongly nonlinear waveforms.

Since each oscillator rotates around the origin in its
phase plane, we can define an average angular velocity by
counting the number of rotations each one makes during
a long time interval and dividing by the duration of that
interval [3]. Doing so we find that for these parameter
values the partially synchronous group has average angu-
lar velocity ω = 2.1516 while the synchronous group has
ω = 2.0511. While these values are close, the fact that
they are different shows that this is a chimera state.

Suppose population two is synchronised. Its dynamics
is described by

ε
dU2

dt
= U2 − U3

2 /3− V2

+ ν [buu (U1 − U2) + buv (V1 − V2)] (49)

dV2

dt
= U2 + a+ ν [bvu (U1 − U2) + bvv (V1 − V2)] (50)

In population one we have

ε
dui
dt

= ui − u3
i /3− vi + µ [buu (U1 − ui) + buv (V1 − vi)]

+ ν [buu (U2 − ui) + buv (V2 − vi)] (51)

dvi
dt

= ui + a+ µ [bvu (U1 − ui) + bvv (V1 − vi)]

+ ν [bvu (U2 − ui) + bvv (V2 − vi)] (52)

for i = 1, 2 . . . N . Writing r2
i = u2

i +v2
i and tan θi = vi/ui

so that ui = ri cos θi and vi = ri sin θi we have

dri
dt

=
ui
dui

dt + vi
dvi
dt

ri
≡ F (ri, θi, U1, V1, U2, V2) (53)

dθi
dt

=
ui
dvi
dt − vi

dui

dt

r2
i

≡ G(ri, θi, U1, V1, U2, V2) (54)

Thus we take the limit N →∞ and consider the dynam-
ical system

∂R

∂t
(θ, t) = F (R, θ, U1, V1, U2, V2)

−G(R, θ, U1, V1, U2, V2)
∂R

∂θ
+D

∂2

∂θ2
R(θ, t)

(55)

∂P

∂t
(θ, t) = − ∂

∂θ
[P (θ, t)G(R, θ, U1, V1, U2, V2)]

+D
∂2

∂θ2
P (θ, t) (56)

together with (49)-(50), where

U1 =

∫ 2π

0

P (θ, t)R(θ, t) cos θ dθ (57)

and

V1 =

∫ 2π

0

P (θ, t)R(θ, t) sin θ dθ (58)

and we have added a small amount of diffusion in
both (55)-(56) to stabilise solutions. A significant dif-
ference between the system studied in this section and
those in Secs. II A and II B (and II D, below) is that the
FitzHugh-Nagumo system is not invariant under a global
phase shift. Thus the chimera state of interest is a stable
periodic solution of (55)-(56) and (49)-(50), as seen in
Fig. 9.

Performing numerical continuation of this periodic or-
bit in A we find that it undergoes a Hopf bifurcation
as A is increased, as shown in Fig. 10. Numerical sim-
ulation indicates that this is a supercritical bifurcation.
Decreasing D decreases the value of A at which the Hopf
bifurcation occurs, suggesting that the “true” bifurcation
occurs at a lower value than that shown in Fig. 10. In-
deed, simulations of (42)-(45) with N = 5000 show that
the Hopf bifurcation occurs at some A ∈ (0.25, 0.3).

To perform numerical continuation of the periodic or-
bit we define a Poincaré section at V2 = 0, V̇2 > 0 and
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FIG. 9: A chimera state for equations (55)-(56) and (49)-
(50). The top row shows R(θ, t) and the bottom one P (θ, t).
Parameters: φ = π/2 − 0.1, ε = 0.1, a = 0.5, A = 0.2, D =
10−3. (θ is discretised with 256 points.)
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FIG. 10: Hopf bifurcation of a periodic solution of (55)-(56)
and (49)-(50). (a): Floquet multipliers of the periodic orbit
at A = 0.2 (crosses) and A = 0.5 (circles). The unit circle
is shown dashed. (b): maximum of the magnitude of the
Floquet multipliers as a function of A. Parameters: φ =
π/2 − 0.1, ε = 0.1, a = 0.5, D = 10−3. (θ is discretised with
256 points.)

integrate (55)-(56) and (49)-(50) from an initial condition
on this section until the system hits the section for the
first time. This defines a map in all other variables from
the section to itself, and a fixed point of this map is the
periodic orbit of interest. Linearising the map about the
fixed point gives the Floquet multipliers, µ, and hence
stability of the periodic orbit.

If we solve (55)-(56) and (49)-(50) with (57)-(58) as

-2 -1 0 1 2
u

-1

-0.5

0

0.5

1

1.5

v

FIG. 11: Dynamics of (59)-(60) driven by (55)-(56) and (49)-
(50). Parameters: A = 0.2, φ = π/2 − 0.1, ε = 0.1, a =
0.5, D = 10−3. (Discretised with 256 points.)

drivers for

ε
du

dt
= u− u3/3− v + µ [buu (U1 − u) + buv (V1 − v)]

+ ν [buu (U2 − ui) + buv (V2 − vi)] (59)

dv

dt
= u+ a+ µ [bvu (U1 − u) + bvv (V1 − v)]

+ ν [bvu (U2 − u) + bvv (V2 − v)] (60)

governing the dynamics of a single oscillator in the in-
coherent population, we find that u and v follow a sta-
ble quasiperiodic orbit, as shown in Fig. 11, with mean
rotation frequency ω = 2.1553 while the synchronous
group (i.e. U2 and V2) are periodic, as expected, with
ω = 2.0519. These match quite well with the results from
simulating a finite network (Fig. 8) and differences could
be due to the finite N used in Fig. 8 and the non-zero
value of D needed to stabilise the solutions of (55)-(56)
and (49)-(50) (D = 10−3).

1. Alternating chimera

For a network formed from two populations, an alter-
nating chimera may exist. In this state neither popula-
tion is pefectly synchronised and the level of synchrony
within each population varies periodically, but in an-
tiphase to that of the other population [42]. One way
that such a state can form is that under parameter vari-
ation, two coexisting “breathing” chimeras, in which one
population is synchronised and the other is not — which
are mapped to one another under relabelling of the pop-
ulations — merge in a gluing bifurcation, resulting in
an attractor which is invariant under relabelling of the
populations [43].
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Such a state occurs in (42)-(45) for A = 0.6, i.e. after
the Hopf bifurcation. Since oscillators in both popula-
tions now lie on (different) closed curves, we can write
the dynamics for each curve. The equations governing
the system are

∂R1

∂t
(θ, t) = F (R1, θ, U1, V1, U2, V2)

−G(R1, θ, U1, V1, U2, V2)
∂R1

∂θ
+D

∂2

∂θ2
R1(θ, t)

(61)

∂P1

∂t
(θ, t) = − ∂

∂θ
[P1(θ, t)G(R1, θ, U1, V1, U2, V2)]

+D
∂2

∂θ2
P1(θ, t) (62)

and

∂R2

∂t
(θ, t) = F (R2, θ, U2, V2, U1, V1)

−G(R2, θ, U2, V2, U1, V1)
∂R2

∂θ
+D

∂2

∂θ2
R2(θ, t)

(63)

∂P2

∂t
(θ, t) = − ∂

∂θ
[P2(θ, t)G(R2, θ, U2, V2, U1, V1)]

+D
∂2P2(θ, t)

∂θ2
(64)

where

Uj =

∫ 2π

0

Pj(θ, t)Rj(θ, t) cos θdθ (65)

and

Vj =

∫ 2π

0

Pj(θ, t)Rj(θ, t) sin θdθ (66)

To quantify the behaviour we define order parameters
Zj = Uj + iVj and plot the magnitude of both of these
in the top two panels of Fig. 12. To compare with the
behaviour of (42)-(45) we define

Z1 =
1

N

N∑
k=1

uk +
i

N

N∑
k=1

vk (67)

and

Z2 =
1

N

N∑
k=1

uN+k +
i

N

N∑
k=1

vN+k (68)

and plot their magnitudes in the bottom two panels of
Fig. 12 for N = 500. We see alternations, as expected,
and the range of values and the form of oscillations is cor-
rect. The main difference between the two systems is the
timescale of alternation. This is probably due to the finite
size of the population in (42)-(45), the non-zero value of
D used in (61)-(64), and presumed closeness to a gluing
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FIG. 12: An alternating chimera state. Top two panels: mag-
nitudes of the order parameters defined for (61)-(64) (discre-
tised in θ using 256 points, D = 10−4.). Bottom two pan-
els: magnitudes of the order parameters defined for (42)-(45)
(with N = 500). Parameters: A = 0.6, φ = π/2 − 0.1, ε =
0.1, a = 0.5.

bifurcation, in which two symmetrically related breath-
ing chimeras merge to form the alternating chimera, as
in [43]. Since this bifurcation involves a quasiperiodic or-
bit approaching a saddle periodic orbit, we expect that
the time it spends near the saddle orbit, and thus the
period of the slow oscillations seen in Fig. 12, to be quite
sensitive to the differences between the two systems being
studied here.

D. Delay

Chimeras have been studied in a number of systems
with delays [34, 44, 45]. In this section we consider the
system

dXj(t)

dt
= iωXj(t) + γ(1− |Xj(t)|2)Xj(t)

+
µ

N

N∑
k=1

Xk(t− τ1) +
ν

N

N∑
k=1

XN+k(t− τ2)

(69)

for j = 1, . . . N and

dXj(t)

dt
= iωXj(t) + γ(1− |Xj(t)|2)Xj(t)

+
µ

N

N∑
k=1

XN+k(t− τ1) +
ν

N

N∑
k=1

Xk(t− τ2)

(70)

for j = N + 1, . . . 2N , where each Xj ∈ C, i.e. two popu-
lations of Stuart-Landau oscillators with coupling within
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a population of strength µ, delayed by τ1, and coupling
between populations of strength ν, delayed by τ2. We
find that there is a chimera for parameters ω = 3, γ =
10, µ = 0.36, ν = 0.04, τ1 = 0.6, τ2 = 0.4, in a system
with N = 100 (not shown). The partially synchronous
group has an average angular frequency of 2.9871, and
the synchronised group has angular frequency 2.6348.

Suppose population two is synchronised. Then its dy-
namics is described by

dX(t)

dt
= iωX(t)+γ(1−|X(t)|2)X(t)+µX(t−τ1)+νZ(t−τ2)

(71)
where

Z(t) =
1

N

N∑
k=1

Xk(t) (72)

In population one we have

dXj(t)

dt
= iωXj(t) + γ(1− |Xj(t)|2)Xj(t)

+ µZ(t− τ1) + νX(t− τ2) (73)

for j = 1, . . . N . Writing Xj = rje
iθj we have

drj
dt

= γ[1− r2
j (t)]rj(t)

+ Re
{

[µZ(t− τ1) + νX(t− τ2)]e−iθj(t)
}

≡ F [rj(t), θj(t), Z(t− τ1), X(t− τ2)] (74)

dθj
dt

= ω + Im
{

[µZ(t− τ1) + νX(t− τ2)]e−iθj (t)
}
/rj(t)

≡ G[rj(t), θj(t), Z(t− τ1), X(t− τ2)] (75)

Thus we consider the dynamical system

∂R

∂t
(θ, t) = F [R(θ, t), θ, Z(t− τ1), X(t− τ2)]

−G[R(θ, t), θ, Z(t− τ1), X(t− τ2)]
∂R

∂θ
(θ, t)

(76)

∂P

∂t
(θ, t) = − ∂

∂θ
{P (θ, t)G[R(θ, t), θ, Z(t− τ1), X(t− τ2)]}

+D
∂2

∂θ2
P (θ, t) (77)

together with (71) where

Z(t) =

∫ 2π

0

P (θ, t)R(θ, t)eiθdθ (78)

We set the level of diffusion to be D = 10−6.
This system is invariant under rotation in the complex

plane of each Xj by the same angle so we can go to a
rotating coordinate frame in which the chimera is sta-
tionary. In this frame, defining X̃(t) = X(t)e−iΩt and

Z̃(t) = Z(t)e−iΩt we find that X̃ satisfies

dX̃(t)

dt
= i(ω − Ω)X̃(t) + γ(1− |X̃(t)|2)X̃(t)

+ µX̃(t− τ1)e−iΩτ1 + νZ̃(t− τ2)e−iΩτ2 (79)
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FIG. 13: Steady state of (82)-(84) and (79). Parameters: ω =
3, γ = 10, µ = 0.36, ν = 0.04, τ1 = 0.6, τ2 = 0.4, D = 10−6.

where Ω is the speed of rotation. Note that moving to a
rotating frame causes effective phase shifts in X̃ and Z̃.

Writing X̃j(t) = Xj(t)e
−iΩt = r̃j(t)e

iθ̃j(t) we find that in
population one,

dr̃j
dt

= γ[1− r̃2
j (t)]r̃j(t)

+ Re
{

[µZ̃(t− τ1)e−iΩτ1 + νX̃(t− τ2)e−iΩτ2 ]e−iθ̃j(t)
}

≡ F̃ [r̃j(t), θ̃j(t), Z̃(t− τ1), X̃(t− τ2)] (80)

dθ̃j
dt

= ω − Ω

+ Im
{

[µZ̃(t− τ1)e−iΩτ1 + νX̃(t− τ2)e−iΩτ2 ]e−iθ̃j(t)
}
/r̃j(t)

≡ G̃[r̃j(t), θ̃j(t), Z̃(t− τ1), X̃(t− τ2)] (81)

We are thus interested in steady states of

∂R

∂t
(θ, t) = F̃ [R(θ, t), θ, Z̃(t− τ1), X̃(t− τ2)]

− G̃[R(θ, t), θ, Z̃(t− τ1), X̃(t− τ2)]
∂R

∂θ
(θ, t)

(82)

∂P

∂t
(θ, t) = − ∂

∂θ

{
P (θ, t)G̃[R(θ, t), θ, Z̃(t− τ1), X̃(t− τ2)]

}
+D

∂2

∂θ2
P (θ, t) (83)

along with (79) where

Z̃(t) =

∫ 2π

0

P (θ, t)R(θ, t)eiθdθ. (84)

Matlab’s dde23 routine was used for time integration,
and a steady state of (82)-(84) and (79) is shown in
Fig. 13, where Ω = 2.6375. Numerical study of delay
differential equations is significantly more difficult than
that of non-delayed equations, so we discretise θ in only
32 equally spaced points. As can be seen in Fig. 13 the
solutions are quite smooth functions of θ, and spatial
derivatives are evaluated spectrally.
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unstable periodic orbit created in a subcritical Hopf bifurca-
tion (see text). Parameters: γ = 10, µ = 0.36, ν = 0.04, τ1 =
0.6, τ2 = 0.4, D = 10−6. (Discretised with 32 points.)

Having found the steady state of (82)-(84) and (79) we
can numerically integrate the ODEs

dr

dt
= F̃ [r, θ, Z̃, X̃];

dθ

dt
= G̃[r, θ, Z̃, X̃] (85)

where Z̃ and X̃ no longer depend on time, in order to
find the period of an oscillator in the incoherent group
relative to the frequency of the locked group (Ω). For
the parameters used here, (86) has a stable periodic or-
bit with angular frequency ∼ 0.35338, showing that the
coherent and incoherent groups do have different average
frequencies, as expected for a chimera state. Adding this
frequency to the measured value of Ω we obtain 2.9909,
in very good agreement with the measured angular fre-
quency from the finite simulation (2.9871).

We can following the steady state shown in Fig. 13 as
ω is decreased using the software DDE-BIFTOOL [46].
Doing so we find that it becomes unstable through a sub-
critical Hopf bifurcation, as shown in Fig. 14. We can also
follow the unstable periodic orbit created in this bifur-
cation as ω is varied. To represent the unstable periodic
orbit we track the maximum over θ of P (θ, t), and then
show the maximum and minimum values over one period
of this, with open circles.

Increasing ω in the discrete network (69)-(70) to ω =
3.2 destabilises the chimera state, and the system moves
to a state where both populations are incoherent, as
shown in Fig. 15. Such an instability cannot be detected
using the approach presented above, which assumes that
one population is perfectly synchronised.
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FIG. 15: Solution of (69)-(70). Z1(t) ≡ N−1 ∑N
k=1Xk(t) and

Z2(t) ≡ N−1 ∑N
k=1XN+k(t). ω is increased from 3 to 3.2 at

t = 300 causing the chimera to become unstable. Parameters:
γ = 10, µ = 0.36, ν = 0.04, τ1 = 0.6, τ2 = 0.4, N = 100.

III. DISCUSSION

We have used the results of [22] to study the dynam-
ics of chimera states in networks formed from two pop-
ulations of identical oscillators, with different strengths
of coupling both within and between populations. We
studied four different types of oscillators. In Sec. II A we
revisited the system of Stuart-Landau oscillators stud-
ied in [30] and put stability results that were inferred
in that paper on a solid footing. In Sec. II B we con-
sider Kuramoto oscillators with inertia, previously stud-
ied in [27, 28]. We showed that stable stationary chimeras
do not exist is such systems, at least for an infinite num-
ber of oscillators and for the parameter values previously
considered. In Sec. II C we considered FitzHugh-Nagumo
oscillators whose oscillations are highly nonlinear. This
system is unlike the three others studied, as the oscil-
lators are not invariant under a phase shift, and thus
the chimera state of interest is actually a periodic orbit
rather than a fixed point in a rotating coordinate frame.
Lastly (Sec. II D) we considered Stuart-Landau oscilla-
tors with delayed coupling. We have provided numerical
results on the existence and stability of chimeras in these
networks, in contrast to the many presentations showing
results of only numerical simulations of finite networks of
oscillators.

The main limitation of this approach is that it assumes
that one population is perfectly synchronised while the
oscillators in the other population lie on a smooth curve.
Effectively, we are restricted to a subset of solutions for
which this is true, with no way to determine stability
with respect to perturbations out of this subset, only
within it. Thus we cannot detect a bifurcation to a fully-
synchronous state, nor to a state in which neither pop-
ulation is fully synchronised (although see Sec. II C 1).
Also, we cannot deal with the possibility of the break up
of the curve C [22]. To fully verify the results found in
this paper one should simulate the original system of os-
cillators. However, even given the limitations above, the
method presented here is useful for finding some of the
bifurcations a chimera can undergo, and thus determin-
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FIG. 16: Snapshot of a solution of (8)-(9) where for each oscil-
lator, ω was randomly chosen from a uniform distribution on
[0, 0.002]. (a): partially synchronous population; (b): nearly
synchronous population. Note the different scales. Colour
indicates the value of each ω. Parameters: ε = 0.05, β =
0.08, A = 0.2, δ = −0.1, N = 500.

ing the range of parameters over which it exists and is
stable.

Regarding future work, all of the results presented
here consider identical oscillators. However, at least for
sinusoidally-coupled phase oscillators it is known that
systems of identical oscillators have non-generic proper-
ties such as a large number of conserved quantities [36],
and making them heterogeneous removes this degener-
acy [14, 33]. To investigate this we numerically inte-
grated (8)-(9), but having made the system heteroge-

neous by choosing the value of ω for each oscillator ran-
domly and independently from a uniform distribution. A
snapshot of the solution is shown in Fig. 16, where the os-
cillators are coloured by their ω value. This state can still
be regarded as a chimera, as it is a small perturbation
from the chimera that exists for identical oscillators. For
both populations, the oscillators lie on a smooth curve.
However, for the partially synchronous population there
seems to be no correspondence between the value of ω
and an oscillator’s position on the curve, while in the
nearly synchronous group the oscillators are clearly or-
dered by the value of ω. It may be possible to derive a
theory to cover this type of solution.

It would also be of interest to develop a theory for os-
cillators described by more than two variables, assuming
that the incoherent oscillators still lie on a closed curve
in phase space.

While we have considered abstract networks of oscil-
lators, the modelling of neurons or groups of neurons by
oscillators is common [47]. A network of two populations,
as studied here, naturally arises when modelling the dy-
namics of competition between two competing percepts,
for example in binocular rivalry [48]. The techniques pre-
sented here may be useful in further understanding the
dynamics of such networks.
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E. Schöll, “Nonlinearity of local dynamics promotes
multi-chimeras,” Chaos: An Interdisciplinary Journal of
Nonlinear Science, vol. 25, no. 8, p. 083104, 2015.

[27] T. Bountis, V. G. Kanas, J. Hizanidis, and A. Bezeri-
anos, “Chimera states in a two–population network of
coupled pendulum–like elements,” The European Physi-
cal Journal Special Topics, vol. 223, no. 4, pp. 721–728,
2014.

[28] S. Olmi, “Chimera states in coupled kuramoto oscilla-
tors with inertia,” Chaos: An Interdisciplinary Journal
of Nonlinear Science, vol. 25, no. 12, p. 123125, 2015.

[29] I. V. Belykh, B. N. Brister, and V. N. Belykh, “Bistabil-
ity of patterns of synchrony in kuramoto oscillators with
inertia,” Chaos: An Interdisciplinary Journal of Nonlin-
ear Science, vol. 26, no. 9, p. 094822, 2016.

[30] C. R. Laing, “Chimeras in networks of planar oscillators,”
Physical Review E, vol. 81, no. 6, p. 066221, 2010.

[31] S. Olmi, A. Politi, and A. Torcini, “Collective chaos in
pulse-coupled neural networks,” EPL (Europhysics Let-
ters), vol. 92, no. 6, p. 60007, 2011.

[32] I. Ratas and K. Pyragas, “Symmetry breaking in two in-
teracting populations of quadratic integrate-and-fire neu-

rons,” Phys. Rev. E, vol. 96, p. 042212, Oct 2017.
[33] E. Ott and T. M. Antonsen, “Low dimensional behavior

of large systems of globally coupled oscillators,” Chaos,
vol. 18, p. 037113, 2008.

[34] C. Laing, “The dynamics of chimera states in heteroge-
neous Kuramoto networks,” Physica D, 2009.

[35] E. A. Martens, “Bistable chimera attractors on a trian-
gular network of oscillator populations,” Physical Review
E, vol. 82, no. 1, p. 016216, 2010.

[36] S. Watanabe and S. Strogatz, “Constants of motion for
superconducting Josephson arrays,” Physica. D, vol. 74,
pp. 197–253, 1994.

[37] L. N. Trefethen, Spectral methods in MATLAB, vol. 10.
Siam, 2000.

[38] B. Ermentrout, “Gap junctions destroy persistent states
in excitatory networks,” Physical Review E, vol. 74, no. 3,
p. 031918, 2006.

[39] C. R. Laing, “Numerical bifurcation theory for high-
dimensional neural models,” The Journal of Mathemati-
cal Neuroscience, vol. 4, no. 1, pp. 1–27, 2014.

[40] E. Doedel, R. Paffenroth, A. Champneys, T. Fairgrieve,
Y. Kuznetsov, B. Sandstede, and X. Wang, “AUTO 2000:
Continuation and Bifurcation Software for Ordinary Dif-
ferential Equations (with HomCont),” Concordia Univer-
sity, Canada, ftp. cs. concordia. ca/pub/doedel/auto.

[41] E. A. Martens, “Chimeras in a network of three oscillator
populations with varying network topology,” Chaos: An
Interdisciplinary Journal of Nonlinear Science, vol. 20,
no. 4, p. 043122, 2010.

[42] S. W. Haugland, L. Schmidt, and K. Krischer, “Self-
organized alternating chimera states in oscillatory me-
dia,” Scientific reports, vol. 5, p. 9883, 2015.

[43] C. R. Laing, “Disorder-induced dynamics in a pair of
coupled heterogeneous phase oscillator networks,” Chaos,
vol. 22, no. 4, p. 043104, 2012.

[44] O. Omel’chenko, Y. Maistrenko, and P. Tass, “Chimera
States: The Natural Link Between Coherence and Inco-
herence,” Phys. Rev. Lett., vol. 100, p. 044105, 2008.

[45] G. C. Sethia, A. Sen, and F. M. Atay, “Clustered chimera
states in delay-coupled oscillator systems,” Physical re-
view letters, vol. 100, no. 14, p. 144102, 2008.

[46] K. Engelborghs, T. Luzyanina, and D. Roose, “Numer-
ical bifurcation analysis of delay differential equations
using dde-biftool,” ACM Transactions on Mathematical
Software (TOMS), vol. 28, no. 1, pp. 1–21, 2002.

[47] P. Ashwin, S. Coombes, and R. Nicks, “Mathemati-
cal frameworks for oscillatory network dynamics in neu-
roscience,” The Journal of Mathematical Neuroscience,
vol. 6, no. 1, p. 2, 2016.

[48] C. R. Laing and C. C. Chow, “A spiking neuron model
for binocular rivalry,” Journal of computational neuro-
science, vol. 12, no. 1, pp. 39–53, 2002.


